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We study sequential bargaining between a proposer and a veto player. Both have
single-peaked preferences, but the proposer is uncertain about the veto player’s ideal
point. The proposer cannot commit to future proposals. When players are patient,
there can be equilibria with Coasian dynamics: the veto player’s private information
can largely nullify proposer’s bargaining power. Our main result, however, is that under
some conditions there also are equilibria in which the proposer obtains the high pay-
off that he would with commitment power. The driving force is that the veto player’s
single-peaked preferences give the proposer an option to “leapfrog,” that is, to secure
agreement from only low-surplus types early on to credibly extract surplus from high
types later. Methodologically, we exploit the connection between sequential bargaining
and static mechanism design.

KEYWORDS: Coase conjecture, leapfrogging, skimming, policy bargaining, agenda
setting, delegation.

1. INTRODUCTION

“If the Congress returns the bill having appropriately addressed these concerns, I will sign it. For now, I must
veto the bill.”1

— President Barack Obama

AN IMPORTANT FEATURE OF U.S. POLITICS is that legislatures (e.g., the Congress or a
State Assembly) send bills to executives (e.g., the President or a Governor) who can veto
them, and conversely, executives must secure confirmation from legislatures for certain
appointments (e.g., to the Supreme Court and the Federal Reserve Board). More broadly,
there are many contexts in which one party or group makes proposals and another decides
whether to approve them. For instance, search committees put forward candidates for ap-
proval by their organizations, Boards of Directors may require sign-off from shareholders
on certain initiatives, and some public school districts require citizens to ratify the budget
proposed by their school boards.

In an influential paper, Romer and Rosenthal (1978) introduced a framework to study
veto bargaining, that is, bargaining over a one-dimensional policy between two players who
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have single-peaked preferences. Only one player, Proposer, has the power to make pro-
posals; the other player, Vetoer, decides whether to accept a proposal or reject it and pre-
serve the status quo. Romer and Rosenthal assumed complete information;—specifically,
Proposer knows Vetoer’s preferences—and a single take-it-or-leave-it proposal. These are
important benchmarks, but for many applications both assumptions ought to be relaxed:
Proposer may be uncertain about Vetoer’s preferences, and as illustrated in our epigraph,
Proposer can make sequential proposals.

Sequential veto bargaining with incomplete information presents rich possibilities for
learning and signaling. When a proposal is rejected, Proposer updates about Vetoer’s
preferences and might modify his proposal in response. Anticipating that, Vetoer has an
incentive to strategically reject proposals that she prefers over the status quo in order to
extract proposals that she likes even more. (Consider our epigraph, again.) But then, to
what extent does Proposer actually benefit from making multiple proposals?

Existing work on these issues primarily undertakes only a two-period analysis (e.g.,
Cameron (2000, pp. 110–116); Cameron and McCarty (2004, Section 4)).2 But there are
limitations to models with a short bargaining horizon. On the one hand, being able to
make proposals repeatedly may allow Proposer to reap benefits from screening Vetoer’s
type. On the other hand, a short horizon confers significant commitment power to Pro-
poser.

The implications of a long horizon have been studied in the neighboring arena of bar-
gaining between a seller and a buyer with privately-known valuation. There, following the
classic Coase conjecture (Coase (1972)), it has been shown that if offers can be made in-
definitely and players are patient, then lack of commitment wipes out the seller’s bargain-
ing power. The outcome is (approximately) that the buyer only pays her lowest possible
valuation so long as it is common knowledge that there are gains from trade.3 Apply-
ing Coasian logic to veto bargaining would suggest that because sequential rationality
compels Proposer to repeatedly moderate future proposals, an inability to commit would
significantly hurt Proposer.

Accordingly, the goal of our paper is to study sequential veto bargaining with incom-
plete information in an infinite-horizon model with patient players. Our main result is
that, contrary to a Coasian intuition, the lack of commitment need not harm Proposer.
More specifically, we establish that under certain conditions, if players are patient, Pro-
poser can achieve a payoff that is arbitrarily close to his payoff with commitment power
(Theorem 1).

Central to this result is Proposer’s ability to leapfrog: he may initially propose a policy
that is far from his own interests, targeting acceptance by “low” Vetoer types whose ideal
points are further away from his and closer to the status quo. Upon rejection, Proposer
concludes that Vetoer’s ideal point is closer to his own preferred policy. He is then able
to extract surplus from these “high” types because it is then credible to only offer policies
that are even closer to his own ideal point. Put differently, by securing initial acceptance
from (only) low types, leapfrogging limits the implications of sequential rationality for
subsequent policy moderation, so much so that Proposer is not harmed by the lack of
commitment.

2We discuss two exceptions, Romer and Rosenthal (1979) and Cameron and Elmes (1994), in Section 6.
3This point has been established for the “gap case” and, subject to a “stationary equilibrium” qualification,

also for the “no gap case” (Fudenberg, Levine, and Tirole (1985), Gul, Sonnenschein, and Wilson (1986)).
Ausubel and Deneckere (1989b) provide an important counterpoint in the no gap case with nonstationary
equilibria.
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Leapfrogging is viable in our model because Vetoer has single-peaked preferences:
there are policies that low types are willing to accept and high types are not, given suitable
subsequent policy proposals. By contrast, in the canonical model of seller–buyer bargain-
ing, all buyer types prefer low to high prices. Offering low prices early on to subsequently
charge high-value buyers a higher price would be futile; indeed, any equilibrium in seller–
buyer bargaining features decreasing prices with the so-called skimming property: the
current price is always accepted by an interval of the highest-value buyer types.

After presenting our model in Section 2, we use a two-type example in Section 3 to de-
velop the logic of leapfrogging. We first show how the option to leapfrog implies that, if an
equilibrium exists, there is one that achieves a high Proposer payoff. Our option-based ar-
gument is succinct, but leaves open whether and how leapfrogging can be supported in an
equilibrium. Accordingly, we also explicitly construct a high Proposer payoff equilibrium
that uses leapfrogging (Proposition 1).

We turn in Section 4 to a setting with a continuum of types and Vetoer preferences
given by a quadratic loss function. As is familiar in sequential bargaining, an upper bound
on Proposer’s payoff when he can commit to a strategy in the dynamic game is provided
by an auxiliary static mechanism design problem (Lemma 1). This static problem has been
studied recently by Kartik, Kleiner, and Van Weelden (2021); we assume that what they
call “interval delegation” is an optimal mechanism. Theorem 1 then establishes our main
result: the static mechanism design payoff can be (approximately) achieved in a sequen-
tial veto bargaining equilibrium. Our argument is nonconstructive, but crucially exploits
Proposer’s option to leapfrog in the dynamic game and certain properties of the optimal
mechanism (Lemma 3). Combining Lemma 1 and Theorem 1, we conclude that Proposer
can achieve (approximately) the same payoff in an equilibrium as he could by committing
to a strategy in the dynamic game.

In Section 5, we show that there can be multiple equilibrium outcomes. Section 5.1
constructs, under reasonable conditions, a “skimming equilibrium” that features Coasian
dynamics: Proposer starts with demanding proposals but compromises rapidly, so much
so that Vetoer (approximately) gets her ideal point unless it is sufficiently extreme. In
some cases, this outcome is a lower bound on Proposer’s equilibrium payoff, and an up-
per bound on Vetoer’s. In Section 5.2, we build on the skimming equilibrium to explicitly
describe the dynamics of a leapfrogging equilibrium that delivers (approximately) Pro-
poser’s commitment payoff. Proposer begins by leapfrogging with a low offer, and upon
rejection skims among the remaining high types. Although intuitive, this approach boot-
straps on the “bad” skimming equilibrium by using it as a punishment if Proposer deviates,
reminiscent of Ausubel and Deneckere (1989b). By contrast, our nonconstructive proof
of Theorem 1 does not presume existence of a low-payoff equilibrium. In Section 5.3,
we establish that leapfrogging is sometimes necessary to achieve Proposer’s commitment
payoff.

As there can be a range of equilibrium payoffs, our analysis calls attention to the role
of “norms”—equilibrium selection—in veto bargaining. In particular, if the norm favors
Proposer, then the ability to make multiple proposals is always valuable to Proposer; how-
ever, under an unfavorable norm, in some environments Proposer could be worse off than
if he could only make a single take-it-or-leave-it offer.

Section 6 relates our work to the existing literature on veto and Coasian bargaining.
Section 7 concludes.
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2. MODEL

Proposer (he) and Vetoer (she) jointly choose a policy or action a ∈ R. In each pe-
riod t = 0�1�2� � � � , so long as agreement has not already been reached, Proposer makes
a proposal at ∈ R that Vetoer can accept or reject. The game ends when Vetoer ac-
cepts a proposal. Both players share a common discount factor δ ∈ [0�1). If agreement is
reached in some period T on action aT , then Proposer’s payoff is δTu(aT ) and Vetoer’s
is δTuV (aT � v); both players’ payoffs are 0 if agreement is never reached. The variable
v ∈ R in Vetoer’s payoff is her private information, or type, drawn ex ante from some cu-
mulative distribution F . We interpret the players’ payoffs as arising from flow utilities u
and uV when a status-quo policy 0 is implemented in every period from 0 to T − 1 and
the agreement policy aT is implemented forever starting from period T , with a normal-
ization that both players’ utilities from the status quo is 0. That is, a player’s utility from a
policy is his/her gain from that policy relative to the status quo. We assume both players
have strictly single-peaked preferences, with Proposer’s ideal point being 1 and Vetoer’s v.
That is, u(a) is strictly increasing on (−∞�1] and strictly decreasing on [1�∞), and anal-
ogously for uV (a�v).4 Our main result (Theorem 1 in Section 4) allows Proposer’s utility
u to be any concave function but assumes that uV is quadratic loss.

A history in this game is a sequence of proposals. A strategy for Proposer is a function
that assigns to every history a probability distribution over proposals, interpreted as the
(possibly random) proposal Proposer makes given that all proposals in the history have
been rejected. A strategy for Vetoer is a function that specifies for each history and each
type the probability of accepting the last proposal. Our equilibrium concept is a standard
version of perfect Bayesian equilibrium: both players play sequentially rationally and be-
liefs are updated by Bayes rule whenever possible—upon rejection of a proposal at any
history, Proposer’s belief about Vetoer’s type is updated by Bayes’ rule if rejection has
positive probability given Proposer’s belief at that history. We also require, as usual, that
Proposer’s proposals do not (directly) affect his beliefs about Vetoer’s type.

Although our model formally has a single veto player, it can also be applied to settings
in which Proposer has to secure approval from a committee of voters; so long as Proposer
observes only whether his proposal passes or not, Vetoer can be interpreted as the median
member of the committee. We elaborate in Section 4.4.

3. TWO-TYPE EXAMPLE

This section presents an example to illustrate the logic of leapfrogging and how it ben-
efits Proposer. The example has linear loss functions and a binary type distribution. Ac-
cordingly, for this section take

u(a) = 1 − |1 − a| and uV (a�v) = v− |v − a|�
where the constants are determined by our normalization that both Proposer’s and Ve-
toer’s payoffs from the status quo (action 0) are 0. For simplicity, assume in this section
that Proposer can only propose actions in [0�1]. Suppose there are two Vetoer types, l
and h, and let μ0 be the prior probability of type h. We focus on the case where

0 < l < 1/2 <h< 2l < 1� (1)

4We adopt the convention that “increasing,” “larger than,” “prefers,” etc., should be understood in the weak
sense unless explicitly qualified by “strict.”.
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as it best illustrates the strategic issues at the core of our analysis. Proposer’s first best—
that is, his optimum under complete information subject to Vetoer’s approval—is action
1 from type h and action 2l from type l. The assumption that h < 2l implies that Vetoer
of type h prefers 2l to 1 and so this first-best allocation cannot be implemented under
incomplete information.

A Static Benchmark

We begin our analysis with a useful benchmark. Consider a static (one-period) prob-
lem in which Proposer selects a menu of actions from which Vetoer can choose (if she
opts to not exercise her veto); equivalently, Proposer offers a deterministic mechanism or
delegation set. In this problem, Proposer’s linear loss utility implies that he either pools
both types with the singleton menu {2l} or separates them using the menu {a∗�1}, where
a∗ := 2h− 1 makes type h indifferent between action 1 and action a∗.5 Separation is opti-
mal whenever μ0 >μ∗, where μ∗ is defined by

u(2l) = (
1 −μ∗)u(

a∗) +μ∗u(1)� (2)

and pooling is optimal otherwise. We refer to max{u(2l)� (1 −μ0)u(a∗) +μ0u(1)} as Pro-
poser’s delegation payoff.

It is straightforward that when players are patient, Proposer can achieve approximately
the delegation payoff in our sequential bargaining game if he could commit to a strategy.6

But can Proposer achieve (approximately) the delegation payoff without commitment
power?

The Sequential Rationality Problem

The difficulty when separation is optimal is that of Coasian dynamics, which suggest the
impossibility of screening Vetoer types when players are patient (e.g., Fudenberg, Levine,
and Tirole (1985), Gul, Sonnenschein, and Wilson (1986)), given that type h prefers l’s
allocation to her own. Specifically, if Proposer secures agreement initially (even with only
high probability) from type h on an action close to 1, sequential rationality then impels
him to offer 2l to reach an agreement immediately with type l. But anticipating the offer
of 2l, a patient type h would not accept the initial high action. Indeed, it can be shown
that in any equilibrium in which the on-path sequence of offers is decreasing—which
guarantees that agreement is first secured with type h—Proposer’s payoff at the patient
limit is no higher than from pooling both types on action 2l. This payoff is strictly below,
and possibly far from, the delegation payoff when separation is optimal.

5To see why optimal separation is via {a∗�1}, suppose separation is better than pooling and allocation {al� ah}
with al < ah is an optimal separating allocation. It must be that ah > 2l; otherwise, pooling on 2l would be
strictly better for Proposer. Hence, al < h; otherwise, both types would strictly prefer al . Consequently, each
type i ∈ {l�h} receives ai . Incentive compatibility (IC) implies al ≤ 2h − ah; if this inequality is strict, raising
al a little preserves IC and is strictly profitable for Proposer. So, al = 2h − ah, and it follows that only ah = 1
(which implies al = a∗) maximizes Proposer’s payoff.

6Our analysis in Section 4 shows that under certain conditions, the delegation payoff is in fact an upper
bound on Proposer’s payoff in the dynamic game, even with commitment power. But those conditions ensure
that delegation—a deterministic mechanism—is optimal in the static problem among stochastic mechanisms,
which is not true in this example because of Vetoer’s linear loss utility and discrete types; see also footnote 10.
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The Leapfrogging Solution

Our key insight is that Coasian dynamics can be negated by leapfrogging, that is, mak-
ing an offer that is accepted by the low type and rejected by the high type. Specifically,
Proposer can first propose an action close to a∗ that is accepted only by type l. Upon re-
jection, Proposer credibly offers action 1 ever after. In other words, leapfrogging uses a
low action to first target the low type so that Proposer can subsequently extract a high ac-
tion from the high type; crucially, at the latter stage, Proposer is no longer constrained by
sequential rationality to moderate his offer if it is rejected. We highlight that it is Vetoer’s
single-peaked preferences that permit offers that type l is willing to accept but type h is
not.

We now make precise how Proposer can exploit leapfrogging with a succinct argument
that presumes equilibrium existence. We argue that if separation is optimal, there is an
equilibrium in which Proposer achieves approximately the delegation payoff, at least.
(Here and subsequently, we sometimes leave implicit that statements should be under-
stood as holding for large δ.) Let aδ := δa∗ = δ(2h− 1) be the action below h that makes
type h indifferent between obtaining action 1 in the next period and obtaining action aδ

in the current period. Assume we are given an equilibrium. Modify that equilibrium to
obtain a new equilibrium with strategy profile σ and beliefs μ as follows:

1. If Proposer offers aδ in the first period, type l accepts and type h rejects. After a
first-period rejection of aδ, Proposer’s belief assigns probability 1 to type h, and so
he proposes 1 in all future periods; in these periods, type h accepts any proposal in
[aδ�1] and rejects all others, and type l accepts any proposal in [0�2l] and rejects all
others;

2. If Proposer offers a �= aδ in the first period, continuation play follows the original
equilibrium;

3. In the first period, Proposer chooses a proposal that maximizes his expected payoff.7

Point 1 above implies that we have an equilibrium in the continuation game after a
first-period proposal of aδ is rejected. It follows from Points 2 and 3 that (σ�μ) is an equi-
librium. In this equilibrium, either Proposer leapfrogs by offering aδ in the first period,
which is accepted by type l, followed by action 1 being accepted by type h in the second
period, or Proposer obtains an even higher payoff by proposing something different in
the first period. When δ is close to 1, aδ is close to a∗ and Proposer’s equilibrium payoff
is close to the delegation payoff or even higher.

When separation is optimal, this argument shows that the option to leapfrog yields
Proposer approximately his delegation payoff or higher. But it does not establish that
leapfrogging actually occurs, and it presumes equilibrium existence. We now turn to a
full-fledged equilibrium construction that features leapfrogging; the construction also de-
scribes an equilibrium when pooling is optimal.

PROPOSITION 1: When δ is large, for any μ0 there is an equilibrium in which Proposer’s
payoff is approximately his delegation payoff.8 In particular, there exist μδ and μ̄δ, with 0 <
μ∗ < μδ < μ̄δ < 1, such that at (μ0� δ) there is an equilibrium with on-path behavior as
follows:

7We can assume a maximizer exists: if one does not, it must be that in the original equilibrium it is optimal
for Proposer to choose aδ in the first period, with a payoff larger than (1 −μ0)u(aδ) +δμ0u(1); so the original
equilibrium itself yields at least approximately the delegation payoff.

8More precisely, letting ud denote the delegation payoff, for all ε > 0 there is δ < 1 such that for any δ > δ

and for all μ0, there is an equilibrium in which Proposer’s payoff is at least ud − ε.
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(a) (Skimming.) If μ0 < μδ, Proposer offers a finite sequence of actions that decreases to
2l. Each offer strictly higher than 2l is accepted with positive probability by type h and
rejected by l.

(b) (Leapfrogging.) If μ0 ∈ (μδ� μ̄δ), Proposer offers action aδ in the first period, which
is accepted by type l and rejected by h; in the second period, Proposer offers action 1,
which is accepted by type h.

(c) (Delayed Leapfrogging.) If μ0 > μ̄δ, Proposer offers action 1 in the first period, which
is accepted with positive probability by type h and rejected by l; in the second period,
Proposer randomizes between skimming and leapfrogging (parts (a) and (b), resp.).

(All proofs of formal results are in the Appendices.)
Case (a) of Proposition 1 concerns low priors. Here, we construct a skimming equi-

librium in which Proposer begins with an offer exceeding 2l but compromises to lower
actions following rejections. As δ → 1, Proposer’s payoff converges to the pooling pay-
off, u(2l), from the static benchmark; moreover, μδ also converges to μ∗, and so for all
priors less than μ∗, Proposer is obtaining approximately his delegation payoff. The skim-
ming equilibrium adapts a construction that is standard in seller–buyer bargaining (Hart
(1989); Fudenberg and Tirole (1991, pp. 409–410)). However, there are novel considera-
tions in deterring Proposer from offering actions lower than 2l. In our construction, the
most attractive deviation is leapfrogging, wherein Proposer first offers aδ to secure accep-
tance from type l and then extracts action 1 from type h. Such deviations are profitable
when type h is sufficiently likely, which explains why our construction is an equilibrium
only for a low prior (whereas in seller–buyer bargaining, the analogous equilibrium exists
for all priors because no buyer type would wait for a higher price). The threshold μδ is
the (lowest) belief at which Proposer is indifferent between skimming and leapfrogging.

Proposition 1(b) and (c) are the main cases of interest, because here the prior is such
that separation is optimal in the static benchmark. In case (b), Proposer leapfrogs at the
outset, securing action aδ from type l in the first period and then action 1 from type h in
the second period. As δ → 1, aδ → a∗ and Proposer obtains his delegation payoff. The
challenge with supporting leapfrogging is ensuring that Proposer does not deviate to a
high offer in the first period. Such a deviation (if accepted with sufficient probability by
type h) would be profitable if the prior is too large. The precise threshold μ̄δ is deter-
mined by Proposer’s indifference between leapfrogging and the most attractive deviation,
which is an offer of 1. In equilibrium, this offer is accepted by type h only with some
probability, which brings Proposer’s belief upon rejection down to the threshold μδ de-
scribed in the previous paragraph, so that Proposer then randomizes between skimming
and leapfrogging in a manner that justifies h’s randomization. The full construction of the
leapfrogging equilibrium is fairly involved; Figure 1 summarizes, with details provided in
the formal proof.

Finally, Proposition 1(c) concerns the case of high priors, where leapfrogging from the
outset cannot be sustained due to Proposer’s strong incentive to secure agreement in the
first period with the high type on a high action. Instead, we have delayed and only proba-
bilistic leapfrogging. As foreshadowed in the previous paragraph, now Proposer actually
offers action 1 in the first period, which is accepted by type h with positive probabil-
ity; upon rejection, Proposer randomizes in the second period between skimming and
leapfrogging. Since Proposer is indifferent in the second period, his payoff is as if he al-
ways leapfrogs then, and his payoff therefore converges to the delegation payoff as δ→ 1.

It is worth noting that although cases (b) and (c) of Proposition 1 yield Proposer
an identical payoff at the patient limit, both cases remain relevant even at that limit:
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FIGURE 1.—Proposer’s first-period incentives in the equilibrium for Proposition 1(b) and (c). Offers in
Region I (including aδ) are accepted only by type l; action 1 is then offered and accepted by h. Offers in Region
II are accepted by both types. Offers in Region III are accepted with some probability by h and rejected by l;
rejection leads to a belief lower than μδ, whereafter there is a (suitably randomized) skimming equilibrium.
Action āδ makes type h indifferent between accepting āδ now and waiting one period to play Proposition
1(a)’s skimming equilibrium under belief μδ. Offers in Region IV are accepted by h with some probability and
rejected by l; rejection leads to belief μδ, whereafter Proposer mixes between skimming and leapfrogging. For
any prior μ0 > μδ, Proposer’s optimal offer is either aδ or 1. Belief μ̄δ is defined by Proposer’s indifference
between these two offers. Hence, μ0 ∈ (μδ� μ̄δ) leads to leapfrogging (Proposition 1(b)), whereas μ0 > μ̄δ

leads to a positive probability of delayed leapfrogging (Proposition 1(c)).

limδ→1 μ
δ < limδ→1 μ̄

δ < 1 (see footnote 34 in the Appendix). Moreover, since Proposer’s
delegation payoff becomes arbitrarily close to his complete-information payoff as μ0 → 1,
Proposition 1 implies that there are equilibria in which Proposer’s payoff at the patient
limit is continuous in the prior even when the probability of type l vanishes.9 By contrast,
in seller–buyer bargaining, in any equilibrium (of the “gap case”), the uninformed seller’s
payoff in the patient limit drops discontinuously when he ascribes any positive probability
to the low-value buyer.

Limitations

Although this example conveys the logic of leapfrogging and how Proposer can ex-
ploit it, there are two interrelated limitations. First, it is difficult to determine whether
there are equilibria that are even better (or worse) for Proposer than that identified in
Proposition 1. Second, while the delegation payoff provides a high target for Proposer, a
more compelling benchmark is Proposer’s payoff if he can commit to his strategy in the
sequential bargaining game. Indeed, in this example dynamic commitments can achieve
more than the delegation payoff.10 The following section addresses these issues by identi-
fying assumptions within our general model such that Proposer (approximately) achieves
his dynamic commitment payoff in an equilibrium.

4. GENERAL ANALYSIS

We hereafter assume Proposer’s utility function u(a) is concave and Vetoer’s is

uV (a�v) = −(v − a)2 + v2�

which is the standard quadratic loss function with our normalization that Vetoer’s pay-
off from the status quo is 0. We also assume Vetoer’s type is distributed according to a

9More precisely: limμ0→1 limδ→1 U (μ0� δ) = u(1), where U (μ0� δ) denotes Proposer’s payoff in the equilib-
rium constructed in Proposition 1 for the belief μ0 and discount factor δ.

10Let t be the earliest period such that type h prefers agreement on action 1 in the first period to agreement
on 2l in period t. If Proposer offers 1 up until period t − 1 and offers 2l from period t on, then it is optimal
for type h to accept 1 in the first period and for type l to accept 2l in period t. For large δ, h is approximately
indifferent: 2h − 1 ≈ δt (2h − 2l), or equivalently, (2h − 1) l

h−l
≈ δt2l. It follows that Proposer’s payoff from

dynamic commitment is at least μ0u(1) + (1 −μ0)δtu(2l) ≈ μ0u(1) + (1 −μ0)u(2h− 1) l
h−l

. This latter expres-
sion is strictly larger than Proposer’s payoff from the menu {a∗�1} because a∗ ≡ 2h− 1 and l

h−l
> 1 (as 2l > h

by assumption). That dynamic commitment strictly improves on the delegation payoff implies that the optimal
static mechanism in this example must be stochastic (see Lemma 1 below).
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cumulative distribution F ∈ F , where F is the set of distributions with interval support
that admit a density that is bounded away from both 0 and ∞ on the support. We denote
the support of F by [v� v]. For this section alone, we assume that v ≤ 1, that is, Vetoer’s
ideal point is always lower than Proposer’s. We do not view this restriction as critical; in-
deed, our equilibrium constructions in Section 5 dispense with it. Note that we allow for
v ≤ 1/2, which is tantamount to Proposer having monotonic preferences.

Vetoer’s quadratic loss function assures single-crossing expectational differences
(SCED) as defined by Kartik, Lee, and Rappoport (2022): for any two lotteries over time-
stamped actions—pairs (a� t) representing agreement on action a at time t, with t = ∞
capturing no agreement—their expected utility difference is single crossing in Vetoer’s
type v.11 This single-crossing property will play an essential role because it guarantees
“interval choice” (Kartik, Lee, and Rappoport (2022, Theorem 1)): given any Proposer
strategy, at every history the set of types that find it optimal to accept the current offer is
an interval.

4.1. A Static Problem

We define an auxiliary static mechanism design problem that will turn out to provide
a tight upper bound on payoffs in the dynamic game. In this auxiliary problem, a (direct,
stochastic) mechanism assigns each type a lottery over actions. Formally, a mechanism m
is a measurable function m : [v� v] → M0(R), where M0(R) is the set of probability dis-
tributions on R with finite expectation and finite variance. For notational convenience,
we write m(v) = a when m(v) puts probability 1 on action a and also extend the domain
of Proposer’s utility u to include lotteries: u(m(v)) := Em(v)[u(a)]. A mechanism m is
incentive compatible if every Vetoer type v prefers m(v) to m(v′) for all v′. It is individ-
ually rational if every type v prefers m(v) to action 0. Let S denote the set of incentive
compatible and individually rational mechanisms.12 Proposer’s static problem is

max
m∈S

∫
u
(
m(v)

)
dF (v)�

We denote Proposer’s maximum value by U (F).
Any incentive compatible and individually rational mechanism that assigns every type

a deterministic action can be implemented as a delegation set: Proposer chooses a subset
A ⊆ R and Vetoer is allowed to pick any action in A ∪ {0}. We say that an interval dele-
gation set is optimal if a solution to the static problem can be implemented by delegating
an interval [c∗�1] for some c∗ ∈ [0�1]. Our analysis below assumes environments in which
such simple mechanisms are optimal. That is, we maintain hereafter:

ASSUMPTION 1: For some c∗ ∈ [0�1], an interval delegation set [c∗�1] solves Proposer’s
static problem.

11This is because the utility from any lottery over time-stamped actions is −E(a�t)[δta2] +2vE(a�t)[δta], which
is linear in v. More generally, if uV (a� t) has SCED for nontime-stamped action lotteries (i.e., lotteries over
actions within single period), then SCED over time-stamped action lotteries is assured by Kartik, Lee, and
Rappoport (2022, Corollary 3). We assume quadratic loss because of some additional tractability, but believe
that our results would extend under SCED with weaker assumptions such as smoothness and concavity around
the ideal point.

12More precisely, any m ∈ S must also be such that v 
→ Em(v)[u(a)] is integrable.
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The static problem has been studied by Kartik, Kleiner, and Van Weelden (2021).
Among other things, they motivate interval delegation and investigate when it is opti-
mal. Their Corollary 3 establishes that sufficient conditions for Assumption 1 are that
Proposer’s utility u is a linear or quadratic loss function (or a combination thereof) and
Vetoer’s type density f is log-concave.13 Many commonly used distributions have log-
concave densities (Bagnoli and Bergstrom (2005)).

4.2. An Upper Bound on the Commitment Payoff

In the static problem, Proposer screens different Vetoer types by exploiting their het-
erogeneous preferences over (distributions of) actions within a single period. In our dy-
namic environment, delay is an additional screening instrument. Nevertheless, Proposer
can do no better in the dynamic game even if he could commit to his strategy.

LEMMA 1: There is no Proposer strategy and Vetoer best response that yield Proposer a
payoff strictly higher than U (F).

The idea behind this result is straightforward, and familiar in the seller-buyer bargain-
ing literature (e.g., Ausubel and Deneckere (1989a)): the outcome of any Proposer strat-
egy and Vetoer best response can be replicated by a mechanism in the static problem. To
elaborate, any Proposer strategy and Vetoer best response induce, for each Vetoer type,
a probability distribution over agreements on time-stamped actions. We can transform
any such distribution into a static lottery by mapping an agreement on action a in period
t into a static lottery that gives action a with probability δt and action 0 with remaining
probability. This transformation is payoff equivalent for Proposer and all Vetoer types.
Therefore, the static mechanism induced by transforming each type’s equilibrium distri-
bution is incentive compatible and individually rational because Vetoer is playing a best
response in the game, and the mechanism delivers Proposer the same payoff as in the
game.

We highlight that while it is crucial that the static problem allow for stochastic mech-
anisms, the argument for Lemma 1 does not require any assumption on either player’s
preferences beyond discounted expected utility with a common discount factor. Further-
more, the argument only uses the distribution of agreement times and actions for each
type and the requirement that Vetoer is best responding to Proposer, nothing more about
the game form. It follows that the static problem provides an upper bound on Proposer’s
commitment payoff in the dynamic game even if Proposer could, in any period, offer a
menu of (possibly stochastic) actions, allow Vetoer to send cheap-talk messages, or en-
gage in other complex protocols. Indeed, any incentive compatible and individually ratio-
nal mechanism that assigns each type a lottery over time-stamped actions yields Proposer
a payoff at most U (F).

4.3. Obtaining the Commitment Payoff Without Commitment

In light of Lemma 1, we say that Proposer can achieve approximately his commitment
payoff for a belief F ′ if given the belief F ′ (at some history), for every ε > 0 there is δ < 1

13While that paper maintains some assumptions on the type distribution that we do not assume, those as-
sumptions are not needed for its sufficient conditions for optimality of interval delegation. We also note that
the logic of Corollary 1 in that paper implies that the interval delegation set [max{0�2v}�1] is an optimal
mechanism if f is decreasing on [max{0� v}� v], given only that u is concave.
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such that for all δ > δ, there is a (continuation) equilibrium in which Proposer’s payoff is
at least U (F ′) −ε. For brevity, we say that Proposer can achieve approximately his commit-
ment payoff if he can approximately achieve his commitment payoff for the prior F .14 Our
main result, Theorem 1 below, presumes:

An equilibrium exists for all δ and all beliefs in F . (EqmExists)

We view this presumption as benign, and we provide reasonable sufficient conditions for
equilibrium existence in Section 5. In particular, it is sufficient that v ≤ 0, that is, some
Vetoer types prefer the status quo to any action Proposer prefers.

THEOREM 1: Suppose EqmExists. Proposer can achieve approximately his commitment
payoff.

Together, Lemma 1 and Theorem 1 imply that, when players are patient, there are equi-
libria in which Proposer suffers (almost) no loss from the inability to commit in the dy-
namic game. In particular, Proposer is not harmed by the ability to make sequential pro-
posals; in fact, whenever the optimal delegation set has c∗ < 1, Proposer strictly benefits
from that ability, as the outcome from that delegation set cannot be replicated with a sin-
gle proposal. Moreover, Proposer’s gain from the ability to offer a menu of actions, rather
than a single action, in each period vanishes as δ→ 1.

Theorem 1’s conclusion may be best appreciated when c∗ > max{0�2v}, say 0 < 2v < c∗.
In that case, the result contrasts with the negative conclusion from Coasian dynamics: in-
tuitively, if Proposer were to continually compromise starting from a high offer, sequential
rationality would drive offers all the way down to 2v; it would not be credible for Proposer
to stop at c∗.

An intuition one might proffer for Theorem 1 is that, when δ ≈ 1, Proposer can be-
gin with an offer of action 0—leapfrog—and then offer a decreasing sequence of actions
along a fine grid of [c∗�1]. Vetoer’s best response would be to accept the offer of 0 if her
type is in [0� c∗/2], and otherwise accept an offer in [c∗�1], resulting in approximately the
same outcome as the optimal delegation set [c∗�1]. This intuition is incomplete because
Proposer must be incentivized to offer 0 initially, and even thereafter, it is not clear that
he would be willing to follow the decreasing sequence of offers. We are able to substan-
tiate this intuition in Section 5.2 under some conditions, by exploiting equilibrium payoff
multiplicity to deter any Proposer deviations. Instead, we pursue a different approach to
prove Theorem 1 that does not rely on equilibrium payoff multiplicity and highlights the
power of Proposer’s option to leapfrog. It is this argument that we sketch in the remainder
of this subsection.

Our first step is to derive a “conditional optimality” property of interval delegation:
given the assumption that delegation set, [c∗�1] is an optimal static mechanism for the
prior type distribution F ; it is also optimal for certain conditional distributions. To state
the result, let F[v1�v2] denote the conditional distribution of F given v ∈ [v1� v2], for any
v1� v2 ∈ [v� v] with v1 ≤ v2.

LEMMA 2: The delegation set [c∗�1] solves Proposer’s static problem for any belief F[c�c′]
with c ≤ c∗/2 ≤ c∗ ≤ c′.

14To be clear, conceptually, by “commitment payoff” we have in mind Proposer’s payoff if he could commit
to a strategy in the dynamic game. But operationally, we refer to the static problem’s payoff U (F) as the
commitment payoff because of Lemma 1, our focus on large δ, and Theorem 1 below.
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The lemma owes to SCED of Vetoer’s utility and the optimal static mechanism be-
ing interval delegation, rather than just an arbitrary delegation set. The proof uses these
properties to establish that if some mechanism outperforms delegation set [c∗�1] for any
of the relevant truncated beliefs, then augmenting that mechanism by adding an interval
of high actions yields a mechanism that also outperforms [c∗�1] for the original belief.

Lemma 2 says, in particular, that delegation set [c∗�1] is an optimal mechanism for the
belief F[v�c∗] and that it remains optimal for the belief F[c∗/2�c∗] that is induced if Proposer
leapfrogs and obtains agreement from all types below c∗/2. We use these properties to
next establish Theorem 1 for the special case in which Proposer’s belief is F[v�c∗].

LEMMA 3: Suppose EqmExists. Proposer can achieve approximately his commitment pay-
off for belief F[v�c∗].

The proof deduces an equilibrium in which Proposer has an option to leapfrog that
guarantees him approximately the commitment payoff, analogous in spirit to the logic
given before Proposition 1. In the equilibrium, Proposer has the option to follow a path
in which he first proposes action 0, which will be accepted by all types below c∗/2, and
then proposes action c∗, which will be accepted by all types above c∗/2. When players are
patient, this path yields Proposer approximately the same payoff as in the static problem
because the delegation set [c∗�1] is outcome-equivalent to {c∗} under the belief F[v�c∗].
On this path, Proposer’s sequential rationality in the second period with belief F[c∗/2�c∗]

is assured by Lemma 1 and Lemma 2. Sequential rationality for Vetoer after both the
initial proposal of 0 and the subsequent proposal c∗ is because a rejection of c∗ in the
second period would lead Proposer to put probability 1 on type c∗ and make subsequent
proposals that are larger than c∗, and hence worse for Vetoer regardless of her type in
[v� c∗].15

Lemma 3 serves as the base step for an inductive proof of Theorem 1. Specifically, we
show that if Proposer can achieve approximately his commitment payoff for belief F[v�c′]
for some c′ ≥ c∗, then there is a neighborhood of c′ such that for any c′′ in this neighbor-
hood, the commitment payoff can also be achieved approximately for belief F[v�c′′].16

Here is the idea for the inductive step. Consider the action a′ > c′ that makes type c′

indifferent between accepting a′ in the current period and playing a putative continuation
equilibrium with belief F[v�c′] that gives Proposer approximately his commitment payoff
under that belief. Presuming this continuation if a′ is rejected, it is optimal for types be-
low c′ to reject a′ because SCED implies that they obtain a higher payoff from using the
strategy of type c′ in the continuation equilibrium. On the other hand, there is a neigh-
borhood of types above c′ within which it is optimal to accept a′ because (i) discounting
implies that types in a neighborhood of a′ prefer accepting a′ to receiving even their ideal
action in the next period, and (ii) SCED implies that the set of types willing to accept any
proposal is an interval. Now suppose Proposer’s belief is F[v�c′′] for c′′ strictly larger than
but sufficiently close to c′. It follows that the belief F[v�c′] and the continuation equilibrium
we hypothesized is self-fulfilling: anticipating this continuation leads to a′ being rejected
by precisely the set of types [v� c′]. Moreover, action a′ is an option that assures Proposer

15While it is weakly dominated for Vetoer to accept a proposal of 0, we use action 0 because of the contin-
uum action space. There are discretizations of the action space in which Proposer’s leapfrogging option can be
constructed using a strictly positive action instead of 0.

16This explanation is heuristic; the formal proof ensures that for any ε > 0, for all large enough δ < 1, the
induction can traverse the set of types with Proposer obtaining a payoff at least U (F) − ε.
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approximately his commitment payoff: conditional on rejection by types less than c′, the
continuation results in approximately the commitment payoff given the conditional dis-
tribution, whereas every type v ∈ (c′� c′′) accepts proposal a′ > c′′, which is larger than the
action v that Proposer gets from type v in the static problem for belief F[v�c′′] (by Lemma 2,
given that c′′ > c′ ≥ c∗).

We highlight that our proof of Theorem 1 uses a leapfrogging option to deduce a high-
payoff equilibrium for Proposer without actually identifying his equilibrium strategy or
the equilibrium outcome (i.e., the mapping from Vetoer types to time-stamped action
distributions).17 As explained above, the proof uses induction on beliefs of the form F[v�c],
exploiting the “conditional optimality” of the ex ante optimal mechanism for such be-
liefs (Lemma 2). However, in a leapfrogging equilibrium, Proposer’s beliefs need not take
only that form. But that is compatible with conditionally optimality of the ex ante optimal
mechanism—indeed, Lemma 2 assures that the interval [c∗�1] remains an optimal mech-
anism so long as Proposer’s belief is of the form F[c�c′] with c ≤ c∗/2 ≤ c∗ ≤ c′. We will
see in Section 5.2 that, under some conditions, there are leapfrogging equilibria in which
Proposer’s beliefs always have this form on the equilibrium path.

Moving beyond interval delegation, we do not know in general whether our proof strat-
egy for Theorem 1 can be used when the optimal mechanism is an arbitrary delegation
set; what would be important for our approach is that the delegation set be a condition-
ally optimal mechanism for a suitable range of beliefs.

4.4. Committee of Voters

Our analysis with a single Vetoer can be extended to situations in which a committee
votes on Proposer’s offer. For some odd number N , consider a committee of N voters that
aggregates votes via simple majority rule. Each voter n ∈ {1� � � � �N} has the utility func-
tion u(a�vn), where vn is her ideal point. Ideal points are drawn from some prior joint
distribution, which need not be independent across voters. Each voter observes the real-
ized vector (v1� � � � � vn), but Proposer does not. Crucially, Proposer also does not observe
the vote profile in any period, only whether his offer passes. It does not matter whether
the voters observe each others’ votes.

Let m := (N + 1)/2 and let F denote the distribution of the median (i.e., mth highest)
ideal point. We claim that so long as u has SCED, every equilibrium of our Proposer-
Vetoer two-player game with type distribution F has an outcome-equivalent equilibrium
of the committee game. Specifically, the committee game’s equilibrium can be described
as follows: (i) Proposer behaves just like in the two-player game; (ii) the realized median
voter (i.e., the voter who realizes the mth highest ideal point), say voter m, behaves just
like Vetoer with type vm; and (iii) at every history, every nonmedian voter votes for the
current proposal if and only if she prefers it to the distribution of future agreements (time-
stamped actions) induced in the two-player game if Vetoer has type vm and rejects at that
history. Note that all voters behave “sincerely” or “as if pivotal” in the sense of voting
at every history based on their comparison of the current offer with what will happen, in
equilibrium, if the offer does not pass.

Here is why the above strategies form an equilibrium of the committee game. With-
out loss, assume the realized vector of ideal points has v1 ≤ · · · ≤ vn. The key observa-
tion is that all voters share a common belief about the distribution of future agreements

17This is reminiscent of the approach used in the reputation literature (e.g., Fudenberg and Levine (1989,
1992)), among other places, although the logic here is distinct. Unlike in those classic papers, we have two long-
lived players, and there can also be equilibria in which Proposer obtains a low payoff (Proposition 2 below).
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(since vm is known to all voters), and so SCED assures that the set of voters who have
the same preference as the median voter m to accept (or reject) the current offer in-
cludes either {1� � � � �m} or {m� � � � �N}. Hence, the median voter is always decisive, and
all voters are playing sequentially rationally if the median voter is. Since Proposer only
observes whether his offer was accepted or rejected, and the median voter behaves just
like in the two-player game, it follows that Proposer is behaving sequentially rationally.
Finally, being decisive, the median voter is clearly also playing sequentially rationally.

5. EQUILIBRIUM CONSTRUCTIONS AND MULTIPLICITY

This section constructs two equilibria: a leapfrogging equilibrium that yields Proposer
approximately his commitment payoff, and a skimming equilibrium that can yield him a
significantly lower payoff. Both constructions require some (plausible) assumptions on
the support of the type distribution. Under those assumptions, they settle the equilibrium
existence presumed by Theorem 1. Moreover, we also establish a sense in which leapfrog-
ging is necessary to achieve the commitment payoff. Unlike in Section 4, we now permit
the upper bound of the type distribution, v, to be larger than 1.

5.1. A Skimming Equilibrium

We first construct a skimming equilibrium, which we define, following standard prac-
tice (e.g., Fudenberg and Tirole (1991, p. 407)), as an equilibrium in which any on-path
nonnegative offer is accepted by an upper set of Vetoer types.18 This skimming equilib-
rium shows that a Coasian intuition does have some merit in our setting, which makes it
more striking that the commitment payoff can also be achieved. Furthermore, we estab-
lish that Proposer’s payoff in our skimming equilibrium converges in the patient limit to
that of full delegation, that is, of simply allowing Vetoer to choose her preferred action in
[2v+�1], where v+ := max{0� v}.19 It follows that there can be a substantial multiplicity in
bargaining outcomes.

To state the result, define

U (F) :=
∫ 2v+

v

u
(
2v+)

dF (v) +
∫ 1

2v+
u(v) dF (v) +

∫ max{v�1}

1
u(1) dF (v)

as the static payoff from delegation set [2v+�1]. In this mechanism, all Vetoer types below
2v+ are pooled at action 2v+, all types in [2v+�1] obtain their ideal points, and all higher
types are pooled at 1.

PROPOSITION 2: If either v ≤ 0 or v ≤ 1/2, then there is a skimming equilibrium. As
δ→ 1, Proposer’s payoff in this equilibrium sequence converges to U (F).

18We qualify the upper-set acceptance to hold only for (i) nonnegative offers and (ii) on-path offers. Point
(i) is needed because of Vetoer’s single-peaked preferences: if a strictly negative offer is accepted by any
remaining types, the acceptance set cannot be an upper set since high types prefer the status quo. Regarding
(ii), we could use the stronger definition that includes off-path offers—and our construction in Proposition 2
satisfies that requirement—but restricting to on-path offers strengthens Proposition 4 in Section 5.3 and its
implication that leapfrogging is necessary for the commitment payoff.

19In other words, full delegation is delegation of the interval [c�1] where c = 0 if v ≤ 0 and c = 2v if v ∈
(0�1/2). Note that we ignore here, and in the rest of Section 5, the case of v > 1/2; it is uninteresting because
there is trivially a skimming equilibrium in which Proposer obtains his ideal point by offering 1 at every history.
Nonetheless, all our statements hold even if v > 1/2 so long as in that case one interprets the notation 2v+ to
mean 1.
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For any δ, we construct a skimming equilibrium by adapting the approach used in
seller–buyer bargaining (e.g., Gul, Sonnenschein, and Wilson (1986), Ausubel and De-
neckere (1989b)). Suppose that Proposer’s belief at any history is a right-truncation of
his prior, that is, the set of remaining Vetoer types is [v� v] for some v. The highest re-
maining type can be used as a state variable for dynamic programming to find Proposer’s
optimal sequence of decreasing offers, with a constraint that each subsequent state must
be induced by Vetoer’s best response of accepting an offer if and only if she prefers it to
the discounted payoff from accepting the subsequent offer. Definition 1 in Appendix B.2
makes this program precise. As we discuss there, single-peaked Vetoer preferences in-
troduce some differences in how we formulate and tackle the program relative to seller–
buyer bargaining.

A novel issue arises in verifying that there is an equilibrium corresponding to a solution
to the aforementioned program: what happens if v > 0 and Proposer deviates at some
history to an offer in [0�2v)? The issue is salient because, unlike in seller–buyer bargain-
ing, leapfrogging could be attractive to Proposer. We use Proposition 2’s hypothesis that
v ≤ 1/2 (given v > 0) to deter such deviations by stipulating that any such offer is accepted
by all Vetoer types, which makes it unattractive to Proposer. It is optimal for Vetoer to
accept these low offers because we specify Proposer’s belief after rejection to be degen-
erate on v, and accordingly Proposer’s future offers to perpetually be 2v, which yields
no surplus to any Vetoer type.20 Both v ≤ 0 and v ≤ 1/2 are reasonable hypotheses: the
former says that the status quo may be Pareto efficient; the latter is tantamount to Pro-
poser having monotonic preferences over the set of actions that any Vetoer type would
find acceptable.

Another distinction with seller–buyer bargaining is that, as δ → 1, Proposer’s payoff in
the skimming equilibrium converges to the full-delegation payoff U (F), rather than the
payoff from all types accepting 2v+. On the one hand, our argument for why Proposer’s
payoff in the limit cannot be larger than U (F) builds on ideas in that literature; roughly, a
type v > 2v+ would accept an offer strictly higher than v only if there is a significant delay
cost to waiting for a more attractive offer, but such a delay cost would make it attractive
for Proposer to deviate and hasten agreement. On the other hand, a new observation ow-
ing to our setting is that Proposer’s payoff cannot be lower than U (F) either: intuitively,
because of her single-peaked utility, for any δ < 1 Vetoer will accept any proposal close
enough to her ideal point; hence, as δ → 1, Proposer must do no worse in the skimming
equilibrium than by compromising with an arbitrarily fine sequence of offers that traverses
[2v+�1].

In general, Proposer’s payoff from the skimming equilibrium when players are patient,
U (F), will be strictly less than his commitment payoff, U (F); these payoffs coincide only
when full delegation is an optimal mechanism, that is, the c∗ threshold in Assumption 1
is precisely 2v+. Kartik, Kleiner, and Van Weelden (2021, Corollary 1) identify that full
delegation is in fact optimal if the type density is decreasing on [2v+�1]. Observe that
when v ≤ 0, the skimming equilibrium’s payoff is a lower bound on Proposer’s payoff from
any equilibrium when players are patient; for, no equilibrium can yield Proposer a payoff
strictly lower than from delegating the [0�1] interval. It follows that if full delegation is

20Our solution concept of perfect Bayesian equilibrium allows for arbitrary beliefs after a rejection that has
zero probability at that history. As such, even if v > 1/2 (and v > 0), strictly speaking one could assign the
degenerate belief on 0 after an unexpected rejection and have Proposer offer action 0 ever after, which would
also yield no surplus to all Vetoer types. We do not allow for such beliefs, instead requiring—as is conventional,
and in the spirit of Kreps and Wilson’s (1982) sequential equilibrium—that beliefs must always be supported
in the support of the prior, [v� v].
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optimal and v ≤ 0, then when players are patient all equilibria must yield Proposer the
commitment payoff.

Notwithstanding such cases, the general contrast in Proposer’s payoff between The-
orem 1 and Proposition 2 indicates the importance of equilibrium selection, which we
interpret as norms, in veto bargaining. Which norm prevails in a given context may hold
significant implications for whether Proposer suffers from an inability to commit to fu-
ture offers. Moreover, in some environments—for example, when Proposer prefers a
single take-it-or-leave-it offer to full delegation—the norm can determine whether Pro-
poser benefits from or is harmed by the ability to make multiple proposals. But in other
environments—for example, when v ≤ 0 and Proposer prefers full delegation to a single
offer—the ability to make multiple proposals benefits Proposer regardless of the norm.
We highlight that both the sequential structure of bargaining and incomplete information
are necessary for norms to matter in veto bargaining; in particular, Primo (2002) shows
that there is a unique equilibrium outcome absent incomplete information.21

5.2. A Commitment-Payoff Equilibrium

We now build on the previous subsection’s skimming equilibrium to construct a
leapfrogging equilibrium—one with leapfrogging on path—that delivers (approximately)
Proposer’s commitment payoff. The construction reveals how the dynamics of leapfrog-
ging may play out, subject to a reasonable assumption that either v ≤ 0 (i.e., the status
quo may be Pareto efficient) or v ≤ 1/2 (i.e., Proposer effectively has monotonic prefer-
ences), and that full delegation is not optimal. Note that if full delegation is optimal, then
skimming achieves the commitment payoff (Proposition 2).

PROPOSITION 3: Suppose that either v ≤ 0 or v ≤ 1/2, and that full delegation is not opti-
mal. There is a leapfrogging equilibrium in which Proposer achieves approximately his com-
mitment payoff. In this equilibrium, Proposer first offers 0, which is accepted if and only if
v ∈ (0� c∗/2); subsequently, Proposer offers a decreasing sequence of offers that culminates in
c∗, with each offer accepted by an upper interval of remaining types.

In the equilibrium identified by Proposition 3, Proposer begins by leapfrogging with an
offer of 0; if that offer is rejected, he knows that Vetoer’s type is either below 0 or above
c∗/2. Naturally, he is only concerned with the latter possibility. So, upon the rejection of
offer 0, we are able to use essentially the same skimming construction as in Proposition 2,
but with the conditional distribution F[c∗/2�v]. For large δ, this implements a fine-grid se-
quence of decreasing offers down to c∗. As δ → 1, the overall outcome thus converges to
that of Vetoer simply choosing (with no delay cost) her preferred action from the optimal
delegation set [c∗�1], or exercising her veto.

Let us highlight a few points about the construction. First, for the reasons discussed
after Proposition 2, we use the hypothesis that either v ≤ 0 or v ≤ 1/2 to ensure validity of
the skimming construction after offer 0 has been rejected. Notably, then, Proposition 3 is
valid even when v > 1, so long as v ≤ 0. Second, the equilibrium must incentivize Proposer

21In fact, under complete information, Primo (2002) shows that with a one-dimensional policy space and a
single veto player, Proposer’s payoff with sequential proposals is the same as with a single proposal. Duggan
and Ma (2023, Theorem 2) extend this to a committee of voters. As they and Ali, Bernheim, Bloedel, and
Console Battilana (2023, Theorem 7) show, the equivalence does not generally hold with multiple voters and
multiple dimensions, even when Proposer’s payoff in the dynamic game is unique.
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in the first period to offer action 0 rather than some higher action. This is ensured by
stipulating that if Proposer deviates to action a > 0 in the first period, continuation play
follows that of the skimming equilibrium constructed in Proposition 2. Such a deviation
yields Proposer a payoff no more than (approximately) the payoff from full delegation,
which is strictly less than the commitment payoff that is approximately achieved on path.

Third, although we view the leapfrogging-followed-by-skimming dynamics in Proposi-
tion 3 to be intuitive, we do not rule out other dynamics that also deliver approximately
Proposer’s commitment payoff. In particular, it is plausible that one may use the same
approach to construct equilibria in which Proposer begins with some skimming, then
leapfrogs with offer 0, and then continues skimming again. There may also be other dy-
namics. Fourth, Proposition 3 crucially exploits equilibrium payoff multiplicity: we use a
low-payoff skimming equilibrium to construct a high-payoff equilibrium. This approach is
reminiscent of the “reputational equilibria” in Ausubel and Deneckere (1989b). By con-
trast, the logic we use to prove our main result, Theorem 1, does not leverage equilibrium
payoff multiplicity; it would apply even if there is no skimming equilibrium and even if all
equilibria yield Proposer a high payoff.22

5.3. Is Leapfrogging Necessary?

We have highlighted leapfrogging as the driving force to achieve Proposer’s commit-
ment payoff, so long as full delegation is not optimal (in which case, by Section 5.1, skim-
ming suffices). In fact, as we now show, leapfrogging is then more or less necessary.

PROPOSITION 4: Suppose that the essentially unique solution to the static problem is an in-
terval delegation set that is not full delegation. Proposer’s payoff in any skimming equilibrium
is bounded away (across δ) from the commitment payoff.

We view the assumption that the static problem has a unique solution (essentially, i.e.,
up to a set of types of measure 0) as mild. That it is not full delegation is equivalent to c∗ >
2v+. For instance, this inequality holds when v ≤ 0, u(·) is affine on [0�1], and Vetoer’s
type density f is log-concave and attains a unique peak at some v > 0.23 Note that v ≤
0 assures existence of both a skimming equilibrium (Proposition 2) and a commitment-
payoff equilibrium (Proposition 3).

The intuition for Proposition 4 is that for any large δ < 1, to achieve close to the com-
mitment payoff, the outcome must be approximately that (i) Proposer reaches agreement
with all types above c∗/2 on their preferred actions in [c∗�1] without excessive delay, and
(ii) all types below c∗/2 obtain the status quo (or some other actions only after signifi-
cant delay). But if (i) happens in a skimming equilibrium, then eventually Proposer will
be faced with, approximately, the type distribution F[v�c∗/2], in which event he will not find
it optimal to induce (ii); he could profitably deviate to a fine-grid sequence of offers in
[0� c∗/2] that are accepted by most remaining positive types with virtually no delay cost.
Note that this logic applies even if we are in the no-gap case (v ≤ 0).

22On the other hand, we noted at the end of Section 4.3 that it is not straightforward to extend the approach
used in proving Theorem 1 absent optimality of interval delegation (Assumption 1). But given a low-payoff
equilibrium, the logic underlying Proposition 3’s construction ought to support a high-payoff equilibrium so
long as some deterministic mechanism—even if not interval delegation—solves the static problem.

23An affine u and log-concave f ensure that interval delegation is optimal; f having a unique peak at v > 0
implies the interval’s threshold is c∗ > 0. See Kartik, Kleiner, and Van Weelden (2021).
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Subject to its conditions, Proposition 4 implies that any equilibrium that achieves ap-
proximately the commitment payoff must, with positive probability, have a leapfrogging
offer a ≥ 0 that is accepted by some low type and yet rejected by some higher type. In
such an equilibrium, with positive probability, the sequence of on-path offers will not be
decreasing: for, an upper set of types would accept the current offer if future offers are
certain to be lower. Therefore, leapfrogging plays an indispensable role in yielding the
commitment payoff.

6. RELATED LITERATURE

We now relate our work to some prior literature.

Veto Bargaining With Incomplete Information

Existing work on sequential veto bargaining with incomplete information focuses on
short horizons, typically two periods, and/or myopic Vetoer behavior (e.g., Romer and
Rosenthal (1979), Dewatripont and Roland (1992), Chapter 4 of Cameron (2000), Rosen-
thal and Zame (2022), Chen (2022)).24 These analyses elucidate nicely some of the strate-
gic forces, but either a short horizon or myopic Vetoer behavior precludes the potency
of Coasian dynamics. The only exception to these approaches that we are aware of is the
unpublished work of Cameron and Elmes (1994), who study a long finite horizon with
sophisticated players. All these authors, including Cameron and Elmes, are interested
in skimming equilibria. Our analysis shows that—unlike in seller–buyer bargaining—it
is important to account for the possibility of leapfrogging because that can both invali-
date a putative skimming equilibrium (recall the discussions of both Proposition 1(a) and
Proposition 2) and lead to qualitatively different equilibria with higher Proposer payoff.

Recently, in a two-period model, Evdokimov (2022) has emphasized what he views to
be “non-Coasian” equilibria in veto bargaining. He studies committees in which voter
preferences are determined by a binary state, analogous to our two-type example. Single-
peaked voter preferences are important to his analysis, as they are to ours; however, our
papers focus on distinct implications of single-peakedness, and the nature and import of
our results are markedly different. To see that, consider his setting when a single vote is
enough to overturn the status quo; it is effectively then as if Proposer faces a single vetoer.
Here, Evdokimov finds a unique equilibrium, which has skimming. Leapfrogging does not
arise because of the combination of only two periods and his assumption that Proposer’s
utility is globally increasing in the action.25 Instead, what Evdokimov deems non-Coasian
are equilibrium outcomes in which, using our two-type notation from Section 3, Proposer
obtains utility that exceeds u(2l) as δ → 1. He notes that such outcomes arise if h > 2l.

24We highlight work that is most closely related to ours. But there have, of course, been studies on other
aspects of veto bargaining with incomplete information. For example, Matthews (1989) models veto threats,
whereby Vetoer sends a cheap-talk message prior to Proposer making a take-it-or-leave-it offer. McCarty
(1997) considers two-issue bargaining, wherein Vetoer may reject a proposal on one issue to influence pro-
posals on the second issue. Groseclose and McCarty’s (2001) model of blame-game politics shows that in a
three-player game, Proposer may make an offer that he knows Vetoer will reject in order to convince a third
party (e.g., voters) that Vetoer has extreme preferences.

25An analog would be a two-period version of our Section 3 with the assumption that h < 1/2. In that case, if
type l agrees first, then agreement in the second period with type h has to be on action 2h, which provides h no
surplus; so the only first-period action that can support leapfrogging is 0, which turns out to be unsupportable
for any prior. On the other hand, when either h> 1/2 or there are more than two periods with δ < 1, arguments
related to those for Proposition 1 can be used to conclude that leapfrogging is supportable for suitable priors.
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The reason is simply that type h prefers some actions strictly above 2l to 2l, and hence
Proposer can guarantee a utility exceeding u(2l) by first offering h and then 2l. By con-
trast, we focused on arguably the more interesting case of h < 2l, because that means
separation cannot be achieved (when players are patient) with both types getting actions
above 2l. More generally, we do not take a stance on what the Coase conjecture ought to
mean in veto bargaining. Instead, our key contribution for two types and beyond is to un-
sheathe the leapfrogging implications of single-peaked preferences, which yield equilib-
ria that have nonskimming dynamics and high Proposer payoffs. Furthermore, our main
result (Theorem 1) is substantially stronger than just comparing with a single take-it-or
leave it offer, which is Evdokimov’s (2022) benchmark.

Seller–Buyer Bargaining

In canonical models of seller–buyer bargaining in which the buyer is privately informed
of his value, all equilibria feature skimming. Fudenberg, Levine, and Tirole (1985) and
Gul, Sonnenschein, and Wilson (1986) establish the Coase conjecture: at the patient limit,
the seller”s payoff is that of pricing at the lowest buyer valuation. More precisely, this
holds in any equilibrium of the “gap” case (the gains from trade are bounded away from
0) or in any “stationary/weak Markov” equilibrium of the “no gap” case. Indeed, there is
a unique equilibrium payoff for the seller in the gap case. By contrast, even in the gap case
of our model (i.e., v > 0), Proposer can obtain his commitment payoff and there can be
genuine payoff multiplicity. Ausubel and Deneckere (1989b) show that in the seller–buyer
no gap case, there also exists a nonstationary “reputational equilibrium” in which the
seller obtains his commitment payoff. This equilibrium preserves high prices by punishing
the seller with Coasian low-payoff continuation play if he deviates. Our argument for
Proposer’s commitment payoff is distinct; it owes to leapfrogging, which is ruled out by
the skimming property of seller–buyer bargaining.26

Board and Pycia (2014) show that when buyers have outside options, there is a unique
equilibrium outcome and it yields a high seller payoff. The seller charges the static
monopoly price—defined for the distribution of values net of the outside option—and all
buyer types with lower net values immediately take their outside option. Since low types
exit immediately, the seller can credibly stick to the monopoly price even upon rejection.
In our analysis, leapfrogging also clears low types to subsequently credibly target high
types. But our model has no outside options and it is Vetoer’s single-peaked preferences
that makes leapfrogging viable. Moreover, unlike in Board and Pycia (2014), low-payoff
equilibria can coexist with the commitment-payoff equilibrium.27 Tirole (2016) is another
paper featuring a principal who can obtain her commitment payoff because of low agent
types’ incentives to exit. But there, unlike in our model, a reverse-skimming property
holds, that is, any equilibrium has “positive selection” at every history.

Also related to our work are models in which the seller sells multiple varieties. Wang
(1998), Hahn (2006), and Mensch (2017) study bargaining when there is a choice of both
quality and price (or effort and wage in a labor context). In these models, the seller or

26For a gap-case specification, Doval and Skreta (2021) show that the Coasian outcome cannot be escaped
even using arbitrary within-period mechanisms. In our setting, even if we allow for such mechanisms, it fol-
lows from the discussion in Section 4.1 that our commitment payoff is still an upper bound; consequently, the
equivalence between commitment and Proposer’s best no-commitment equilibrium would prevail.

27Hwang and Li (2017) and Fanning (2023) highlight equilibrium multiplicity in seller–buyer models related
to Board and Pycia (2014).
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principal offers a menu in each period but cannot commit to future menus. The key find-
ing is that the principal obtains his commitment payoff in the unique equilibrium. More
recent developments include Nava and Schiraldi (2019), who propose a multidimensional
extension of the Coase conjecture, and Peski (2022), who establishes payoff uniqueness
in a broad class of bargaining protocols and mechanisms.28 In our model, not only are
transfers infeasible, but moreover Proposer can offer only a single action, rather than a
menu, in each period. This hews to the standard approach in studying sequential veto
bargaining, and seems appropriate for some nonmarket applications in politics and orga-
nizations. Nevertheless, we deduce equilibria that deliver Proposer’s commitment payoff.
It would be interesting to study whether allowing for menus eliminates the payoff multi-
plicity we find. Conversely, our results raise the possibility that if a seller could offer only
a single variety in each period in the aforementioned papers’ settings, then there may be
payoff multiplicity but the commitment payoff may remain achievable.29

Renegotiation and Endogenous Status Quo

Our model assumes that there is commitment to not renegotiate an accepted offer.
A useful extension, which we do not pursue here, would be to model any agreement as
the status quo for future negotiations; this would, of course, influence Vetoer’s incentives
to accept an offer insofar as it reveals information about her preferences that will affect
future offers. Although renegotiation has been studied in seller–buyer settings since Hart
and Tirole (1988) (see Strulovici (2017), Maestri (2017), and Gerardi and Maestri (2020)
for recent contributions), the existing literature on political bargaining with an endoge-
nous status quo, surveyed by Eraslan, Evdokimov, and Zapal (2020), has generally not
incorporated private information.

7. CONCLUSION

Our paper has studied a canonical infinite-horizon model of sequential veto bargaining.
We have shown how leapfrogging—making an offer that is accepted by some low types
and rejected by some higher types—allows Proposer to alleviate his sequential rationality
constraint and credibly extract surplus from high types; so much so that under some con-
ditions, Proposer can (approximately) obtain his commitment payoff in an equilibrium
when players are patient.

There are various directions that may be fruitful for future research. On the theoretical
side, it would be of interest to incorporate “pork” or other forms of transfers in addition
to the policy that our players have single-peaked preferences over. Studying a multidi-
mensional policy is also important for political applications. On the empirical side, our
work cautions against a presumption that Proposer’s offers are successive concessions,30

and calls for attention to whether and when we observe leapfrogging. Given that we have

28Although Peski (2022) studies a single indivisible good, he allows for commitments to probabilistic trade,
which is effectively the same as varieties.

29Kumar (2006) studies such a setting and finds a unique equilibrium that does not yield the principal a
high payoff. We attribute this to his model/analysis excluding the quality-price pair that would be used for
leapfrogging. A similar point applies to Inderst (2008), who studies a model with menus but finds that in some
cases the principal’s commitment payoff does not obtain.

30For example, in their survey article, Cameron and McCarty (2004, p. 424) state a prediction that “In se-
quential veto bargaining, Congress makes concessions in repassed bills,” as they did not consider the possibility
of leapfrogging.



SEQUENTIAL VETO BARGAINING 1547

identified the coexistence of skimming and leapfrogging equilibria, norms in sequential
veto bargaining with incomplete information are especially important; our results show
how significantly Proposer could benefit from a favorable equilibrium. Laboratory exper-
iments may be a fertile ground to deepen our understanding of equilibrium selection.

APPENDIX A: PROOFS FOR TWO-TYPE EXAMPLE

Recall that for the two-type example, we restrict attention to actions in [0�1]. The fol-
lowing proofs can be extended straightforwardly to handle actions outside [0�1], but we
omit that discussion for brevity.

LEMMA 4: Fix any large δ < 1. Inductively, define an increasing sequence a0 := 2l < a1 <
· · ·< aN := 1, where for each i ≥ 1, ai is defined by either uV (ai�h) = δuV (ai−1�h) if there is
a solution with ai ∈ (ai−1�1], and otherwise ai := 1.31

(a) If offers are restricted to lie in [2l�1], then for any prior μ0 there is a skimming equi-
librium in which, on path, Proposer first offers some an with probability one and then
works his way down the (ai)0

i=n sequence to 2l. Any offer ai > 2l is rejected by type l
and accepted by type h with positive probability. Both types accept the final offer of 2l.

(b) Define μδ ∈ (μ∗�1) as the smallest belief that makes Proposer indifferent between the
payoff from this (restricted) equilibrium and the payoff from leapfrogging, that is, ob-
taining aδ from type l in the first period and action 1 from type h in the second period.32

If μ0 ≤ μδ, then the above skimming equilibrium exists without restriction on the space
of offers: any offer in (aδ�2l) is accepted by both types, while any offer in [0� aδ] is
accepted by l and rejected by h. As δ→ 1, μδ → μ∗.

(c) As δ → 1, Proposer’s payoff in the above skimming equilibrium converges to u(2l)
regardless of his prior in the relevant range: for any ε > 0, there exists δ < 1 such that
if δ ∈ (δ�1) and μ0 ≤ μδ, then Proposer’s payoff in the skimming equilibrium is in
[u(2l)�u(2l) + ε).

PROOF: Part (a): Owing to the restriction to offers in [2l�1], this part follows from argu-
ments analogous to those in the two-type seller–buyer bargaining problem (Hart (1986);
Fudenberg and Tirole (1991, pp. 409–410)). So we omit a proof, instead only noting two
points. First, if Proposer is indifferent between two first offers (as can also arise in the
seller–buyer construction), we specify for concreteness that Proposer chooses the lower
of the two. Second, there is one difference with the usual seller–buyer construction: if
Proposer’s first offer is aN = 1, and aN was defined by the action cap of 1 rather than type
h’s indifference, then Proposer will need to randomize on path between proposing aN−1

and aN−2 in the second round. Proposer’s second-round randomization is chosen to make
type h indifferent between accepting and rejecting aN = 1; a suitable randomization exists
because h would strictly prefer accepting aN = 1 if Proposer were to offer aN−1 next, while
h would strictly prefer rejecting aN = 1 if Proposer were to offer aN−2 next. Such on-path

31We suppress the dependence of N and each ai (for 0 < i <N) on δ.
32The belief μδ is well-defined for large enough δ. To confirm that, note first that for any μ0 ≤ μ∗, Pro-

poser’s payoff from leapfrogging, μ0δu(1) + (1 − μ0)u(aδ) is strictly less than u(2l) by definition of μ∗ and
that aδ < 2l; whereas his payoff from the (restricted) skimming equilibrium is at least u(2l). Second, follow-
ing the established seller–buyer analysis, for any interior belief μ0 Proposer’s payoff in the (restricted) skim-
ming equilibrium converges to u(2l) as δ → 1, whereas leapfrogging’s payoff converges to the strictly larger
μ0u(1) + (1 −μ0)u(2l). The result follows from continuity of both skimming and leapfrogging’s payoffs in μ0.
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Proposer randomization is not necessary in the seller–buyer problem because there is no
price cap—or, in effect equivalently, Proposer ideal point—there.

Part (b): We stipulate that after a deviation in any period t to at < 2l, type l accepts,
whereas h accepts if and only if uV (at�h) > δuV (1�h), which is equivalent to at > aδ.
After a rejection of the deviation, Proposer puts probability 1 on type h and proposes
action 1 ever after. Clearly, we have an equilibrium in any continuation game after the
initial deviation. So, we need only verify that no deviation to at < 2l is profitable. Plainly,
among at ≤ aδ, the most profitable deviation is to aδ; but by definition of μδ, that deviation
is not profitable when μt ≤ μδ. (A higher μt makes leapfrogging more attractive than
the (putative) skimming equilibrium because Proposer prefers the skimming equilibrium
when Vetoer is of type l and leapfrogging when Vetoer is of type h.) Any deviation to at ∈
(aδ�2l) yields a lower Proposer payoff than the (putative) skimming equilibrium because
the skimming equilibrium’s payoff is at least u(2l). Therefore, no deviation to at < 2l is
profitable when μt ≤ μδ, and the skimming equilibrium exists without any restriction on
offers.

To see that μδ → μ∗ as δ→ 1, observe that for any μ0, as δ→ 1 Proposer’s payoff from
leapfrogging goes to μ0u(1) + (1 − μ0)u(a∗) whereas, as discussed in footnote 32, his
payoff from skimming goes to u(2l). Hence, by definition of μ∗, for any μ0 >μ∗, skimming
is strictly worse than leapfrogging when δ is large enough. The result now follows from μδ

being the smallest belief at which the payoffs from skimming and leapfrogging are equal,
noting that for any δ skimming yields a strictly higher payoff than leapfrogging at belief
μ∗ (see footnote 32).

Part (c): Given the previous two parts, this result follows from the same arguments
as in the standard seller–buyer model (e.g., Fudenberg and Tirole (1991), pp. 409–10).

Q.E.D.

PROOF OF PROPOSITION 1: Part (a) follows from Lemma 4.
To prove parts (b) and (c), we first define two critical values: rδ(μ) and the μ̄δ referred

to in the statement of the result. Recall μδ ∈ (0�1) from Lemma 4(b). (In what follows,
we sometimes suppress the caveat of “for large δ”.) For any belief μ ∈ (μδ�1), let

rδ(μ) := μδ(1 −μ)(
1 −μδ

)
μ

(3)

be type h’s rejection probability that would lead to posterior μδ after rejection, given that
type l rejects with probability 1. Now let μ̄δ < 1 be the value of μ that solves33

(1 −μ)u
(
aδ

) +μδu(1) = (1 −μ)δu
(
aδ

) +μ
[
1 − rδ(μ) + rδ(μ)δ2

]
u(1)� (4)

Given belief μ, the LHS of equation (4) is Proposer’s utility from leapfrogging, whereas
the RHS corresponds to getting aδ in the next period from l and a lottery from h of either
action 1 in the current period with probability 1 − rδ or the same action in two periods
with probability rδ. It can be verified that μ̄δ > μδ and limδ→1 μ̄

δ < 1.34

Part (b): The equilibrium strategies, beliefs, and incentives are as follows:

33One can check that the difference between the LHS and the RHS of equation (4) is continuous and strictly
decreasing in μ, strictly positive for small μ, and strictly negative for large μ; hence there is a unique solution,
which is interior.

34As μ → μδ from above, rδ(μ) → 1, and so the RHS of equation (4) goes to δ times the LHS, which is
strictly smaller than the LHS. The properties noted in footnote 33 then imply μ̄δ > μδ. From Lemma 4(b),
limδ→1 μ

δ = μ∗ ∈ (0�1). Algebraic manipulations of equations (3) and (4) yield limδ→1 μ̄
δ ∈ (μ∗�1).
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1. Proposer proposes aδ in the first period and 1 in the second period (and ever after),
with belief μt = 1 after any rejection. Vetoer type l accepts in the first period while
type h rejects in the first period but accepts any proposal of at least aδ starting in the
second period. Clearly, Proposer has no incentive to deviate starting in the second
period, and Vetoer is playing optimally in all periods, so what we must show below
is that Proposer has no incentive to deviate in the first period.

2. (Region I in Figure 1.) If Proposer deviates and offers any action a0 ∈ [0� aδ) in the
first period, type l accepts and h rejects. After a rejection, Proposer’s belief is μt = 1
ever after and so he proposes 1 ever after, which is accepted in the second period by
type h. It is clear that Vetoer is playing optimally and that any such deviation is not
profitable for Proposer.

3. (Region II in Figure 1.) If Proposer deviates and offers any a0 ∈ (aδ�2l] in the first
period, both types accept that; for large δ, this outcome is worse for Proposer than
the on-path outcome, since the latter’s payoff is larger than u(2l). Both types accept
any a0 ∈ (aδ�2l] because we stipulate if any such offer is rejected (a zero probability
event), Proposer holds belief μt = 1 ever after and offers action 1 ever after.

4. (Region III in Figure 1.) Let u∗
h denote type h’s payoff in the skimming equilibrium

discussed in Lemma 4 when Proposer has belief μδ defined there. Since μδ → μ∗,
it follows from the established seller–buyer analysis that for δ large enough, Pro-
poser’s first offer in our skimming equilibrium is arbitrarily close to 2l, and hence
u∗
h is arbitrarily close to but strictly less than uV (2l�h). Let āδ > 2l be such that h is

indifferent between accepting āδ in the current period and receiving payoff u∗
h in the

next period. Note that āδ ≈ 2l for large δ.
Consider the interval (2l� āδ]. As described in Lemma 4, the skimming equilibrium

(defined assuming actions constrained in [2l�1]) is constructed using a sequence of
actions a0 ≡ 2l < a1 < · · · < aN ≡ 1 that is defined by h’s indifference. (We suppress
the dependence of the sequence on δ to reduce notation.) Let M ≤ N − 1 be such
that aM < āδ ≤ aM+1.

For any deviation a0 ∈ (2l� a1], l rejects and h accepts; Proposer holds belief μt = 0
and offers at = 2l ever after (accepted by type l in the second period).

Suppose āδ > a1. For any deviation a0 ∈ (a1� āδ], let n ∈ {1� � � � �M} be such that
a0 ∈ (an�an+1]. Type l rejects, while type h rejects with the probability that makes
the posterior μ1 = μn, where μn is the unique belief that makes Proposer indifferent
between starting the decreasing offer sequence with an and an−1. (Type h’s rejection
probability is well-defined and unique so long as μn ≤ μ0, which will be verified be-
low by showing that μn ≤ μδ.) Proposer will then randomize in the second period
between the starting offers of an and an−1. If Proposer were to start with an, h would
prefer to accept a0; if Proposer were to start with an−1, h would prefer to reject a0; so
there is a unique randomization that makes h indifferent. We are left to check that
μn ≤ μδ: if so, then Proposer prefers the decreasing offer sequence to leapfrogging,
and we can support the skimming equilibrium by specifying behavior for offers in
[0�2l] as in the proof of Lemma 4(b). Indeed μn ≤ μδ, since n ≤M and under belief
μδ Proposer starts the decreasing offer sequence with aM while under belief μn it is
optimal to start with an (and a higher belief corresponds to a higher starting offer in
the skimming equilibrium).35

35That Proposer starts the decreasing offer sequence with aM under belief μδ follows from type h’s indif-
ference in the definition of āδ and āδ ∈ (aM�aM+1]. For, if Proposer started with an offer aM−1 or lower, then
h would strictly prefer to wait for that offer in the next period rather than accept āδ in the current period; if
Proposer started with an offer aM+1 or higher, then h would strictly prefer to accept āδ.
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So, a deviation to any a0 ∈ (2l� āδ] yields Proposer a payoff that is no higher than
from a skimming equilibrium with restricted action space [2l�1] and belief μ0 (see
Lemma 4(a)). As δ → 1, the payoff from a (restricted) skimming equilibrium con-
verges uniformly to u(2l) on any interval of priors bounded away from 1, whereas
the payoff from leapfrogging converges uniformly to μ0u(1) + (1 − μ0)u(a∗). The
latter limit is strictly larger than the former limit when μ0 > μ∗, by definition of μ∗.
Since μδ > μ∗ and limδ→1 μ̄

δ < 1, it follows that for all δ large enough, the payoff
from leapfrogging is strictly larger than from the (restricted) skimming equilibrium
for all μ0 ∈ (μδ� μ̄δ). Hence, for δ large enough, a deviation to any a0 ∈ (2l� āδ) is
not profitable.

5. (Region IV in Figure 1.) It remains to consider any first-period deviation a0 ∈ (āδ�1].
• Type l rejects since a0 > 2l. Type h rejects with probability rδ(μ0), independent

of a0, which leads to second-period belief μ1 = μδ.
• In the second period: Proposer randomizes between starting the play of a skim-

ming equilibrium (see Lemma 4) with some probability λ(a0) and starting the
leapfrogging path with remaining probability. By definition of μδ, Proposer is
indifferent between starting either of these two paths. The randomization prob-
ability λ(a0) is set to make type h indifferent between accepting a0 in the first
period and getting a lottery over payoff u∗

h in the second period with probability
λ(a0) and getting action 1 in the third period with complementary probability.36

For any second-period offer a1 besides the two that Proposer randomizes
over, we stipulate that continuation play would follow that in a skimming equi-
librium with initial offer a1. Plainly, no such offer a1 is a profitable deviation.

• Finally, we argue that among deviations to a0 ∈ (āδ�1], the most profitable de-
viation is to action 1, and that is not profitable because μ0 ≤ μ̄δ. Note that after
a rejection of any a0 > āδ, leapfrogging is optimal for Proposer in the second
period. So, Proposer’s expected payoff from any a0 > āδ is

(1 −μ0)δu
(
aδ

) +μ0

[(
1 − rδ(μ0)

)
u(a0) + rδ(μ0)δ2u(1)

]
�

This payoff is maximized when a0 = 1, in which case it becomes the RHS of
equation (4) (with μ = μ0). Since μ0 ≤ μ̄δ, the definition of μ̄δ implies that
leapfrogging starting in the first period is at least as good for Proposer (see
footnote 33).

Part (c): The construction for this part is the same as that for part (b), except that Proposer
now proposes action 1 in the first period, rather than aδ. By the logic used in the last bullet
of point 5 above, proposing a0 = 1 is better for Proposer than proposing any a0 ∈ (āδ�1),
and also now better than proposing a0 = aδ because μ0 > μ̄δ. By points 2–4 above, a0 = aδ

is in turn better than any other first-period offer less than āδ. Q.E.D.

APPENDIX B: PROOFS FOR GENERAL ANALYSIS

B.1. Obtaining the Commitment Payoff Without Commitment

PROOF OF LEMMA 1: Fix any strategy for Proposer and any best response for Vetoer,
and denote this strategy profile by σ . For any type v, the profile σ induces a probability
distribution λv over R×N∪{∞}, where (a� t) ∈ R×N denotes the outcome that proposal

36That is, uV (a0�h) = λ(a0)δu∗
h + (1 − λ(a0))δ2uV (1�h). There is a unique λ(a0) that solves this equation

because δu∗
h > uV (a0�h) > δ2uV (1�h), where the first inequality is because a0 > āδ > h and δu∗

h = uV (āδ�h).
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a is accepted in period t, and ∞ denotes no agreement. We construct an incentive com-
patible and individually rational mechanism for the static problem that achieves the same
expected payoff for Proposer as under σ .

For any t ∈ N, let λv(t) be the measure on R defined by λv(t)(A) := λv(A × {t}) for
every (Borel) set A ⊆R. Define a mechanism for the static problem as follows:

m(v) :=
∞∑
t=0

δtλv(t) +
(

1 −
∞∑
t=0

δtλv(t)(R)

)
10�

where 10 denotes the Dirac measure on 0. Intuitively, for every agreement (a� t) that has
positive probability under λv, m(v) gives probability δt to action a and probability 1 − δt

to action 0. It can be verified that m(v) is a probability measure over R.
Since ∫

a

uV (a�v) dm(v)(a) =
∞∑
t=0

δt

∫
a

uV (a�v) dλv′ (t)(a)�

the expected utility for type v reporting v′ in the static mechanism is the same as in the
dynamic game were type v to play as v′ does. Hence, as Vetoer is playing a best response
in σ , mechanism m is incentive compatible and individually rational.

Analogous arguments show that Proposer’s expected utility in the static mechanism is
the same as his expected utility in the dynamic game under strategy profile σ . Therefore,
Proposer can replicate his payoff from the dynamic game using a static mechanism, and
hence can do no worse in the static problem. Q.E.D.

PROOF OF LEMMA 2: To obtain a contradiction, suppose there is a (potentially stochas-
tic) mechanism m that yields a strictly higher payoff than the delegation set [c∗�1] under
prior F[c�c′] for some c ≤ c∗/2 ≤ c∗ ≤ c′. Let M :=m([c� c′]) denote the image of [c� c′] un-
der m. We can assume without loss of generality that u(m(c′)) ≥ u(m(v)) for all v ∈ [c� c′]
and that u(m(c)) ≥ u(0).37 Define a menu of stochastic actions by

M̃ := M ∪ {
v ∈ [

c∗�1
] : u(v) ≥ u

(
m

(
c′))} ∪{0}�

Let m̃ be the induced mechanism where each type v chooses its favorite action in M̃
and indifference is broken in Proposer’s favor. Plainly, m̃ is incentive compatible and
individually rational. We will show that given prior F , Proposer’s payoff from m̃ is strictly
higher than from delegation set [c∗�1].

37If u(m(c′)) < u(m(v)) for some v ∈ [c� c′], add the action min{1�Em(c′)[a]} to M and consider the cor-
responding mechanism m̂ in which each type chooses its favorite lottery, breaking indifference in Proposer’s
favor. Since Em(v)[a] is increasing in v because mechanism m is IC, the new mechanism m̂ yields Proposer a
higher payoff than m and satisfies u(m̂(c′)) ≥ u(m̂(v)) for all v ≤ c′.

Now suppose u(m(c)) < u(0). If c ≤ 0, consider an alternative mechanism m̂ that is identical to m except
for assigning action 0 with probability one to all types below 0. This mechanism is individually rational (IR) and
IC and yields Proposer a higher payoff than m and satisfies u(m̂(c)) = u(0). If c > 0, consider an alternative
mechanism m̂ that is identical to m except for m̂(c) assigning probability one to an action in [0�E[m(c)]
that makes type c indifferent with m(c). Such an action exists because uV (m(c)� c) ≥ uV (0� c), as m is IR,
and uV (·� c) is continuous. Since m is IC and IR, and any type v > c prefers m(v) to m̂(c) (by SCED, type
c’s indifference between m(c) and m̂(c), and that type m̂(c) strictly prefers m̂(c) to m(c)), it follows that
m̂ is incentive compatible and individually rational. Moreover, u(m̂(c)) ≥ u(0) and the mechanism m̂ yields
Proposer a higher payoff than m.
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Conditional on the event {v : v ∈ [c� c′]}, Proposer’s payoff from menu M is strictly
higher than from menu [c∗�1] by assumption. Compared to menu M , the additional ac-
tions in M̃ chosen by types v ∈ [c� c′] are ones that Proposer prefers to m(c′), which he
prefers to m(v) for any v ∈ [c� c′]. Hence, conditional on {v : v ∈ [c� c′]}, Proposer’s payoff
from menu M̃ is strictly higher than from menu [c∗�1].

We next show that for every v > c′, u(m̃(v)) ≥ u(v). Since Vetoer’s utility satis-
fies SCED and she breaks indifference in favor of Proposer, either m̃(v) = m(c′) or
m̃(v) ∈ M̃ \ (M ∪ {0}). In either case, u(m̃(v)) ≥ u(m(c′)). If u(m(c′)) > u(v), then it
follows that u(m̃(v)) ≥ u(v). If, instead, u(v) ≥ u(m(c′)) then m̃(v) = v, and we conclude
u(m̃(v)) = u(v).

Moreover, SCED implies that for all v < c, either m̃(v) = m̃(c) or m̃(v) = 0. Since
u(m̃(c)) ≥ u(0) and u(0) is Proposer’s payoff under delegation set [c∗�1] whenever v <
c, it follows that Proposer’s payoff from mechanism m̃ is higher than his payoff from
delegation set [c∗�1] under belief F , a contradiction. Q.E.D.

PROOF OF LEMMA 3: Fix any ε > 0. Let δ < 1 be such that δU (F[v�c∗]) ≥ U (F[v�c∗]) − ε,
and fix any δ ≥ δ. Let (σ̃� μ̃) be an equilibrium when Proposer’s prior belief is F[v�c∗],
where σ̃ denotes the strategy profile and μ̃ the system of beliefs. If Proposer’s payoff in
equilibrium (σ̃� μ̃) is higher than δU (F[v�c∗]), then the claim holds; so suppose his payoff
is strictly lower. Define a candidate equilibrium profile (σ�μ) as follows:

• On path, Proposer offers 0 in the first period, c∗ in the second period, followed by
min{2c∗�1} ever after. Vetoer of type v accepts the first proposal 0 if and only if
she strictly prefers it to c∗ in the next period; in the second period, she accepts c∗

if and only if she (weakly) prefers it to both min{2c∗�1} and 0 in the third period;
and for any subsequent history starting with proposal sequence (0� c∗), she accepts
the current proposal if and only if she (weakly) prefers it to both min{2c∗�1} and 0
in the next period. For any on-path history h, let μ(h) be derived from Bayes’ rule
whenever possible, and for any history h starting with (0� c∗), let μ(h) put probability
1 on type c∗.

• For any off-path history h that starts with (0� a) for a �= c∗, let (σ�μ) specify some
continuation equilibrium with the starting belief F[c∗/2�c∗]; a continuation equilibrium
exists by hypothesis (EqmExists). For any off-path history h in which the first pro-
posal is different from 0, let (σ�μ)(h) = (σ̃� μ̃)(h).

Proposer’s payoff from the strategy profile σ is δU (F[v�c∗]) because on path types below
c∗/2 accept proposal 0 and types in [c∗/2� c∗] accept proposal c∗ in period 1; while in the
static problem, Lemma 2 implies that for belief F[v�c∗] the delegation set [c∗�1] is optimal,
which results in all types in [v� c∗/2) obtaining action 0 and all types in (c∗/2� c∗] obtaining
action c∗. We will argue that the profile (σ�μ) is an equilibrium, which proves the claim.

First, Proposer is playing a best response in the profile (σ�μ) at the start of the game
since any deviation induces the same payoff as in equilibrium (σ̃� μ̃), which is strictly
lower than δU (F[v�c∗]) by hypothesis. Moreover, by construction, Vetoer is playing a best
response at the history h= (0), that is, after the initial proposal of 0.

Second, we claim that Proposer is playing a best response at history h = (0). Note that
the second-period belief after this history is μ(0) = F[c∗/2�c∗] and that in the continua-
tion game starting at h = (0) the strategy profile σ yields payoff U (F[c∗/2�c∗]): all types in
[c∗/2� c∗] accept proposal c∗ immediately and the delegation set [c∗�1] solves the static
problem by Lemma 2. Any deviation by Proposer to an offer a �= c∗ gives Proposer a pay-
off of at most U (F[c∗/2�c∗]) by Lemma 1. Therefore, Proposer is playing a best response at
history h= (0).
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Finally, we claim that both players are playing best responses at any other history. In-
deed, for any history starting with proposals (0� c∗), best responses are assured by con-
struction. For any history starting with (0� a) with a �= c∗, our construction specifies some
continuation equilibrium. For any history starting with a proposal different from 0 players
are playing an equilibrium because (σ̃� μ̃) is an equilibrium for prior belief F[v�c∗].

As it is straightforward that the system of beliefs μ satisfies Bayes’ rule whenever pos-
sible, we conclude that (σ�μ) is an equilibrium. Q.E.D.

PROOF OF THEOREM 1: Without loss of generality, we assume U (F) ≤ 1, as Proposer’s
utility can be rescaled accordingly. Furthermore, we prove the result only for c∗ > 0; the
c∗ = 0 case is implied by Proposition 2.

As a roadmap, Steps 1–4 below use induction to show that there are equilibria in which
Proposer can obtain arbitrarily close to his commitment payoff on some interval of types
below a threshold. Step 5 establishes this threshold can be made arbitrarily close to v.
Step 6 then argues that there is an equilibrium in which Proposer obtains arbitrarily close
to his commitment payoff from the full interval of types [v� v].

We begin with some preliminaries for the inductive argument. Let c0(ε�δ) := c∗ > 0
and define for all integers n > 0,

cn(ε�δ) := min
{
cn−1(ε�δ) + ε

4u′(0)
� cn−1(ε�δ)

√
1 +

√
1 − δ

}
�38

It follows that there is some n ∈ N such that cn(ε�δ) ≥ v. Let f > 0 denote a lower bound
for f on [v� v]. For ε > 0, define

δ∗(ε�δ) := 1 − ε

2
f min

{
ε

4u′(0)
� c∗

(√
1 +

√
1 − δ− 1

)}
�

and let δ(ε) ∈ (
√

1 − ε�1) be such that for all δ ∈ (δ(ε)�1), δ ≥ δ∗(ε�δ). Such a δ(ε)
exists because δ∗(ε�1) = 1, δ∗(ε� ·) is continuous, and limδ↑1

∂δ∗(ε�δ)
∂δ

= +∞.
The induction hypothesis for n ≥ 0 is the following.
For all ε > 0, δ > δ(ε), and c satisfying c∗ ≤ c ≤ cn(ε�δ), if Proposer’s belief is F[v�c]

then there is an equilibrium in which Proposer’s payoff is at least U (F[v�c]) − ε.
The induction hypothesis holds for n= 0 by Lemma 3.
Let (σ̂� μ̂) be an equilibrium for the game with belief F[v�cn−1(ε�δ)] that yields Proposer

payoff at least U (F[v�cn−1(ε�δ)]) −ε (such an equilibrium exists under the induction hypothe-
sis) and let an−1(ε�δ) be the largest action that makes type cn−1(ε�δ) indifferent between
accepting an−1(ε�δ) and playing (σ̂� μ̂) from the next period on. Steps 1–4 below establish
that if the induction hypothesis holds for n and an−1(ε�δ) ≤ 1 then it holds for n+1, given
(EqmExists).

Step 1: Fix arbitrary ε > 0, δ ≥ δ(ε), and c satisfying cn(ε�δ) < c ≤ cn+1(ε�δ), and
an equilibrium (σ̃� μ̃) for the game with belief F[v�c]. If Proposer’s payoff is at least
U (F[v�c]) − ε, we are done; so suppose Proposer’s payoff is strictly less. Below, we sup-
press the dependence of cn and an−1 on ε and δ, and we set c−1(ε�δ) := c∗.

We construct a new equilibrium (σ�μ) for the game with belief F[v�c] as follows: Pro-
poser’s first offer is an−1. On path, types above cn−1 accept an−1 and types below cn−1 reject
an−1. After a rejection of an−1, Proposer updates to F[v�cn−1] and continuation play proceeds

38If u is not differentiable at 0, let u′(0) denote the right derivative at 0, which exists because u is concave.
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as specified by (σ̂� μ̂). Moreover, if Proposer deviates in the first period, continuation play
is as specified by (σ̃� μ̃).

Step 2: We show that Vetoer is playing a best response when an−1 is proposed in the first
period.

It is optimal for types below cn−1 to reject an−1 since type cn−1’s equilibrium strategy in
the continuation game yields a higher payoff (using that an−1 > cn−1 and Vetoer’s prefer-
ences satisfy SCED).39 We now explain why it is optimal for types in [cn−1� c] to accept
an−1; there is no need to consider types above c because Proposer’s belief is supported
on [v� c]. Accepting an−1 is a best response for types cn−1 and an−1, and SCED implies
that the set of types for which it is a best response to accept is an interval. Therefore,
if an−1 ≥ c, then accepting an−1 is a best response for all types in [cn−1� c]. So, suppose
an−1 ∈ [cn−1� c). It would be a best response for type c to accept cn−1 since that is even
better than obtaining c next period (as 2ccn−1 − c2

n−1 ≥ δc2 because of our assumption that
c ≤ cn−1 + cn−1

√
1 − δ). Therefore, since type c prefers an−1 ∈ [cn−1� c) to cn−1, accepting

an−1 is a best response for type c, and hence for all types in [cn−1� c].
Step 3: We show that Proposer’s payoff from profile σ is at least U (F[v�c]) − ε.
Proposer’s payoff if the first proposal an−1 is accepted times the probability of accep-

tance is at least[
F[v�c](c) − F[v�c](cn−1)

]
u(cn−1) ≥

∫ c

cn−1

[
u(v) − u′(0)(v − cn−1)

]
dF[v�c]

≥
∫ c

cn−1

[
u(v) − ε/2

]
dF[v�c]�

where the first expression is because an−1 ∈ [cn−1�1], the first inequality is because u(v) −
u(cn−1) ≤ u′(0)(v − cn−1), and the second inequality is because c − cn−1 ≤ ε

2u′(0) .
For the case n = 0, Proposer’s payoff conditional on proposal a0 being rejected times

the probability of rejection is at least δ2U (F[v�cn−1])F[v�c](cn−1) by Lemma 3. Since δ ≥√
1 − ε and U (F[v�cn−1]) ≤ 1, these two bounds imply that Proposer’s payoff is at least

[
U (F[v�cn−1]) − ε

]
F[v�c](cn−1) +

∫ c

cn−1

[
u(v) − ε/2

]
dF[v�c]�

Since the delegation set [c∗�1] is optimal for belief F[v�c] by Lemma 2, this implies that
Proposer’s payoff is at least U (F[v�c]) − ε.

Consider now the case n ≥ 1. Proposer’s payoff conditional on proposal an−1 being re-
jected times the probability of rejection is at least δ[U (F[v�cn−1]) −ε]F[v�c](cn−1). Therefore,
Proposer’s payoff is at least

δ
[
U (F[v�cn−1]) − ε

]
F[v�c](cn−1) +

∫ c

cn−1

[
u(v) − ε/2

]
dF[v�c]

≥U (F[v�c]) − ε+ ε

2
[
F[v�c](c) − F[v�c](cn−1)

] − (1 − δ)

≥U (F[v�c]) − ε�

39To elaborate, note that when comparing action an−1 and the lottery induced by type cn−1’s equilibrium
strategy, cn−1 is indifferent whereas (a possibly hypothetical) type an−1 strictly prefers action an−1. SCED im-
plies that given any two lotteries and any three types v1 < v2 < v3, if v2 is indifferent and v3 strictly prefers one
lottery, then v1 (weakly) prefers the other lottery.
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where the first inequality is because the delegation set [c∗�1] is optimal for belief F[v�c] (by
Lemma 2) and U (F[v�cn−1]) ≤ 1, and the second inequality is because

F[v�c](c) − F[v�c](cn−1) ≥ f min
{

ε

4u′(0)
� c∗

(√
1 +

√
1 − δ− 1

)}

and

δ≥ δ∗(ε�δ) = 1 − ε

2
f min

{
ε

4u′(0)
� c∗

(√
1 +

√
1 − δ− 1

)}
�

This establishes Step 3.
Step 4: To verify that (σ�μ) is an equilibrium, observe that Proposer plays a best re-

sponse in the first period since any deviation gives a payoff less than U (F[v�c]) − ε by
supposition. Vetoer plays a best response to proposal an−1 as argued above. Finally, both
players play best responses after any other history because we began in Step 1 with equi-
libria (σ̃� μ̃) and (σ̂� μ̂). This establishes the induction step if an−1 ≤ 1.

Step 5: We show that, when ε is small and δ is large, the inductive argument in Steps
1–4 covers a large fraction of types.

Let c̄(ε�δ) := cn(ε�δ), where n is the smallest index such that the action an(ε�δ) de-
fined in our induction argument is strictly above 1. We claim∫ v

c̄(ε�δ)

[
u(1) − u(v)

]
dF (v) ≤ 1 − δ+ ε� (5)

which implies that c̄(ε�δ) → v as δ→ 1 and ε → 0.
To derive inequality (5), note that because an(ε�δ) > 1 there is a static incentive com-

patible and individually rational mechanism in which all types above c̄(ε�δ) receive action
1 and Proposer’s payoff from types below c̄(ε�δ) is at least as in equilibrium (σ̂� μ̂) dis-
counted by δ. This mechanism gives Proposer payoff at least

δ
[
U (F[v�c̄(ε�δ)]) − ε

]
F

(
c̄(ε�δ)

) +
∫ v

c̄(ε�δ)
u(1) dF (v)�

By Lemma 2, this is less than the payoff from delegation set [c∗�1], which can be written
as

U (F[v�c̄(ε�δ)])F
(
c̄(ε�δ)

) +
∫ v

c̄(ε�δ)
u(v) dF (v)�

Some algebra using U (F[v�c̄(ε�δ)]) ≤ 1 now yields inequality (5).
Step 6: Given the belief F and an arbitrary ε > 0, we show that for all δ large enough

there is an equilibrium in which Proposer’s payoff is at least U (F) − ε, which completes
the proof.

For any ε′ > 0 and δ > δ(ε′), we have established in Steps 1–5 that for belief
F[v�c̄(ε′�δ)] there is an equilibrium, denoted by (σ�μ), in which Proposer’s payoff is at least
U (F[v�c̄(ε′�δ)]) −ε′. Let a(ε′� δ) be the largest action that makes type c̄(ε′� δ) indifferent be-
tween accepting a(ε′� δ) and playing (σ�μ) from next period on. Note that a(ε′� δ) ∈ (1�2]
by definition (that it is less than 2 is because actions above 2 are worse than the status quo
for all types).

Consider a strategy profile in which Proposer initially offers a(ε′� δ), followed by con-
tinuation play as described by (σ�μ). It is a best response for all types in [c̄(ε′� δ)� v] to
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accept a(ε′� δ) because of SCED and that accepting is a best response for type c̄(ε′� δ)
and a (hypothetical) type a(ε′� δ) that is larger than v; it is also a best response for all
types below c̄(ε′� δ) to reject a(ε′� δ). Since a(ε′� δ) ∈ (1�2] and Proposer’s ideal point is
1, it follows that Proposer’s payoff given this strategy profile is at least

δ
[
U (F[v�c̄(ε′�δ)]) − ε′]F(

c̄
(
ε′� δ

)) +
∫ v

c̄(ε′�δ)
u(2) dF (v)�

For ε′ > 0 small enough and δ < 1 large enough, this payoff is at least U (F) − ε. Given
(EqmExists), it follows that there is an equilibrium in which Proposer’s payoff is at least
as large: analogous to the logic used in Step 1, if a given equilibrium does not yield payoff
at least U (F) − ε, we can modify it by having Proposer offer a(ε′� δ) in the first period
with continuation play given by (σ�μ). Q.E.D.

B.2. A Skimming Equilibrium

We construct a skimming equilibrium building on ideas from the seller–buyer litera-
ture, which are summarized instructively by Ausubel, Cramton, and Deneckere (2002, pp.
1912–1915). Our first step is to define a pair of functional equations whose joint solution
describes a skimming equilibrium.

DEFINITION 1: Let R : [v� v∗] → R be continuous and P : [v� v∗] → R be right-
continuous, where v∗ ∈ (v� v]. We say that (R�P) supports a skimming equilibrium on
[v� v∗] if, for all v ∈ [v� v∗],

R(v) = max
y∈[v�v]

{
u
(
P(y)

)[
F (v) − F (y)

] + δR(y)
}
� (6)

uV

(
P(v)� v

) = δuV

(
P

(
t(v)

)
� v

)
� (7)

where T (v) denotes the argmax correspondence in (6), t(v) := maxT (v), P(v) is the
largest proposal that satisfies (7), and P is the increasing envelope of P , that is, P(v) :=
supy≤v P(y).40

The idea behind this definition is that R(y) describes Proposer’s value function and
P(v) describes Vetoer’s acceptance behavior. We will construct an equilibrium in which
at any history, type v accepts a positive offer if and only if the offer is below P(v). Al-
ternatively, given that P is increasing, any offer P(v) is accepted precisely by all types
above v.41 Consequently, at any history, Proposer’s belief is a right-truncation of the prior
to [v� v] for some v. The upper endpoint v thus acts like a state variable that Proposer
optimizes. Equation (6) is the dynamic programming equation that captures Proposer’s
tradeoff between extracting surplus via screening and the cost of delay: given the current
state v, if Proposer brings the state down to y with an offer P(y), then with probability
F (v) −F (y) (ignoring a normalization factor) he obtains current payoff u(P(y)); in addi-
tion, after a one-period delay he obtains payoff R(y). Concomitantly, equation (7) is the

40The maximizers in this definition exist because P being right-continuous implies P is right-continuous, and
since it is also increasing, P is upper semicontinuous.

41This statement is imprecise when there are multiple ṽ such that P(ṽ) = P(v); we gloss over this issue for
this heuristic explanation.
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indifference condition for type v between accepting offer P(v) and waiting one period for
the next offer, which would be P(t(v)). Note that P(v) = 2v+ because t(v) = v, and hence
P(v) ≥ max{v�2v+} for all v. Consequently, R(v) > 0 for all v > v+.

The following result establishes that there is in fact an equilibrium corresponding to the
pair of functions (R�P). If P is continuous, then on the equilibrium path Proposer first
targets the threshold type t(v) with offer P(t(v)), and then successively follows with offers
P(t2(v))�P(t3(v))� � � � This is a decreasing sequence because P and t are increasing func-
tions; the latter point owes to a monotone comparative statics argument. Vetoer accepts
the initial offer if her type is in [t(v)� v], the second offer if her type is in [t2(v)� t(v)), the
third offer if her type is in [t3(v)� t2(v)), and so on.

LEMMA 5: Suppose v ≤ 0 or v ≤ 1/2. If (R�P) supports a skimming equilibrium on [v� v],
then there is an equilibrium in which proposals will be decreasing along the equilibrium path.

The proof of Lemma 5 builds on arguments from the seller–buyer bargaining literature
(e.g., Gul, Sonnenschein, and Wilson (1986, Theorem 1)), and is relegated to the Supple-
mentary Appendix (Ali, Kartik, and Kleiner (2023)). As discussed in the main text after
Proposition 2, novel considerations arise in deterring Proposer from deviating to offers
below 2v+; for that we use Lemma 5’s hypothesis that either v ≤ 0 or v ≤ 1/2. For readers
familiar with the seller–buyer arguments, we also flag that another notable aspect of our
argument is the use of the increasing envelope P . We use this because, owing to single-
peaked Vetoer preferences, we cannot guarantee that there is a solution to equations
(6) and (7) in which the P function is (even weakly) increasing. The lack of monotonic-
ity precludes specifying P(y) as type y ’s acceptance threshold—we would not be assured
that Proposer’s beliefs are right truncations. Using the increasing envelope P to specify
strategies allows us to surmount nonmonotonicities in P .

For Lemma 5 to be useful, we must assure existence.

LEMMA 6: There is (R�P) that supports a skimming equilibrium on [v� v].

The proof of this result adapts arguments from the seller–buyer literature, and is rel-
egated to the Supplementary Appendix. In a nutshell, we first suppose v > 0 and follow
the reasoning of Fudenberg, Levine, and Tirole (1985, pp. 78–79) to show that there is
an (R�P) that supports a skimming equilibrium on [v� v + ε] if ε > 0 is small enough;
the intuition is that when Proposer’s belief is concentrated near v, the cost of delay out-
weighs the benefit from screening types and it is optimal to just offer P(t(v)) = 2v for all
remaining types. An argument following Ausubel and Deneckere (1989b, Lemma A.3)
allows us to extend (R�P) to support a skimming equilibrium on [v� v], proving Lemma 6
so long as v > 0. Lastly, an approximation argument analogous to that in Ausubel and
Deneckere (1989b, Theorem 4.2) allows us to cover the case of v = 0, which in turn can
be straightforwardly extended to v < 0.

PROOF OF PROPOSITION 2: Together, Lemma 5 and Lemma 6 establish a skimming
equilibrium if either v ≤ 0 or v ≤ 1/2.

Let us show that Proposer’s payoff in this equilibrium converges to U (F). Since Pro-
poser never makes a strictly negative offer in this equilibrium and no type v < 0 accepts
a strictly positive offer, we assume without loss of generality that v ∈ [0�1/2). Let A∗(v)
denote type v’s choice from the menu [2v�1]. As noted after Definition 1, it holds that
P(v) ≥ max{v�2v}. Hence, P(v) ≥A∗(v).
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To show that Proposer’s payoff is at least U (F) in the patient limit, observe that for any
v and any strictly positive integer m there is δ(m) such that for all δ > δ(m),

R(v) ≥ (1 − 1/m)
∫ v

v

[
u
(
min

{
P

(
v′)�1

}) − 1/m
]

dF
(
v′)� (8)

The intuition for this inequality is that if Proposer makes offers with small step size, he
can ensure that each type v accepts a proposal close to min{P(v)�1}, because each type
v accepts a proposal if and only if it is less than P(v); moreover, as δ → 1 the cost of
delay vanishes. Together with P(v) ≥ P(v) ≥ A∗(v), inequality (8) implies that if (R�P)
supports a skimming equilibrium then Proposer’s payoff in this equilibrium is at least
U (F) in the patient limit.

It remains to show that Proposer’s payoff in any such equilibrium is at most U (F) in
the patient limit. Suppose not. Then there is ε′ > 0 and a sequence δn → 1 such that
for each n there is (Rn�Pn) supporting a skimming equilibrium that yields payoff at least
U (F) + ε′. Let An(v) be the proposal that is accepted in this equilibrium by type v and
let τn(v) be the time at which type v accepts.42 Since An is monotonic and uniformly
bounded (as 0 ≤An(v) ≤ 1 for all v and n), Helly’s selection theorem implies that there is
a subsequence, which we also index by n for convenience, along which An → A pointwise.

We claim A(v) ≥ v for all v ≤ 1. Suppose not. Then there is v ≤ 1 and ε > 0 such that
for all n large enough, An(v) ≤ v−ε. Let xn denote the state (in the sense described after
Definition 1) in which Proposer makes offer An(v). Since Pn(v) ≥ v, Proposer could offer
An(v)+ε/2 in state xn and get it accepted by all types in [v−ε/2� v], which have probabil-
ity at least min{ε/2� v − v}f . For δ high enough such an offer is profitable, contradicting
that (Rn�Pn) supports a skimming equilibrium.

Since Proposer’s payoff is at least U (F) + ε′, there must exist v ∈ [2v�min{v�1}] and
ε > 0 such that A(v) = v + ε (by the dominated convergence theorem). Choose v1 such
that A(v1) = v + ε and such that there is v2 ≥ v1 − ε/5 with A(v2) <A(v1). We can then
choose ω ∈ (0� ε) such that A(v2) ≤ v1 + ε−ω. Since v1 − ε/5 ≤ v2 ≤ A(v2), we can find
N such that for all n >N , An(v1) > v1 + ε−ω/2 and

v1 − ε/4 ≤ An(v2) ≤ v1 + ε− 3ω/4� (9)

Let sn be the state in which Proposer makes offer An(v1) in equilibrium (Rn�Pn). By
definition, type v1 accepts the offer An(v1) at time τn(v1) < ∞ (since An(v1) > 0) and,
therefore, prefers An(v1) at time τn(v1) over An(v2) at time τn(v2). Moreover, the in-
equalities in (9) imply that type v1 prefers An(v2) over v1 + ε− 3ω/4. Hence,

uV (v1 + ε−ω/2� v1) ≥ δτn(v2)−τn(v1)
n uV (v1 + ε− 3ω/4� v1)�

which rearranges to yield

δτn(v2)−τn(v1) ≤ uV (v1 + ε−ω/2� v1)
uV (v1 + ε− 3ω/4� v1)

< 1�

42If type v never accepts any proposal, we set An(v) := 0 and τn(v) := ∞.
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But this implies the following bound on Rn in state tn(sn) (after proposal An(v1) in state
sn has been rejected; if the state is limd′↑sn tn(d′) the argument is analogous):

Rn

(
tn(sn)

) ≤
∫ tn(sn)

v2

u
(
min

{
Pn(v)�1

})
dF (v)

+ δτn(v2)−τn(v1)
n

∫ v2

v

u
(
min

{
Pn(v)�1

})
dF (v)� (10)

To understand inequality (10), note that for types above v2 an upper bound on Proposer’s
utility is getting min{Pn(v)�1} accepted immediately. Since type v2 and, therefore, all
lower types, cannot accept before waiting τn(v2) − τn(v1) periods, an upper bound on
Proposer’s utility is getting min{Pn(v)�1} accepted after τn(v2) − τn(v1) periods.

For any strictly positive integer m, inequality (8) implies that for all integers n large
enough,

Rn

(
tn(sn)

) ≥ (1 − 1/m)
∫ tn(sn)

v

u
(
min

{
Pn(v)�1

})
dF (v) − 1/m�

It follows that there exist m and n such that inequality (10) contradicts (8). Q.E.D.

B.3. A Commitment-Payoff Equilibrium

LEMMA 7: Suppose c∗ > 0, and that either (i) v < 0 and suppG= [v�0] ∪ [c∗/2� v] or (ii)
v = 0 and suppG= [c∗/2� v].43 There is a skimming equilibrium in which, on the equilibrium
path, there is a decreasing sequence of proposals culminating in c∗, with Proposer payoff
approximately

∫ v

c∗/2 u(max{v� c∗})dG(v).

PROOF: First, by an argument analogous to Lemma 6, there is (R�P) that supports a
skimming equilibrium on [c∗/2� v]. Second, analogous to Lemma 5, we can use that (R�P)
to construct a skimming equilibrium with the desired properties: just treat c∗/2 here like
v in Lemma 5; the only point to note is that because in fact v ≤ 0, no matter whether
hypothesis (i) or (ii) in the lemma holds, we can deter deviations to any offer in [0� c∗)
by stipulating that any such offer is accepted, with the belief upon rejection supported on
nonpositive types and all subsequent offers being 0. Q.E.D.

PROOF OF PROPOSITION 3: We consider two cases, explaining in each case the beliefs
and behavior off path that support the on-path behavior described in the proposition.

First, consider v ≤ 0. If the first-period offer of 0 is rejected, Bayes’ rule implies that
Proposer updates to the belief F[v�0]∪[c∗/2�v], which is the prior’s conditional distribution
when excluding types (0� c∗/2). Continuation play then follows the skimming equilibrium
of Lemma 7. If Proposer makes a first-period offer other than 0, continuation play fol-
lows the skimming equilibrium of Lemma 5. It remains only to show that Proposer has no
profitable deviation in the first period. Since Proposer’s belief when his initial offer of 0 is
rejected is F[v�0]∪[c∗/2�v], it follows from Lemma 7 that Proposer’s on-path payoff is approx-
imately

∫ 1
c∗/2 u(max{v� c∗}) dF (v) + ∫ v

1 u(1) dF (v), which equals U (F). On the other hand,

43We assume that G has a density bounded away from 0 and ∞ on its support.
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Proposition 2 implies that deviating to a first-period offer other than 0 yields a payoff no
more than approximately U (F). As U (F) <U (F), no such deviation is profitable.

Second, consider v > 0 (and correspondingly v ≤ 1/2). If the first-period offer of 0 is
rejected, Bayes’ rule implies that Proposer updates to the belief F[c∗/2�v]. Continuation
play then follows the skimming equilibrium of Lemma 5 applied to this belief, that is,
replacing F in that lemma with F[c∗/2�v]. If Proposer makes a first-period offer other than
0, continuation play follows the skimming equilibrium of Lemma 5 with the original belief
F . It follows from an essentially identical argument to that in the previous paragraph that
no first-period deviation is profitable for Proposer. Q.E.D.

B.4. Is Leapfrogging Necessary?

PROOF OF PROPOSITION 4: Toward contradiction, suppose there is a sequence of δn →
1 and corresponding skimming equilibria such that Proposer’s payoff converges to U (F).
For each n and v, let Bn(v) denote the expected discounted proposal that type v accepts:
Bn(v) := E[δtat], where the expectation is taken over the accepted proposals and agree-
ment times for type v given the equilibrium strategies. Since Bn is monotonic (because
the corresponding mechanism is IC) and uniformly bounded, Helly’s selection theorem
implies that there is some B and a subsequence of Bn, which we also index by n for con-
venience, along which Bn → B pointwise and in L1-norm.

Since interval delegation is (essentially) uniquely optimal, it must hold that (up to
measure zero sets) B(v) = 0 for v ∈ [v� c∗/2), B(v) = c∗ for v ∈ (c∗/2� c∗), B(v) = v for
v ∈ (c∗�min{v�1}), and B(v) = 1 for v ∈ [1� v]. (Suppose not. B corresponds to some
feasible mechanism in the static problem and, therefore, by the essential uniqueness as-
sumption, yields payoff at most U (F) − ε for some ε > 0. Since Bn → B in the L1-norm,
for all n large enough Proposer’s payoff in the equilibrium corresponding Bn is at most
U (F) − ε/2, a contradiction.)

For any ε > 0, there is N such that for all n >N , Bn(v) ≤ ε for all v ∈ [v� c∗/2−ε]. Then
for all n large enough, there is a history at which Proposer’s belief is F[v�c] for some cutoff
c ≥ c∗/2−ε (since on-path offers are accepted by upper sets) and Proposer’s payoff in the
continuation equilibrium is at most u(ε). But, for any ε′ ∈ (0� c), Proposer can deviate to
make decreasing offers on a fine grid between ε′ and c such that all types in [ε′� c] accept
one of the offers close to their type or higher, and there is approximately no cost of delay
as δ → 1.44 Proposer’s payoff from this deviation is strictly greater than u(ε) for ε and
ε′ small enough and δ large enough, contradicting Proposer’s payoff in the continuation
equilibrium being at most u(ε). Q.E.D.
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