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Abstract

We develop a theory of repeated interaction for coalitional behavior. We consider stage

games where both individuals and coalitions may deviate. However, coalition members can-

not commit to long-run behavior, and anticipate that today’s actions influence tomorrow’s

behavior. We evaluate the degree to which history-dependence can deter coalitional devi-

ations. If monitoring is perfect, every feasible and strictly individually rational payoff can

be supported by history-dependent conventions. By contrast, if players can make secret

side-payments to each other, every coalition achieves a coalitional minmax value, potentially

reducing the set of supportable payoffs to the core of the stage game.
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1 Introduction

The theory of repeated games is central to our study of dynamic incentives. It models strategic

players who follow conventions that are history-dependent and self-enforcing. These conventions

reflect a shared understanding of how past and current choices influence future behavior, and

given that understanding, each individual is deterred from deviating. The main approach for

studying repeated interaction is non-cooperative, relying on individual optimization, and without

the possibility for joint deviations.

But in a number of settings, the natural units of analysis are not just individuals but also

coalitions. For example, matching theory studies matches where no set of players gains from

jointly deviating (“stable matches”). Analyses of political economy focus on outcomes that are not

overruled by decisive coalitions of voters (“Condorcet winners”). The study of networks focuses

on graphs where no pair of individuals wishes to jointly deviate in their selection of neighbors

(“stable networks”). In principle, in these settings, one could have modeled coalitional behavior

using a non-cooperative extensive-form game in which players can make offers to others, choose

to accept or reject those offers, etc. But this requires a complete specification of the set of feasible

actions as well as the order, timing, and observability of moves. There is thus a convenience of

taking a “cooperative approach” that abstracts from how coalitions form and instead focuses on

the payoffs of coalitional moves.

Our objective is to tractably combine this cooperative approach with a repeated-games un-

derstanding of dynamic incentives. When cooperative environments are repeated, what is the

appropriate notion of stability? To what degree and when does the power of a shared under-

standing influence the incentives and stability of coalitions? What kinds of carrots and sticks are

themselves immune to coalitional deviations? These questions motivate this paper.1

We study self-enforcing conventions of behavior when both individuals and coalitions may

deviate in the repeated play of an abstract stage game. Special cases of this stage game are

strategic-form games (in which players choose actions) and partitional games (in which players

partition into groups). Payoffs accrue to players based on outcomes of the stage game, and players

share a common discount factor. We use the language of effectivity correspondences to describe

coalitional moves. We consider both non-transferable and transferable utility environments.

In the spirit of repeated games, we adhere to the principle that individuals and coalitions

cannot commit by external means to their long-run behavior, neither on the path of play nor in

their deviations. But the stage game is cooperative: coalitions may act together within a single

period. Our goal is to study behavior that is self-enforcing through the power of expectations and

a shared understanding of the future, just as in the standard theory of repeated games, despite

1Answering these questions is germane not only for repeated cooperative games but also for studying coalitional
deviations in repeated non-cooperative games. In practice, players may find ways to communicate, coordinate, and
collude so that groups of them jointly deviate, and just as in cooperative game theory, it may be useful to study
when such joint deviations are profitable without fully specifying how these joint deviations are coordinated.
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the prospect of these coalitional deviations.

Because there is no “off-the-shelf” solution-concept, we develop one that is consistent with our

motivation by building on approaches to farsighted stability in cooperative games (surveyed in

Ray and Vohra 2015a). We define a convention as a mapping from the history of outcomes to

a prescription for today. Such conventions reflect the players’ shared understanding of how the

future unfolds in response to past and current choices. A convention is stable if given this shared

understanding, no coalition has a profitable one-shot deviation at any history. We then ask the

question: What can stable conventions implement?

Result for Perfect Monitoring: We pose this question first in a standard setting in which all

behavior by individuals and coalitions is perfectly observed. Our first observation is that history-

dependence is a source of stability.2 When behavior is history-dependent, a farsighted coalition

that has a myopic incentive to deviate may not find it in its best interest to do so. We elucidate

this logic using simple examples in Section 2 where we show that (1) in a repeated roommates-

matching problem, every efficient allocation can be supported by a stable convention even if the

one-shot interaction has no stable match, and (2) in a repeated division problem, one can use

reversion to the core of a stage-game to build a stable convention, just like Nash-reversion in

repeated (non-cooperative) games.

Given these possibilities, we investigate the limits of history-dependence in Section 3. How

much can it support? We find few limits to what a convention can credibly implement in both

non-transferable utility and transferable utility environments (Theorems 1 and 2).

A Folk Theorem For Perfect Monitoring. For every payoff vector that is feasible

and strictly individually rational, there exists a δ < 1 such that if δ > δ, then there is a

stable convention that achieves that payoff.

The set of supportable payoffs identified in this folk theorem coincides with that of Fudenberg

and Maskin (1986), although we allow for coalitional actions and deviations. Thus, we find that

coalitional deviations do not refine the set of supportable outcomes beyond individual deviations

when players are patient; dynamic incentives effectively ward off coalitional deviations. This result

has a simple intuition: to ward off coalitional deviations, it suffices to punish an individual member

of each coalition as if she were the sole deviator. This logic applies even when players can transfer

utility, effectively bribing others to join their coalition, because the convention can then punish

players for paying or receiving bribes.

Secret Transfers: The previous result exploits the observability of transfers. But in many

contexts, the power of bribes and side payments comes from their secrecy and the inability to

2We are not the first to note that history-dependence can be a source of coalitional stability: Hyndman and
Ray (2007), Vartiainen (2011), and Dutta and Vartiainen (2019) offer similar conclusions in different contexts.
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punish people for paying or accepting bribes. Our second set of results, exposited in Section 4,

finds a contrasting conclusion when coalitions can use secret side-payments.

Specifically, suppose that for any coalition that blocks an outcome, its members can transfer

utility to each other secretly. In other words, the convention cannot condition future continuation

play on these transfers, although it can condition behavior on the identity and actions of the

deviating coalition. In this setting, players can effectively bribe others to join a deviating coalition;

although the convention identifies who deviated and how (in terms of actions), it does not identify

who made or received the side-payments. We find that this is an important imperfection: secret

transfers severely undermine dynamic incentives, potentially limiting behavior to the core of the

stage game, regardless of players’ patience.

To describe our result, let us define coalition C’s coalitional minmax to be the lowest total

stage-game payoff (adding across its constituents) that coalition C can be pushed down to by others

when it can best-respond. This coalitional payoff is analogous to the individual minmax, except

that it treats the coalition as a single entity whose payoff is the sum of payoffs of its constituents.

In cooperative games without externalities, the coalitional minmax of a coalition equals its value

specified by the characteristic function. We prove the following result (Theorem 3).

An Anti-Folk Theorem For Secret Transfers. For each δ < 1, a stable convention

implements only those payoffs that give each coalition at least its coalitional minmax.

For cooperative games without externalities, the result implies that the set of sustainable pay-

offs are those within the core of the stage game, regardless of players’ patience. Here, dynamic

incentives fail to sustain any outcome that could not have been sustained in the one-shot game.

When externalities are present, then the coalitional minmax involves others outside the coalition

taking actions to minimize the gains of the deviating coalition. In this case, our result relates to a

variation of the core to permit externalities: the β-characteristic function suggested by Von Neu-

mann and Morgenstern (1945) derives the value of a coalition C based on that coalition being

minmaxed, and the β-core is the core corresponding to that characteristic function. Our result

implies that stable conventions can implement payoffs only within the β-core of the game, which

generally is a strict subset of the set of feasible and individually rational payoffs.3

Why do secret transfers matter? The key idea is that once transfers are secret, a deviating

coalition can structure their transfers to ensure that if it collectively gains from deviating, then so

does each individual member without changing the continuation play. Thus, the convention can

no longer single out a member of that coalition to credibly punish and must instead do its best to

punish the entire deviating coalition. More formally, we prove that with secret transfers, a One-

Shot Coalitional Deviation Principle (Lemma 1) applies: a coalition lacks a profitable one-shot

deviation from a convention if and only if it lacks a profitable multi-shot deviation.

3The set of of β-core payoffs is non-empty if and only if the β−characteristic function satisfies the conditions
of the Bondareva-Shapley Theorem.
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This result is the crux of the Anti-Folk Theorem: any convention that sustains an outcome

below a coalitional minmax is susceptible to these multi-shot deviations and therefore by this

principle, has a profitable one-shot deviation. Hence, such a convention is unstable. This result

illustrates that once coalitions can make secret transfers, long-term commitments are no longer

necessary for coalitions to capitalize on long-term gains; such gains can be appropriated using

short-term commitments and secret side-payments.

We iterate this logic in a setting where all coalitions can make secret transfers and the grand

coalition is omnipotent in that it can choose any feasible alternative. Because the grand coalition

can also guarantee itself a coalitional minmax, efficient actions must then be chosen after every

history. Define the efficient β-core to be the set of payoffs that are both (i) efficient, and (ii) give

each coalition higher than its coalitional minmax in a reduced game where only efficient alterna-

tives may be chosen. We prove in Theorem 4 that for every discount factor, stable conventions

support payoffs only within the efficient β-core of the game and that for patient players, every

payoff within the relative interior of that set can be supported.

Once coalitions can make secret transfers, the appropriate analysis treats each non-singleton

coalition as a fictitious entity, expanding the number of players from n to 2n − 1. The efficient

β-core emerges as the relevant folk theorem for this set of “players.” The β-core is often criticized

on the grounds that it is unclear as to why individuals outside of a coalition would wish to

minimize the payoffs of those within a blocking coalition (Ray 2007). That criticism is apt in one-

shot interactions where those outside a blocking coalition would not hurt themselves to punish

deviators. But a repeated game can reward players for punishing others. If transfers can be made

secretly within blocking coalitions, the efficient β-core emerges as the set of supportable outcomes.

While we delineate our results on perfecly observable vs. secret transfers as two separate

cases, both of these extremes are special cases of a more general result. In Section 5, we study

a setting where only a subset of coalitions can make secret transfers. We show then that only

these coalitions are guaranteed their coalitional minmax. Moreover, any payoff vector that delivers

strictly more than these minmaxes and is strictly individually rational is supportable when players

are sufficiently patient (Theorem 5).

An Application: We apply our ideas to pure division problems—simple games (Von Neumann

and Morgenstern 1945)—in which some players are elites in that they have veto power. We study

the degree to which repeated interaction can motivate elite players to share resources with non-

elite players. We use self-generation approaches to show that when side-payments are perfectly

observable, then even for fixed discount factors, substantial sharing with non-elite citizens can be

supported by stable conventions. However, once elites can make secret side-payments to co-opt

others, then elites always obtain all of the surplus.
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1.1 Related Literature

This paper is part of a growing effort to combines elements from cooperative and non-cooperative

game theory; for example, with respect to incomplete information, see Liu, Mailath, Postlewaite

and Samuelson (2014) and Liu (2018), or with respect to reasoning, see Ambrus (2006, 2009)

and Lipnowski and Sadler (2019).4 We develop new notions of coalitional stability when those

coalitions act under the shadow of the future. Accordingly, we build on important precursors in

cooperative and repeated games, and describe some of the most closely related papers below.

Our work builds on the broad study of farsighted stability in coalitional games, surveyed in

Ray and Vohra (2015a). A closely related strand, initiated by Konishi and Ray (2003), studies

real-time coalition-formation processes, and our solution-concept builds on theirs.5 They study the

dynamics of coalitional structures where payoffs accrue in real time, and coalitions evaluate their

moves according to a recursive continuation value, just like our formulation of a stable convention

in Definition 3.6 Behavior in this setting is “Markov,” where coalitions condition their behavior

only on the current payoff-relevant state and not how it was reached. Hyndman and Ray (2007)

introduce history-dependence with long-term binding agreements that can be renegotiated only

by all affected parties. Vartiainen (2011) establishes existence of history-dependent absorbing

deterministic farsightedly stable processes in a variation of this game without discounting.

We build on this strand with several differences. We study an abstract repeated game—which

embeds both coalitional and strategic-form games—where all alliances are temporary and the only

intertemporal interlinkage is the publicly observed history. We investigate the power and limits of

history-dependence, with and without transfers. Incidentally, the direction in which we proceed

is suggested by Ray (2007, pp. 301) as being potentially important for future research:

It would be of interest to investigate dynamic noncooperative games with (nonbinding) coali-

tion formation...one might begin with the partition function so that the formation of a coalition

structure at any date has a definite impact on payoffs, perhaps through the writing of binding

agreements within coalitions in any period. But the important difference...is that such agree-

ments would—by assumption—be up for grabs at the end of every period. There are no binding

agreements that last for longer than a single date.

A special case of our model is Bernheim and Slavov (2009), who extend the notion of a Con-

dorcet Winner to an infinitely repeated game. They study history-dependent policy programs

that at each stage are majority-preferred to paths generated by deviations. Specialized to their

4There is also growing interest in dynamic matching; see Corbae, Temzelides and Wright (2003), Damiano and
Lam (2005), Du and Livne (2016), Kadam and Kotowski (2018), Doval (2018), Kotowski (2019), and Liu (2019).

5A different approach to these issues describes sets of outcomes that are immune to profitable coalitional
deviations where each deviating coalition anticipates potential chains of subsequent deviations. See Harsanyi
(1974), Chwe (1994), Jordan (2006), Ray and Vohra (2015b), Dutta and Vohra (2017), Kimya (2019), and Vohra
r© Ray (2019). While most of this approach studies history-independent behavior, Dutta and Vartiainen (2019)

show that history-dependence facilitate existence.
6Also related are Gomes and Jehiel (2005) and Acemoglu, Egorov and Sonin (2012), who model real-time

coalition-formation through the Markov Perfect Equilibria of a non-cooperative extensive-form model.
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setting, our solution-concept coincides with their’s. They study properties and applications of

this solution-concept, but do not derive bounds on what it can enforce; our results establish that,

because individuals are powerless on their own, all payoffs are supportable in their game (so long

as players have non-equivalent utilities) as δ → 1.

Our results emphasize how coalitional deviations coupled with secret side-payments undermine

dynamic incentives in the repeated game. Barron and Guo (2019) study a related issue in a

relational contracting game between a long-run Principal and a sequence of short-run agents.

They capture the friction that secret side-payments expose the Principal to extortion by shirking

agents. More broadly, the challenge of secret side-payments is also an important theme in collusion

in mechanism design; see Section 5 of Mookherjee (2006) for a survey.

Numerous papers adopt cooperative criteria to select equilibria in repeated games. Aumann

(1959) and Rubinstein (1980) respectively study the Strong Nash and Strong Perfect Equilibria

of an infinitely repeated game with limit-of-means and overtaking discounting criteria. Their

solution-concepts assume that each coalition can commit to arbitrary long-run deviations off the

path of play but not on-path. DeMarzo (1992) focuses on finite-horizon games and proposes

an inductive solution-concept where behavior corresponds to a Strong Nash Equilibrium of the

reduced normal-form game. He uses scapegoat strategies to prove a similar Folk Theorem as

our NTU result for finitely repeated games.7 Also related is the study of renegotiation-proofness

(e.g. Pearce 1987; Bernheim and Ray 1989; Farrell and Maskin 1989), most of which focuses on

deviations by the grand coalition to different behavior in the continuation game. By contrast,

our focus is on short-term deviations by all coalitions where players cannot “re-wire” expectations

about continuation behavior.

2 Examples

2.1 The Roommates Problem

We illustrate the role of history-dependence in a repeated version of the “roommates problem.”

Consider three players—Alice, Bob, and Carol—who are choosing between rooming together or

remaining unmatched. The challenge is that only a pair can room together, and so at least one

player is always alone. Table 1 describes their stage-game payoffs.

A matching specifies who rooms with whom, and a stable match is immune to profitable

individual and coalitional deviations: there should be no pair of players who prefer to room with

each other over their current match nor an individual player who prefers rooming alone to her

match. A well-known challenge is that every match in this one-shot interaction is unstable.

7He also briefly studies infinite-horizon games, but because his solution-concept differs from ours, a similar folk
theorem obtains only for two-player games.
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Alice Bob Carol
Alice 1 3 2
Bob 2 1 3

Carol 3 2 1

Table 1. Payoffs of Row Player from matching with Column Player (or remaining unmatched).

We model a setting where players match repeatedly, share a common discount factor δ, and

the match today can condition on past outcomes. A coalition may choose to jointly deviate today,

but coalitions cannot commit to future deviations; in other words, the matching convention has

to be immune to profitable one-shot coalitional deviations on and off the path of play. We call

such history-dependent matching processes stable conventions.

{A,C} Deviates

( BC | A  )

u = (1, 3, 2)
<latexit sha1_base64="R5iwWj5V2JlY5vXEZaL2tuDmUzA=">AAAB8nicbZDLSgMxFIbP1Futt1GXboJFqFDKpC50IxTcuGzBtkI7lEyaaUMzmSHJCGXoY7hxoYhbH8JncOdb+Aiml4W2/hD4+P9zyDknSATXxvO+nNza+sbmVn67sLO7t3/gHh61dJwqypo0FrG6D4hmgkvWNNwIdp8oRqJAsHYwupnm7QemNI/lnRknzI/IQPKQU2Ks1UmvS7iMLsqoet5zi17FmwmtAl5AseY2vj8AoN5zP7v9mKYRk4YKonUHe4nxM6IMp4JNCt1Us4TQERmwjkVJIqb9bDbyBJ1Zp4/CWNknDZq5vzsyEmk9jgJbGREz1MvZ1Pwv66QmvPIzLpPUMEnnH4WpQCZG0/1RnytGjRhbIFRxOyuiQ6IINfZKBXsEvLzyKrSqFexVcAMXax7MlYcTOIUSYLiEGtxCHZpAIYZHeIYXxzhPzqvzNi/NOYueY/gj5/0HGk+RVQ==</latexit><latexit sha1_base64="evF2TiU5PoNhPya0qb192bgRbHo=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqgIjwvwvJZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="evF2TiU5PoNhPya0qb192bgRbHo=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqgIjwvwvJZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="TPZ4QYpB4vNUWwojYHipTz0acLw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQoZRNPehFKHjxWMF+wHYp2TTbhmY3SzIrlKU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsSKQy47rdT2Njc2t4p7pb29g8Oj8rHJx2jUs14mympdC+ghksR8zYIkLyXaE6jQPJuMLmb+90nro1Q8SNME+5HdBSLUDAKVvLS2yqp4asablwOyhW37i6A1wnJSQXlaA3KX/2hYmnEY2CSGuMRNwE/oxoEk3xW6qeGJ5RN6Ih7lsY04sbPFifP8IVVhjhU2lYMeKH+nshoZMw0CmxnRGFsVr25+J/npRDe+JmIkxR4zJaLwlRiUHj+Px4KzRnIqSWUaWFvxWxMNWVgUyrZEMjqy+uk06gTt04eSKXp5nEU0Rk6R1VE0DVqonvUQm3EkELP6BW9OeC8OO/Ox7K14OQzp+gPnM8f+nmPBA==</latexit>

u = (1, 3, 2)
<latexit sha1_base64="R5iwWj5V2JlY5vXEZaL2tuDmUzA=">AAAB8nicbZDLSgMxFIbP1Futt1GXboJFqFDKpC50IxTcuGzBtkI7lEyaaUMzmSHJCGXoY7hxoYhbH8JncOdb+Aiml4W2/hD4+P9zyDknSATXxvO+nNza+sbmVn67sLO7t3/gHh61dJwqypo0FrG6D4hmgkvWNNwIdp8oRqJAsHYwupnm7QemNI/lnRknzI/IQPKQU2Ks1UmvS7iMLsqoet5zi17FmwmtAl5AseY2vj8AoN5zP7v9mKYRk4YKonUHe4nxM6IMp4JNCt1Us4TQERmwjkVJIqb9bDbyBJ1Zp4/CWNknDZq5vzsyEmk9jgJbGREz1MvZ1Pwv66QmvPIzLpPUMEnnH4WpQCZG0/1RnytGjRhbIFRxOyuiQ6IINfZKBXsEvLzyKrSqFexVcAMXax7MlYcTOIUSYLiEGtxCHZpAIYZHeIYXxzhPzqvzNi/NOYueY/gj5/0HGk+RVQ==</latexit><latexit sha1_base64="evF2TiU5PoNhPya0qb192bgRbHo=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqgIjwvwvJZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="evF2TiU5PoNhPya0qb192bgRbHo=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqgIjwvwvJZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="TPZ4QYpB4vNUWwojYHipTz0acLw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQoZRNPehFKHjxWMF+wHYp2TTbhmY3SzIrlKU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsSKQy47rdT2Njc2t4p7pb29g8Oj8rHJx2jUs14mympdC+ghksR8zYIkLyXaE6jQPJuMLmb+90nro1Q8SNME+5HdBSLUDAKVvLS2yqp4asablwOyhW37i6A1wnJSQXlaA3KX/2hYmnEY2CSGuMRNwE/oxoEk3xW6qeGJ5RN6Ih7lsY04sbPFifP8IVVhjhU2lYMeKH+nshoZMw0CmxnRGFsVr25+J/npRDe+JmIkxR4zJaLwlRiUHj+Px4KzRnIqSWUaWFvxWxMNWVgUyrZEMjqy+uk06gTt04eSKXp5nEU0Rk6R1VE0DVqonvUQm3EkELP6BW9OeC8OO/Ox7K14OQzp+gPnM8f+nmPBA==</latexit>

{A,B} Deviates

{B,C} D
ev

iat
es

( AC | B  )

u = (2, 1, 3)
<latexit sha1_base64="BuQS7o/w7awihCtwYwn5JBkqLWs=">AAAB8nicbZDLSgMxFIbP1Futt1GXboJFqFDKpC50IxTcuGzBtkI7lEyaaUMzmSHJCGXoY7hxoYhbH8JncOdb+Aiml4W2/hD4+P9zyDknSATXxvO+nNza+sbmVn67sLO7t3/gHh61dJwqypo0FrG6D4hmgkvWNNwIdp8oRqJAsHYwupnm7QemNI/lnRknzI/IQPKQU2Ks1UmvS9UywmV0cd5zi17FmwmtAl5AseY2vj8AoN5zP7v9mKYRk4YKonUHe4nxM6IMp4JNCt1Us4TQERmwjkVJIqb9bDbyBJ1Zp4/CWNknDZq5vzsyEmk9jgJbGREz1MvZ1Pwv66QmvPIzLpPUMEnnH4WpQCZG0/1RnytGjRhbIFRxOyuiQ6IINfZKBXsEvLzyKrSqFexVcAMXax7MlYcTOIUSYLiEGtxCHZpAIYZHeIYXxzhPzqvzNi/NOYueY/gj5/0HGk+RVQ==</latexit><latexit sha1_base64="ZTa6pH/iv8v0dw0BYdPiu8qGVC0=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqUixAV4flZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="ZTa6pH/iv8v0dw0BYdPiu8qGVC0=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqUixAV4flZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="OVca3xVi257VjEk8nm2tHkSy7oA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQoZRNPehFKHjxWMF+wHYp2TTbhmY3SzIrlKU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsSKQy47rdT2Njc2t4p7pb29g8Oj8rHJx2jUs14mympdC+ghksR8zYIkLyXaE6jQPJuMLmb+90nro1Q8SNME+5HdBSLUDAKVvLS22qjhkkNX10OyhW37i6A1wnJSQXlaA3KX/2hYmnEY2CSGuMRNwE/oxoEk3xW6qeGJ5RN6Ih7lsY04sbPFifP8IVVhjhU2lYMeKH+nshoZMw0CmxnRGFsVr25+J/npRDe+JmIkxR4zJaLwlRiUHj+Px4KzRnIqSWUaWFvxWxMNWVgUyrZEMjqy+uk06gTt04eSKXp5nEU0Rk6R1VE0DVqonvUQm3EkELP6BW9OeC8OO/Ox7K14OQzp+gPnM8f+nmPBA==</latexit>

u = (2, 1, 3)
<latexit sha1_base64="BuQS7o/w7awihCtwYwn5JBkqLWs=">AAAB8nicbZDLSgMxFIbP1Futt1GXboJFqFDKpC50IxTcuGzBtkI7lEyaaUMzmSHJCGXoY7hxoYhbH8JncOdb+Aiml4W2/hD4+P9zyDknSATXxvO+nNza+sbmVn67sLO7t3/gHh61dJwqypo0FrG6D4hmgkvWNNwIdp8oRqJAsHYwupnm7QemNI/lnRknzI/IQPKQU2Ks1UmvS9UywmV0cd5zi17FmwmtAl5AseY2vj8AoN5zP7v9mKYRk4YKonUHe4nxM6IMp4JNCt1Us4TQERmwjkVJIqb9bDbyBJ1Zp4/CWNknDZq5vzsyEmk9jgJbGREz1MvZ1Pwv66QmvPIzLpPUMEnnH4WpQCZG0/1RnytGjRhbIFRxOyuiQ6IINfZKBXsEvLzyKrSqFexVcAMXax7MlYcTOIUSYLiEGtxCHZpAIYZHeIYXxzhPzqvzNi/NOYueY/gj5/0HGk+RVQ==</latexit><latexit sha1_base64="ZTa6pH/iv8v0dw0BYdPiu8qGVC0=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqUixAV4flZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="ZTa6pH/iv8v0dw0BYdPiu8qGVC0=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqUixAV4flZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Adkkk=</latexit><latexit sha1_base64="OVca3xVi257VjEk8nm2tHkSy7oA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQoZRNPehFKHjxWMF+wHYp2TTbhmY3SzIrlKU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsSKQy47rdT2Njc2t4p7pb29g8Oj8rHJx2jUs14mympdC+ghksR8zYIkLyXaE6jQPJuMLmb+90nro1Q8SNME+5HdBSLUDAKVvLS22qjhkkNX10OyhW37i6A1wnJSQXlaA3KX/2hYmnEY2CSGuMRNwE/oxoEk3xW6qeGJ5RN6Ih7lsY04sbPFifP8IVVhjhU2lYMeKH+nshoZMw0CmxnRGFsVr25+J/npRDe+JmIkxR4zJaLwlRiUHj+Px4KzRnIqSWUaWFvxWxMNWVgUyrZEMjqy+uk06gTt04eSKXp5nEU0Rk6R1VE0DVqonvUQm3EkELP6BW9OeC8OO/Ox7K14OQzp+gPnM8f+nmPBA==</latexit>

( AB | C   ) 

u = (3, 2, 1)
<latexit sha1_base64="1o9Vhw226PQQBSLjPdWk7jaO0mg=">AAAB8nicbZDLSgMxFIbP1Futt1GXboJFqFDKpC50IxTcuGzBtkI7lEyaaUMzmSHJCGXoY7hxoYhbH8JncOdb+Aiml4W2/hD4+P9zyDknSATXxvO+nNza+sbmVn67sLO7t3/gHh61dJwqypo0FrG6D4hmgkvWNNwIdp8oRqJAsHYwupnm7QemNI/lnRknzI/IQPKQU2Ks1UmvSxdlVC0jfN5zi17FmwmtAl5AseY2vj8AoN5zP7v9mKYRk4YKonUHe4nxM6IMp4JNCt1Us4TQERmwjkVJIqb9bDbyBJ1Zp4/CWNknDZq5vzsyEmk9jgJbGREz1MvZ1Pwv66QmvPIzLpPUMEnnH4WpQCZG0/1RnytGjRhbIFRxOyuiQ6IINfZKBXsEvLzyKrSqFexVcAMXax7MlYcTOIUSYLiEGtxCHZpAIYZHeIYXxzhPzqvzNi/NOYueY/gj5/0HGliRVQ==</latexit><latexit sha1_base64="8h2CVRpdyMgEEc3Tn/Gw1QdAfAE=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqcF2G5CNFZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Amkkk=</latexit><latexit sha1_base64="8h2CVRpdyMgEEc3Tn/Gw1QdAfAE=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqcF2G5CNFZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Amkkk=</latexit><latexit sha1_base64="VJhwrbN2ttMNHZt9qluw4XKDLdo=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQoZRNPehFKHjxWMF+wHYp2TTbhmY3SzIrlKU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsSKQy47rdT2Njc2t4p7pb29g8Oj8rHJx2jUs14mympdC+ghksR8zYIkLyXaE6jQPJuMLmb+90nro1Q8SNME+5HdBSLUDAKVvLS2+pVDTdqmFwOyhW37i6A1wnJSQXlaA3KX/2hYmnEY2CSGuMRNwE/oxoEk3xW6qeGJ5RN6Ih7lsY04sbPFifP8IVVhjhU2lYMeKH+nshoZMw0CmxnRGFsVr25+J/npRDe+JmIkxR4zJaLwlRiUHj+Px4KzRnIqSWUaWFvxWxMNWVgUyrZEMjqy+uk06gTt04eSKXp5nEU0Rk6R1VE0DVqonvUQm3EkELP6BW9OeC8OO/Ox7K14OQzp+gPnM8f+oKPBA==</latexit>

u = (3, 2, 1)
<latexit sha1_base64="1o9Vhw226PQQBSLjPdWk7jaO0mg=">AAAB8nicbZDLSgMxFIbP1Futt1GXboJFqFDKpC50IxTcuGzBtkI7lEyaaUMzmSHJCGXoY7hxoYhbH8JncOdb+Aiml4W2/hD4+P9zyDknSATXxvO+nNza+sbmVn67sLO7t3/gHh61dJwqypo0FrG6D4hmgkvWNNwIdp8oRqJAsHYwupnm7QemNI/lnRknzI/IQPKQU2Ks1UmvSxdlVC0jfN5zi17FmwmtAl5AseY2vj8AoN5zP7v9mKYRk4YKonUHe4nxM6IMp4JNCt1Us4TQERmwjkVJIqb9bDbyBJ1Zp4/CWNknDZq5vzsyEmk9jgJbGREz1MvZ1Pwv66QmvPIzLpPUMEnnH4WpQCZG0/1RnytGjRhbIFRxOyuiQ6IINfZKBXsEvLzyKrSqFexVcAMXax7MlYcTOIUSYLiEGtxCHZpAIYZHeIYXxzhPzqvzNi/NOYueY/gj5/0HGliRVQ==</latexit><latexit sha1_base64="8h2CVRpdyMgEEc3Tn/Gw1QdAfAE=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqcF2G5CNFZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Amkkk=</latexit><latexit sha1_base64="8h2CVRpdyMgEEc3Tn/Gw1QdAfAE=">AAAB8nicbZDLSgMxFIYz9VbrbdSdboJFqFDKpC50IxTcuHDRgr1AO5RMmmlDM8mQZIQy9Alcu3GhiFvfwjdw51v4CKaXhbb+EPj4/3PIOSeIOdPG876czMrq2vpGdjO3tb2zu+fuHzS0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+H1JG/eU6WZFHdmFFM/wn3BQkawsVY7uSqcF2G5CNFZ1817JW8quAxoDvmKW/v+uD16qHbdz05PkiSiwhCOtW4jLzZ+ipVhhNNxrpNoGmMyxH3atihwRLWfTkcew1Pr9GAolX3CwKn7uyPFkdajKLCVETYDvZhNzP+ydmLCSz9lIk4MFWT2UZhwaCSc7A97TFFi+MgCJorZWSEZYIWJsVfK2SOgxZWXoVEuIa+Eaihf8cBMWXAMTkABIHABKuAGVEEdECDBI3gGL45xnpxX521WmnHmPYfgj5z3H2Amkkk=</latexit><latexit sha1_base64="VJhwrbN2ttMNHZt9qluw4XKDLdo=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQoZRNPehFKHjxWMF+wHYp2TTbhmY3SzIrlKU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsSKQy47rdT2Njc2t4p7pb29g8Oj8rHJx2jUs14mympdC+ghksR8zYIkLyXaE6jQPJuMLmb+90nro1Q8SNME+5HdBSLUDAKVvLS2+pVDTdqmFwOyhW37i6A1wnJSQXlaA3KX/2hYmnEY2CSGuMRNwE/oxoEk3xW6qeGJ5RN6Ih7lsY04sbPFifP8IVVhjhU2lYMeKH+nshoZMw0CmxnRGFsVr25+J/npRDe+JmIkxR4zJaLwlRiUHj+Px4KzRnIqSWUaWFvxWxMNWVgUyrZEMjqy+uk06gTt04eSKXp5nEU0Rk6R1VE0DVqonvUQm3EkELP6BW9OeC8OO/Ox7K14OQzp+gPnM8f+oKPBA==</latexit>

Figure 1. A stable convention for the roommates’ problem if δ ≥ 1/2.

Figure 1 depicts a stable convention. In this stable convention, Alice and Bob are matched

in every period on the path of play, and Carol remains unmatched. Bob and Carol each have a

myopic incentive to deviate by matching with each other. But the history-dependent matching

process ensures that Bob does not wish to deviate if he is sufficiently patient: should Bob and

Carol deviate, then in every subsequent period, the process specifies that Bob remains unmatched.

Given this punishment, Bob prefers to stay matched with Alice in each period if

(1− δ)(3)︸ ︷︷ ︸
Bob-Carol for a single period

+ δ(1)︸︷︷︸
Unmatched forever, discounted

≤ 2︸︷︷︸
Alice-Bob Forever

,

which is satisfied whenever δ ≥ 1
2
.

The off-path behavior satisfies the same credibility as that on the path of play: when Alice and

Carol are meant to match forever, Alice is punished in the future if she chooses to deviate with

Bob. In this manner, the automaton depicted in Figure 1 guarantees that no coalition wishes to

deviate when players are sufficiently patient. This example illustrates how a repeated matching
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environment has a stable convention even if the static one-shot environment lacks one.8

2.2 Dividing a Dollar with a Veto Player

Here, we illustrate our results using a simple game (Von Neumann and Morgenstern 1945): con-

sider a divide-the-dollar game between three players—1, 2, and 3—where {1, 2} and {1, 3} can

block and implement any division of the dollar, but the coalition of {2, 3} is powerless (as is any

singleton).9 Here, player 1 is an elite veto player who needs the support of one other (non-elite)

player to capture the surplus. In the core of this stage game, player 1 captures the entire dollar;

every other allocation guarantees that she and one other player has a profitable joint deviation.

Figure 2. Supportable payoffs using core-reversion if δ ≥ 1
2 .

History-dependence can do more when this problem is repeated. Suppose that now, in every pe-

riod, there is a dollar to be divided, and group behavior can condition on past allocations, whether

any coalition blocked, etc. Similar to Nash-reversion equilibria of repeated non-cooperative games,

we develop a stable convention that reverts to the core of the stage-game as a punishment. Con-

sider a convention that recommends
(
0, 1

2
, 1
2

)
every period so long as that has been the allocation

in every prior period, and recommends the core of the stage game in any other history. Now, even

if player 1 offers the entire dollar to either player 2 or 3, neither is willing to join her in blocking

this outcome if δ ≥ 1
2
:

(1− δ)(1) + δ(0) ≤ 1

2
,

8Our rule shares similarities with previous dynamic resolutions. In a stochastic game where the state-variable is
the previous period’s chosen coalition structure, Konishi and Ray (2003) construct stable processes where the coali-
tional structure cycles stochastically when players are patient. Looking at a game without discounting, Vartiainen
(2011) constructs an absorbing history-dependent process that shares a similar spirit to ours.

9We thank Elliot Lipnowski for suggesting this example to us. Ray and Vohra (2015b) and Dutta and Vohra
(2017) also use this example to illustrate their approaches.
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where the LHS is player 2’s (or 3’s) deviation payoff from being promised the entire surplus today

and reverting to the core of the stage game from tomorrow onwards, and the RHS is her payoff

from continuing on the path of play. Going further, core-reversion can support any allocation in

the triangle formed by the vertices {(2δ− 1, 1− δ, 1− δ), (0, δ, 1− δ), (0, 1− δ, δ)}, which converges

to the entire unit simplex as δ → 1. This is depicted in Figure 2.10

3 The Power of Conventions: Perfect Monitoring

This section describes our framework and results when monitoring is perfect. For expositional

clarity, we first describe implications for non-transferable utility environments, and then introduce

perfectly observed transfers.

3.1 A Non-Transferable Utility Environment

A set of players N ≡ {1, 2 . . . , n} interact repeatedly at t = 0, 1, 2, . . ., and share a common

discount factor δ < 1. Players can make choices as individuals and as coalitions. The set of

possible coalitions is the set of all nonempty subsets of N , denoted by C.

The Stage Game: We consider a non-transferable utility (henceforth NTU) stage game using

the language of cooperative game theory. Let A be the set of alternatives, which is finite. An

alternative a generates a payoff vector v(a) ≡ (v1(a), . . . , vn(a)) ∈ Rn, and we use v : A → Rn to

denote the generated payoff function. Using the language of Abreu, Dutta and Smith (1994), we

sometimes focus on settings where no two players have perfectly aligned preferences and call these

“games with nonequivalent utilities.”

Definition 1. The stage game satisfies nonequivalent utilities (NEU) if there is no pair of

players {i, j}, and constants k and λ > 0 such that vi(a) = k + λvj(a) for all a ∈ A.

In each period, the convention recommends an alternative, and feasible deviations for coalitions

and individuals are defined relative to that recommendation. If a in A is recommended, then

coalitions can decide whether to block the recommendation. If coalition C chooses to block the

recommendation, it can deviate to any alternative in EC(a). If no coalition chooses to block, then

the recommendation is implemented. The correspondence EC : A ⇒ A is coalition C’s effectivity

correspondence, as in Rosenthal (1972). This correspondence is “reflexive”: a ∈ EC(a) for every

alternative a and coalition C. Below are a few examples of commonly studied environments

expressed in this language.

10In Section 6, we show how one can do more both in this example and more generally across a large class of
simple games by using approaches from Abreu (1988) and Abreu, Pearce and Stacchetti (1990) to characterize the
full set of supportable payoffs for fixed discount factors.
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Example 1. Consider a strategic-form game in which player i’s action set is Ai, the set of action

profiles is A ≡ ×ni=1Ai. The effectivity correspondence is EC(a) ≡
{
a′ ∈ A : a′j = aj for all j /∈ C

}
,

modeling the possibility for a deviating coalition to choose action profiles in which players outside

the coalition do not change their actions. This formulation extends the standard definition for

individual deviations (used to define Nash equilibria) to a coalitional environment.

Example 2. Consider a general NTU characteristic function game (N,U) where the mapping

U(C) ⊆ R|C| specifies a set of feasible payoff vectors for coalition C if it forms. Let P be the set

of all partitions of N and π be a generic partition. An alternative a is now a tuple (π, u), the

effectivity correspondence EC(a) specifies the set of alternatives to which coalition C may move,

and the payoff function is v((π, u)) = u.

Example 3. Suppose, as in Bernheim and Slavov (2009), that individuals vote in each period over

a set of alternatives. LetW be the set of coalitions that have at least
⌈
N
2

⌉
players. The effectivity

correspondence specifies that for every a, EC(a) = A if C ∈ W , and otherwise, EC(a) = {a}.

Outcomes, Histories, and Paths: At the end of each period, the feasible outcome o ≡ (a, C)

specifies the chosen alternative and the identity of the blocking coalition (if any). We denote the

set of feasible outcomes in this NTU environment by ONTU ≡ A × C. When referring to past

outcomes, we denote the alternative chosen in period t by at and the blocking coalition in period

t by Ct, where Ct = ∅ if the recommendation in period t was unblocked.11

A t-period history is a sequence ht ≡ (aτ , Cτ )τ=0,1,2,...,t−1, that specifies alternatives and block-

ing coalitions for t periods. We denote the set of all feasible t-length histories by Ht for t ≥ 1,

and H0 = {∅} for the singleton comprising the initial null history. We denote by H ≡
⋃∞
t=0Ht the

set of all feasible histories. An outcome path is an infinite sequence p ≡ (at, Ct)t=0,1,2,..., specifying

alternatives and blocking coalitions for each of infinitely many periods.

Plans and Conventions: A plan recommends an outcome following each history: a plan is a

mapping σ : H → ONTU .12 We denote the alternative and a blocking coalition recommended by

a plan σ after history h by a(h|σ) and C(h|σ). A convention is a plan that recommends only

outcomes that are unblocked: in other words, σ : H → A× {∅}.

Payoffs: For a path p = (at, Ct)t=0,1,2,..., Ui(p) ≡ (1 − δ)
∑∞

t=0 δ
tvi(a

t) denotes player i’s nor-

malized discounted continuation payoff from that path, where 0 ≤ δ < 1 is the common discount

11Our model assumes that coalitional blocking is observable. If the stage game is a strategic-form game as in
Example 1, then this assumption is unnecessary; instead, it suffices at every stage to punish someone from among
those whose actions depart from the recommendation’s. However, in a general partitional game (e.g., matching),
the alternative itself may not code sufficient information about who deviated. We abstract from this monitoring
imperfection, and as in the closely related papers (Hyndman and Ray 2007; Vartiainen 2011; Dutta and Vartiainen
2019), assume that the identity of the blocking coalition is directly observed.

12Because we focus on deterministic plans, there is no need to track a plan’s past recommendation.
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factor. For a plan σ and after history h, let P (h|σ) ≡ (σ(h), σ(h, σ(h)), . . .) denote the path

generated recursively by σ after that history, and Ui(h|σ) denote player i’s payoff from that path.

3.2 A Definition of Stable Conventions

In this section, we define our notion of stability. For comparison, we begin with the notion for the

stage game:

Definition 2. An alternative a is a core-alternative if there exists no coalition C and alternative

a′ ∈ EC(a) such that for every i in C, vi(a
′) > vi(a). A payoff vector ṽ is in the core of the NTU

stage game if there exists a core-alternative a such that ṽ = v(a).

The core focuses attention on alternatives where no coalition gains from blocking. Our dynamic

solution-concept elaborates on the core in a straightforward way: we say that a convention is

stable if after every history, no coalition unanimously prefers blocking the recommendation today,

assuming that the future unfolds as anticipated by the convention.

Definition 3. A convention σ is stable in the NTU repeated game if for every history h,

there exists no coalition C and feasible deviation a′ ∈ EC(a(h|σ)) such that

For every i ∈ C: (1− δ)vi(a′) + δUi(h, a
′, C|σ) > Ui(h|σ). (1)

In other words, no coalition has a profitable one-shot deviation.

The requirement for stability is that at every history and given future play, no coalition finds

it profitable to block today. Coalitions anticipate that their choices today affect continuation

play and a stable convention ensures that at least one member of each coalition finds the long-

run cost of changing the path of play to outweigh her instantaneous gain from deviating.13 Thus,

players’ shared understanding of the future—formalized through the convention—deters coalitional

deviations today.

An alternative way to express the idea is that a stable convention recommends only core-

alternatives of the reduced normal-form game at every history (whose payoffs are a convex com-

bination of today’s payoffs and continuation values). If δ = 0, that reduced normal-form game

collapses to the stage game and so stable conventions necessarily implement only core-alternatives

of the stage game. One may proceed further with this connection. Suppose that a∗ is a core-

alternative, and consider a convention that prescribes a∗ after every history. Such a convention

is stable because behavior today does not impact continuation play, and in every period, no

coalition gains myopically from deviating. The converse is also true: every “Markov” stable

13Our requirement for profitability is that every coalition member strictly gains from blocking. Alternatively,
one could stipulate that every coalition member is weakly better off and at least one is strictly better off. Our main
results are identical with this alternative definition.
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convention—i.e., that in which the prescription does not depend on past play—can implement

only core-alternatives. Thus, the relationship between a stable convention of the repeated game

and the core of the stage game is analogous to that between sub-game perfect equilibria of the

repeated game and the Nash equilibria of the corresponding stage game.

As mentioned before, our notion of a stable convention builds on important precursors. Konishi

and Ray (2003) consider a similar recursive payoff in a stochastic game where players condition

on the current coalitional structure (but not on past history), and this has been an important

approach to studying farsighted stability in the subsequent literature. In the context of repeated

elections, Bernheim and Slavov (2009) study Dynamic Condorcet Winners, which coincides with

stable conventions when we when the stage game is specialized to their’s.

3.3 What Can Be Enforced By Stable Conventions?

We turn to what stable conventions can enforce. We find that for NTU games, every feasible and

“individually” rational payoff can be supported by a stable convention, if players are patient.

Let us define this payoff set. The set of feasible payoffs is the convex hull of the set of

feasible payoffs denoted by V† ≡ co({ṽ ∈ Rn : ∃a ∈ A such that ṽ = v(a)}). Analogous to the

(pure-action) minmax of noncooperative games, define each player’s minmax payoff as the lowest

payoff that she can be pushed down to by the convention when she can best-respond:

vi ≡ min
a∈A

max
a′∈E{i}(a)

vi(a
′). (Player i’s minmax)

Thus, the subset of feasible payoffs that is strictly individually rational is

V†IR ≡
{
v ∈ V† : vi > vi for every i = 1, . . . , n

}
. (NTU Feasible IR)

With this in place, we state our first result.

Theorem 1. For every δ ≥ 0, every stable convention gives each player i a payoff of at least vi.

Moreover, if the stage game satisfies NEU, then for every v ∈ V†IR, there is a δ < 1 such that for

every δ ∈ (δ, 1), there exists a stable convention with a discounted payoff equal to v.

The statement of this folk theorem is nearly identical to that for sub-game perfect equilibria

(Fudenberg and Maskin 1986; Abreu, Dutta and Smith 1994), except that we permit coalitional

deviations, and do not limit our analysis to repeated play of a strategic-form game. Nevertheless,

payoffs that are strictly individually rational can be sustained, and the possibility for coalitional

deviations does not refine the set of sustainable outcomes. The key conceptual idea is that to

deter coalitional deviations, it suffices to punish only a single constituent of each coalition—a

“scapegoat”—as if she were a sole deviator.14

14The logic of Theorem 1 indicates that it would apply even if coalitions could commit to a sequence of deviations
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We discuss the key steps. A convention is stable if no coalition, even those that are singletons

(i.e., individuals), has profitable one-shot deviations. An implication of the standard one-shot

deviation principle then is that no individual has a profitable multi-shot deviation. This property

implies that no player can be pushed to below her individual minmax because otherwise she

can profitably deviate. The second part of the result uses the NEU condition to construct player-

specific punishments to deter individual deviations, and as mentioned above, identical punishments

are used to deter coalitional deviations. Finally, because we have not augmented our model with

a public correlation device, we use sequences of play (as in Sorin 1986 and Fudenberg and Maskin

1991) to achieve payoffs that are in the convex hull of generated payoffs.

3.4 Transferable Utility with Perfect Monitoring

This section augments the game with perfectly observed transfers.15 We describe transfers using

T ≡ [Tij]i,j∈N where Tij ∈ [0,∞) is the non-negative utility that is transferred to player j from

player i. Let T denote the set of all n×n matrices with non-negative entries. We use Ti = [Tij]j∈N

to denote the vector of transfers paid by player i. Let TC = [Ti]i∈C be the transfers paid by

members of coalition C and T−C = [Ti]i/∈C be transfers paid by members outside coalition C.

Transfers modify payoffs in the usual way: a player’s experienced payoff is the sum of her generated

payoff and net transfers. That is ui(a, T ) ≡ vi(a) +
∑

j∈N Tji −
∑

j∈N Tij.

A feasible outcome of the stage game now specifies the chosen alternative, the identity of

a blocking coalition (if any), and the chosen transfers. We denote the set of feasible outcomes

by OTU ≡
{
o = (a, C, T )|a ∈ A,C ∈ C, T ∈ T

}
. Histories and paths are defined as in NTU

stage games, with (a, C, T ) replacing (a, C) whenever needed to account for transfers. A plan

σ : H → OTU specifies an outcome, including transfers, based on history. We continue to use

a(h|σ) and C(h|σ) to denote the recommended alternative and blocking coalition in σ(h), and in

addition, we use T (h|σ) to denote the transfers in σ(h). As before, a convention recommends only

outcomes that have empty blocking coalitions; in other words, σ : H → A× {∅} × T .

If coalition C blocks a recommended outcome (a, ∅, T ), it can choose any a′ in EC(a), and

change its transfer schedule to any T ′C so that the realized outcome is (a′, C, T ′C , T−C). This

formulation assumes that when a coalition blocks, it still accept incoming transfers from outside

the blocking coalition who do not know of the block at the time at which transfers are paid.

This assumption is inessential to our results, and is assumed for notational convenience; identical

results follow if one were to instead assume that blocking coalitions must achieve budget-balance.

Since the game has been augmented with transfers, we re-define the set of feasible and in-

dividually rational payoffs. Potential experienced payoff profiles after alternative a is chosen is

across histories, where the maximal number of deviations is bounded. We do not model this scenario explicitly
because a profitable finite long-run deviation for a coalition must either involve a profitable one-shot deviation or
call for an individual within the coalition to deviate even if that’s not in her interest.

15We model transfers separately from alternatives to sharpen the contrast to the secret transfers case.
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U(a) =
{
u ∈ Rn :

∑
i∈N ui =

∑
i∈N vi(a)

}
, its convex hull is U † ≡ co(∪a∈A U(a)), and the set of

feasible and strictly individually rational payoffs is

U †IR ≡
{
u ∈ U † : ui > vi for every i = 1, . . . , n

}
. (TU Feasible IR)

Players have preferences over the discounted stream of experienced payoffs. The definition of

Ui(p), P (h|σ) and Ui(h|σ) are modified in the obvious way to reflect the influence of transfers

on experienced payoffs. To avoid Ponzi schemes, for all of our results, we restrict attention to

conventions whose continuation values lie in a bounded set.

Assumption 1. We consider conventions σ such that continuation values are bounded across

histories: {u ∈ Rn : ∃h ∈ H such that U(h|σ) = u} is a bounded subset of Rn.

We now extend the notion of a stable convention to allow for perfectly observed transfers.

Definition 4. A convention σ is stable in the TU repeated game if for every history h, there

exists no coalition C, alternative a′ ∈ EC(a(h|σ)), and transfers T ′C = [T ′ij]i∈C,j∈N , such that

For every i ∈ C: (1− δ)ui(a′, [T ′C , T−C(h|σ)]) + δUi(h, a
′, C, [T ′C , T−C(h|σ)]|σ) > Ui(h|σ) (2)

Because transfers are publicly observed, subsequent behavior may condition on these transfers

when coalition C blocks the recommended outcome. A stable convention can use this information

to sustain a large set of outcomes, as we prove below.

Theorem 2. For every δ ≥ 0, every stable convention gives each player i a payoff of at least vi.

For every u ∈ U †IR, there is a δ such that for every δ ∈ (δ, 1), there exists a stable convention with

a discounted payoff equal to u.

The proof is similar to that of Theorem 1. Transfers ensure that players have opposed interests

in the stage game, so payoffs necessarily satisfy NEU in this augmented game. The complication

introduced by transfers is that if a deviating coalition anticipates a certain member to be punished,

her coalition partners can use transfers today to compensate her. These transfers can potentially

undermine the deterrence of future punishment, even as δ → 1. To overcome this problem, the

convention targets the player who gains least from the deviation after transfers are made.

4 Secret Transfers Undermine Conventions

We see in Theorem 2 that even if coalitions can share their gains and losses through side-payments,

a convention can deter coalitional deviations by punishing players for giving or receiving transfers.

A different conclusion emerges if coalitions can make side-payments secretly. Section 4.1 describes

this secret-transfers setting. Section 4.2 proves a one-shot coalitional deviation principle and

14



Section 4.3 uses this fact to show that each coalition can guarantee itself a coalitional minmax

value. Section 4.4 characterizes the set of supportable payoffs, and connects that set to the β-core.

4.1 The Setup

We say that transfers are secret when the convention cannot condition on the amount of those

payments: the future recommendation can depend on the identity of blocking coalitions as well

as alternatives they’ve chosen but not on the amount of bribes and side-payments they have paid

to one another.

Definition 5. Two histories h = (a0, C0, T 0, . . . , at, Ct, T t) and h̃ = (ã0, C̃0, T̃ 0, . . . , ãt, C̃t, T̃ t) of

the same length are identical up to secret transfers if for every 0 ≤ τ ≤ t,

1. the same alternative is chosen: aτ = ãτ ,

2. the identify of the blocking coalition, if any, is the same: Cτ = C̃τ , and

3. the same transfers are made, except for those within the blocking coalition: T τij = T̃ τij if

{ij} 6⊆ Cτ .

A convention σ respects secret transfers if σ(h) = σ(h′) for any h, h′ ∈ H that are identical

up to secret transfers.

A stable convention that respects secret transfers is one that satisfies both Definitions 4 and 5.

A special case of a convention that respects secret transfers is one that ignores transfers altogether

between any pair (blocking or otherwise). Our definition here assumes that all blocking coalitions

can transfer utility secretly; as we elaborate in Section 5, our insights generalize to the case where

some coalitions cannot do so.

Definition 5 entails that because players outside blocking coalitions do not observe transfers

within a blocking coalition, their actions cannot condition on them. It also assumes that members

of blocking coalitions do not condition their own subsequent equilibrium play on the transfers made

within the blocking coalition. This measurability restriction may appear stronger than “secrecy,”

but we adopt this definition for two reasons.

The first reason is tractability. Our restriction is analogous to that of perfect public equilibria in

repeated games with public monitoring (Mailath and Samuelson 2006) where all players condition

their play on publicly observable variables. Secret transfers generate persistent private information,

and it is beyond the scope of existing tools to characterize coalitional behavior that is both dynamic

and where members of a coalition are asymmetrically informed.16

Second, one may envision that continuation play that attempts to elicit private information

from deviators (about their transfers) might themselves be vulnerable to coalitional deviations.17

16Our approach is similar to that of collusion in mechanism design (Mookherjee 2006) where details of the
side-contract are unobservable and cannot be conditioned on by the Principal.

17This issue emerges in one-shot environments, where as was noted by Maskin (1979), it may be impossible to
implement any social choice correspondence that satisfies no-veto power in Strong Nash Equilibria.
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This is an important issue but addressing it definitively is beyond our scope here, in particu-

lar because it would require a solution-concept that allows for both asymmetric information and

dynamics. But as a preliminary result, we consider an expanded game in Supplementary Ap-

pendix B.7 where players can communicate about secret transfers. We show that an identical

coalitional payoff guarantee result holds for semi-public equilibria of that game.

4.2 A One-Shot Coalitional Deviation Principle

We find that secret transfers undermine intertemporal incentives, and guarantees that each coali-

tion obtains its coalitional minmax value. Central to this result is a one-shot coalitional deviation

principle where we show that for conventions that respect secret transfers, a coalition has a prof-

itable multi-shot coalitional deviation only if it has a profitable one-shot coalitional deviation.

Therefore, any stable convention is immune to profitable multi-shot coalitional deviations.

Let us define multi-shot coalitional deviations. A multi-shot coalitional deviation is a plan

that departs from the convention that is also feasible for the coalition: C is solely responsible for

any deviations at any history, and the deviation (in terms of the alternative and transfers) at any

history must be feasible for coalition C.

Definition 6. A multi-shot deviation by coalition C from convention σ is a distinct plan

σ′ : H → OTU such that for any history h ∈ H where σ′(h) = (a′, C ′, T ′) 6= σ(h), it must be

that C ′ = C, a′ ∈ EC(a(h|σ)) and T ′−C = T−C(h|σ). A multi-shot deviation σ′ by coalition C is

profitable if there exists a history h such that Ui(h|σ′) > Ui(h|σ) for all i ∈ C.

With these preliminaries defined, we prove the following result.

Lemma 1. (One-shot Coalitional Deviation Principle). Under secret transfers, a convention

σ is stable if and only if it has no profitable multi-shot coalitional deviations.

Lemma 1 establishes that once coalitions can make secret transfers to each other, if the members

of a coalition can gain from (committing to) a multi-shot deviation, then they can structure

transfers so that they can also gain from a one-shot deviation. Players are effectively bribing

others to join their coalition without worrying about being punished for these side-payments.

This idea also does not require that every blocking coalition be able to make secret transfers; in

Section 5, we show that if some but not all coalitions can make secret transfers, then the one-shot

coalitional deviation principle applies for those coalitions that can make secret transfers.

Sketch of Proof: The “if” direction is true by definition. For the “only if” direction, suppose

as a contrapositive that there is a profitable multi-shot deviation. Our steps below construct a

profitable one-shot coalitional deviation using the following steps:
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a. Since every member of C has a higher utility from that deviation path, it must be that the

sum of the members’ utilities is also higher.

b. Now treat the coalition C as a hypothetical player whose payoff is the sum of payoffs of

members of coalition C. The standard argument establishes that this profitable multi-shot

deviation is reducible to a profitable one-shot deviation for this hypothetical entity.

c. Under secret transfers, coalition C’s gains in total value from that one-shot deviation can

be freely distributed among its members using intra-coalition transfers when the coalition

blocks, without affecting continuation play. Thus, there is a one-shot coalitional deviation

that is profitable for every member of coalition C, and therefore, σ is unstable.

4.3 Coalitional Payoff Guarantees: An Anti-Folk Theorem

We use the one-shot coalitional deviation principle to show that in a stable convention, for every

discount factor, each coalition can guarantee itself a total payoff below which it cannot be pushed

down. We define this coalitional minmax as

vC ≡ min
a∈A

max
a′∈EC(a)

∑
i∈C

vi(a
′). (Coalition C’s minmax)

This coalitional minmax adapts standard individual minmaxes in a natural way: it treats coalition

C as a hypothetical entity that has a payoff that is the sum of the payoffs of its constituents, and

can best-respond according to EC(·). This minmax corresponds to the β-characteristic function

proposed by Von Neumann and Morgenstern (1945) (see also Luce and Raiffa 1957 and Ray 2007)

that assumes that those outside a blocking coalition act in ways to minimize the total value of

those within it.18 We argue that each coalition can guarantees itself at least this value.

Theorem 3. Under secret transfers, for every δ ≥ 0, every stable convention gives each coalition

C a total value of at least vC.

Here is the argument for Theorem 3: if a convention σ could push a coalition down to a total

value strictly less than vC , then we can construct a profitable multi-shot deviation by members

of coalition C. By Lemma 1, there then exists a profitable one-shot coalitional deviation, which

implies that σ is not stable.19

We view Theorem 3 as an Anti-Folk Theorem. In a general cooperative game without exter-

nalities, vC corresponds to the value of coalition C given by its characteristic function. Thus, in

18A subtle difference is that the β-characteristic function is often used to convert a strategic-form game into a
cooperative game. We are applying the same logic, but to an abstract transferable utility game, including those
that lack a product-structure.

19We note that Theorem 3 applies even if the convention uses a public randomization device: for every realization
of the public randomization device, coalition C can guarantee itself a total payoff of at least vC by best-responding
to the recommendation. Because Lemma 1 still applies, a stable convention then cannot push a coalition’s value
below this minmax.
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such cases, stable conventions can implement payoffs only in the core of the stage game. More

generally, when externalities are present, our result guarantees that payoffs supported by a sta-

ble convention are a subset of the β-core (i.e., the core when the characteristic function is the

β-characteristic function defined above). If the conditions for the Bondareva-Shapley Theorem

(Peleg and Sudhölter 2007) are satisfied, then the β-core is non-empty. However, if the conditions

fail, then the β-core may be empty. We do not view this as a nihilistic conclusion, but rather as

an illustration of how coalitional deviations coupled with secret side-payments severely erodes the

power of conventions: every scheme of carrots and sticks is undermined by coalitional deviations.

4.4 The Efficient β-Core

Here, we develop a tighter characterization of supportable payoffs using an additional assumption

that the grand coalition is omnipotent.20

Assumption 2. (Omnipotence of the Grand Coalition). For all a ∈ A, EN(a) = A.

Assumption 2 yields an important implication when coupled with Theorem 3: if the grand

coalition must achieve its minmax value and is omnipotent, then a stable convention must generate

(utilitarian-)efficient continuation payoffs after every history. A simple logic implies that any

stable convention must then use utilitarian-efficient alternatives after every history.21 With this

in mind, denote the set of efficient alternatives by A ≡ arg maxa∈A
∑

i∈N vi(a). Define efficient

coalitional minmaxes as the lowest payoff that a coalition can be pushed down to using only

efficient alternatives:

veC ≡ min
a∈A

max
a′∈EC(a)

∑
i∈C

vi(a
′). (3)

For every coalition C, veC is weakly higher than vC as the restriction to efficient alternatives limits

how much coalitions can be punished. We use these minmaxes to define the “efficient β-core.”

Definition 7. The efficient β-core is the set

B ≡

{
u ∈ Rn :

∑
i∈N

ui = max
a∈A

∑
i∈N

vi(a),
∑
i∈C

ui ≥ veC for all C ∈ C\{N}

}
,

20This assumption, while commonly satisfied, is not innocuous: the grand coalition may be “too large” to be
able to coordinate on joint deviations.

21Here is the argument. Suppose that a utilitarian-inefficient alternative is used in period t after some history
ht. The grand coalition’s future payoff, from period t + 1 onwards, cannot exceed the efficient level, and thus, it
cannot recoup the efficiency loss incurred in period t. But then the grand coalition is not achieving its minmax
value after history ht, which is a contradiction.
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and the strict efficient β-core is the set

Bs ≡

{
u ∈ Rn :

∑
i∈N

ui = max
a∈A

∑
i∈N

vi(a),
∑
i∈C

ui > veC for all C ∈ C\{N}

}
.

The efficient β-core guarantees that each coalition obtains at least its efficient coalitional min-

max; the strict efficient β-core is in its relative interior guaranteeing that each “non-grand” coali-

tion obtains strictly more than that minmax. Since we can treat these payoffs as that of a

characteristic function, the set B is non-empty whenever that characteristic function satisfies the

conditions of the Bondareva-Shapley Theorem. Moreover, as we prove in the Supplementary

Appendix B.6, a mild strengthening of these conditions guarantee that Bs is also non-empty.

Theorem 4. Under secret transfers, for every δ ≥ 0, every stable convention implements payoffs

only within the efficient β-core. If the strict efficient β-core is non-empty, then for every payoff

profile u ∈ Bs, there is a δ < 1 such that for every δ ∈ (δ, 1), there exists a stable convention with

a discounted payoff equal to u.

The argument for the first part of Theorem 4 mirrors that of Theorem 3, but proves and

embeds the idea that stable conventions can select only efficient alternatives. The second part of

Theorem 4 is new. We treat each coalition—apart from the grand coalition—as a hypothetical

player, and construct “player-specific” punishments for each such hypothetical player. While we

do this step directly, one can see that this is feasible because the payoffs across coalitions satisfy the

NEU condition in the game augmented with transfers. Using these “player-specific” punishments,

a stable convention can support any payoff vector where each of these hypothetical players obtains

strictly more than its efficient “individually rational” payoff.

5 A General Result on Public and Secret Transfers

For simplicity, we model transfers within blocking coalitions as being either all public (Theorem 2)

or all secret (Theorems 3 and 4) but the insights generalize to settings that span these extremes.

We model this more general setting here. We suppose that some but not all coalitions can transfer

payoffs secretly. We show that only these coalitions are guaranteed a coalitional minmax value.

The set of supportable payoffs then, if players are patient, are those that are feasible, strictly

individually rational, and gives any coalition that can make secret transfers strictly more than its

coalitional minmax.

Let S ⊆ C denote the (non-singleton) set of coalitions that can make secret transfers.

Definition 5∗. Two histories h = (a0, C0, T 0, . . . , at, Ct, T t) and h̃ = (ã0, C̃0, T̃ 0, . . . , ãt, C̃t, T̃ t) of

the same length are identical up to S-secret transfers if for every 0 ≤ τ ≤ t,
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1. the same alternative is chosen: aτ = ãτ ,

2. the identity of the blocking coalition, if any, is the same: Cτ = C̃τ , and

3. the same transfers are made, except for those within a blocking coalition that can make secret

transfers: T τij = T̃ τij if either Cτ /∈ S or {ij} 6⊆ Cτ .

A convention σ respects S-secret transfers if σ(h) = σ(h′) for any h, h′ ∈ H that are identical

up to S-secret transfers.

Definition 5∗ is identical to Definition 5 except that only transfers within a blocking coalition

in S cannot be conditioned upon by the convention.22 We prove an analogoue of Lemma 1: once a

coalition can make secret transfers, regardless of whether other coalitions can do so, it can always

find a profitable one-shot deviation whenever it has a profitable multi-shot deviation.

Lemma 1∗. Under S-secret transfers, a convention σ is stable only if no coalition C in S has a

profitable multi-shot deviation.

Lemma 1∗ implies that every coalition in S achieves at least its coalitional minmax. Below, we

define the feasible and individually rational payoff set that also satisfies these coalitional minmaxes

(we also define the payoff set where all minmax constraints hold strictly).

Definition 8. The set of S-rational payoffs is

D(S) ≡

{
u ∈ Rn :

∑
i∈C

ui ≥ vC for all C ∈ S ∪N

}
,

and the set of strictly S-rational payoffs is the set

Ds(S) ≡

{
u ∈ Rn :

∑
i∈C

ui > vC for all C ∈ S ∪N

}
,

Theorem 5. For every set of coalitions that can make secret transfers, S ⊆ C, and for every

δ ≥ 0, every stable convention implements payoffs only within D(S). If Ds(S) is non-empty, then

for every payoff profile u ∈ Ds(S), there is a δ < 1 such that for every δ ∈ (δ, 1), there exists a

stable convention with a discounted payoff equal to u.

The first conclusion of Theorem 5 follows from Lemma 1∗. For the second conclusion, we

use transfers to construct “player-specific” punishments where the set of hypothetical players is

S ∪ N . Using these punishments, a stable convention can push the payoff of each hypothetical

player arbitrarily close to the appropriate minmax values when players are sufficiently patient.23

22We do not impose any structure on S, and study generally the consequences of secret transfers. An alternative
approach would be to study settings where a directed graph specifies who can secretly transfer utility to whom,
and that graph forms the basis of which transfers within blocking coalitions are secret.

23We note that Ds(S) is non-empty implies that the grand coalition cannot make secret transfers (N /∈ S).
Once the grand coalition can make secret transfers, then the set of supportable payoffs reduces to those using only
efficient alternatives, as in Section 4.4.
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6 An Application to Simple Games

We apply our analysis to simple games (Von Neumann and Morgenstern 1945), re-visiting and

generalizing the example of Section 2.2. Simple games are problems of pure division where certain

winning coalitions have the rights to allocate a fixed surplus, and the question of interest is seeing

how that surplus is divided. We study the class of simple games where no one is a dictator, but

some players have veto power (“elites”). We study, for fixed discount factors, the degree to which

history-dependence can support outcomes where elites share their resources with non-elites.

Let us first describe simple games in the language of our model. The set of alternatives is

A ≡ {a ∈ RN
+ :

∑
i∈N ai = 1}, where player i’s generated payoff from alternative a is vi(a) ≡ ai.

Let W be the set of winning coalitions, where each winning coalition C in W has the ability to

choose how the dollar is divided, and each losing coalition C /∈ W does not. In other words, for

each a, EC(a) = A if C ∈ W , and EC(a) = {a} otherwise. We assume that W is monotonic

and proper.24 Player i is an elite or veto player if she is a member of every winning coalition.

The collection of all veto players is D ≡ ∩C∈WC, and a collegial game is that in which D is non-

empty. We study non-dictatorial collegial games. These games are of interest because it models

relatively common settings where there is at least one veto player, but that veto player does not

have complete power (e.g. Winter 1996; McCarty 2000).25

For a non-dictatorial collegial game, the core of the stage game involves every non-veto player

obtaining 0. We compare that allocation with those supported by stable conventions when players

interact repeatedly. We have already seen in Section 2.2 how history-dependence can sustain a

larger set of outcomes by using “core-reversion” as a punishment. Here, we consider a broader

class of conventions and punishments, using approaches from Abreu (1988) and Abreu, Pearce

and Stacchetti (1990).26 (Below, ∆ refers to the non-negative n-dimensional unit simplex.)

Theorem 6. Suppose that the stage-game is non-dictatorial and collegial. With perfect monitor-

ing, with or without transfers:

a. If there are at least two veto players, the set of supportable payoffs are those that give at least

(1− δ) to each winning coalition :

U(δ) ≡

{
u ∈ ∆ :

∑
i∈C

ui ≥ 1− δ for every C ∈ W

}
.

24In other words, if C ∈ W and C ′ ⊇ C, then C ′ ∈ W. Also, C ∈ W implies that N\C /∈ W.
25One example is the interaction between a legislative body and an executive leader with veto power where

neither body can pass a proposal on its own. Another example corresponds to organizations (e.g., the UN Security
Council) where some members have veto power but the support of some non-veto players is also needed. Finally,
power-sharing arrangements that resemble clientelism and patronage (Francois, Rainer and Trebbi 2015) often
require the support of certain elites and sufficient support from non-elite citizens.

26To simplify exposition, we consider only those conventions that are stationary on the path of play. We
conjecture that this is without loss of generality, particularly in our results for settings with transfers.
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b. If there is only a single veto player, there exists δ such that the set of supportable payoffs is

U(δ) for δ > δ.

By contrast, when transfers are secret, the set of supportable outcomes, regardless of δ, is the core

of the stage game: K ≡
{
u ∈ ∆ :

∑
i∈D ui = 1.

}
.

To interpret Theorem 6, suppose that there are at least two veto players. At δ = 0, the set

of supportable payoffs, U(δ), coincides with the core of the stage game. The set U(δ) strictly

increases in δ in terms of set-inclusion, and it does so in the direction of sharing more surplus

with non-veto players.27 By contrast, with secret transfers, the set of supportable payoffs always

coincides with the core of the stage game, regardless of δ. We illustrate these results in Figure 3

using our three-player example of Section 2.2.

(A) Perfect monitoring for δ > 1/2 (B) Secret transfers between 1 and 2

Figure 3. (A) depicts the set of supportable outcomes with perfect monitoring. The red region depicts payoffs
supported by core-reversion, and the blue region illustrates the gains that come from other stable conventions. (B)
shows the set of supportable outcomes once coalition {1, 2} can make secret transfers; player 3 then obtains 0. If
all coalitions can make secret transfers, then the only supportable payoff is the core of the stage game.

These results illustrate a role of institutions that monitor bribes and side-payments. When all

behavior is publicly observable, elite players can be motivated to share their surplus with non-elite

players through a convention that punishes them if they deviate. However, that ability is lost once

elite players can co-opt others with secret side-payments.

7 Conclusion

The primary contribution of this paper is to take the “repeated-games program”—of using carrots

and sticks to discipline deviations—into a setting that has coalitional moves. We develop a frame-

27For the special case of voting rules like that in the UN Security Council, where every coalition that comprises
the veto players and at least k of the (n− |D|) non-veto players is a winning coalition, Theorem 6 implies that the
wealthiest n− |D| − k non-veto players cannot together obtain more than a δ fraction of the surplus.
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work and solution-concept that tractably merges approaches in cooperative and repeated games.

Because we model an abstract stage game, which includes both strategic-form and partitional

games, our approach can be used to study repeated cooperative games as well as coalitional devi-

ations in repeated noncooperative games.28 The recursive nature of our solution-concept makes it

feasible to analyze the set of supportable payoffs using standard techniques, such as self-generation.

We use this framework to investigate when and how coalitions can be credibly disciplined by

carrots and sticks. The observability of transfers emerges as a critical feature: if transfers are

perfectly observed, then stable conventions can support every feasible and strictly individually

rational payoff vector. By contrast, if a coalition can make secret transfers, it can guarantee itself

a minimal “coalitional minmax” value regardless of players’ patience. When all coalitions can do

so, then the set of supportable payoffs collapses to the core of the stage game (suitably defined).

We view this contrast to potentially speak to questions of enforcement and social order. An im-

portant consideration in enforcement is whether the elites’ temptation to violate the law or abuse

political power is disciplined by their expectations of future punishment.29 But a challenge ubiq-

uitous across time and space is that players can often evade sanctions by profitably bribing their

punishers and partnering with them. Thus, we view credible enforcement to require immunity to

coalitional deviations. Our results suggest that if transfers are observable, these coalitional devi-

ations may not be so costly. But when players can secretly bribe others, they are less threatened

by the prospect of future punishment even if deviating players cannot sign long-term contracts.
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A Appendix

A.1 Outline and Preliminaries

This main appendix contains the proofs of the Folk Theorem for NTU Games (Theorem 1), the One-Shot

Coalitional Deviation Principle for Secret Transfers (Lemma 1), and the Anti-Folk Theorem for Secret

Transfers (Theorem 3).

The Supplementary Appendix contains proofs for our other results. Some of these arguments share

a similar spirit to those of the above results, but with modifications that address important issues that

arise. The proof of the Folk Theorem for TU Games with perfectly observed transfers (Theorem 2)

mirrors that of Theorem 1 but addresses considerations that involve bounding the amount of transfers

and selecting members of coalitions to punish in a way that cannot be undone through side-payments.

The proof of the result identifying the connection with the efficient β-core (Theorem 4) iterates on the

logic of Theorem 3, uses transfers to construct “coalition-specific” punishments, and then proves the

bounds using an argument similar to Theorem 1.

Below, we exposit a notation and a result used throughout our proofs.

Let BRC(a) ≡ arg maxa′∈EC(a)
∑

i∈C vi(a
′) denote coalition C’s best-response alternatives to a recom-

mended alternative a.

Our analysis uses sequences of play to convexify payoffs, following standard arguments from Sorin (1986)

and Fudenberg and Maskin (1991). Below, we reproduce the statement that we invoke in our arguments.

Lemma 2. (Lemma 2 of Fudenberg and Maskin 1991) Let X be a convex polytope in Rn with

vertices x1, . . . , xK . For all ε > 0, there exists a δ < 1 such that for all δ < δ < 1, and any x ∈ X,

there exits a sequence {xτ}∞τ=0 drawn from {x1, . . . , xK}, such that (1− δ)
∑∞

τ=0 δ
τxτ = x and at any t,∣∣∣∣x− (1− δ)

∑∞
τ=t δ

τ−txτ
∣∣∣∣ < ε.
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A.2 Proof of Theorem 1 on p. 12

Part 1: For every δ ≥ 0, every stable convention gives each player i a payoff of at least vi.

Consider any convention σ and player i such that Ui(∅|σ) < vi. We first show that player i has a profitable

multi-shot deviation from this convention and then use a one-shot deviation principle to show that there

is a profitable one-shot deviation. Therefore σ cannot be stable.

A multi-shot deviation for player i from convention σ is a distinct plan σ′ : H → ONTU such

that for any history h ∈ H where σ′(h) = (a′, C ′) 6= σ(h), it must be that C ′ = {i} and a′ ∈ E{i}(a(h|σ)).

A multi-shot deviation is profitable if there exists a history h such that Ui(h|σ′) > Ui(h|σ).

We consider the following multi-shot deviation: in every period, player i blocks and best-responds

to the convention. Formally, this is a plan σ′ where C(h|σ′) = {i} and a(h|σ′) ∈ BRi
(
a(h|σ)

)
for every

history h ∈ H. By the definition of vi, the deviation σ′ satisfies vi(a(h|σ′)) ≥ vi for all h ∈ H, so player

i’s continuation value from period 0 must be higher: Ui(∅|σ′) > Ui(∅|σ).

We apply the standard one-shot deviation principle for individual decision making (Blackwell 1965)

to this setting, which is now a simple decision tree.30 Because stage-game payoffs are bounded for player

i and there is discounting, the one-shot deviation principle implies that there exists a history h ∈ H such

that

(1− δ)vi(a(h|σ′)) + δUi

(
h, a(h|σ′), {i}

∣∣σ) > Ui(h|σ),

which is a profitable one-shot deviation for coalition {i}. Therefore, σ is unstable.

Part 2: If the stage game satisfies NEU, then for every v ∈ V†IR, there is a δ < 1 such that for every

δ ∈ (δ, 1), there exists a stable convention with discounted payoff equal to v.

Fix v0 ∈ V†IR. We begin with preliminaries, defining payoffs and alternatives to support v0.

First, since the game satisfies NEU, by Lemma 1 and Lemma 2 of Abreu, Dutta and Smith (1994),

we can find player-specific punishments for v0: there exist payoff vectors {vi}ni=1 ⊆ V
†
IR such that vii < v0i

for all i ∈ N , and vji > vii for all j ∈ N, j 6= i. Second, let us define minmaxing alternatives: let

ai ∈ arg mina∈A maxa′∈E{i} vi(a
′) be an alternative that can be used to minmax player i. By construction,

it follows that vi(ai) ≤ vi.
Given these payoffs and punishments, let κ ∈ (0, 1) be such that for every κ̃ ∈ [κ, 1], the following is

true for every i:

(1− κ̃)vi(ai) + κ̃vii > vi (4)

For every j 6= i: (1− κ̃)vj(ai) + κ̃vij > (1− κ̃)vj + κ̃vjj (5)

Inequality (4) implies that player i is willing to bear the cost of vi(ai) with the promise of transitioning

into her player-specific punishment rather than staying at her minmax, where the promise is discounted

at κ̃. Similarly, inequality (5) implies that player j is willing to bear the cost of minmaxing player i

30For a statement of the one-shot deviation principle that applies in this context, see
https://www.econ.nyu.edu/user/debraj/Courses/GameTheory2003/Notes/osdp.pdf
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with the promise of transitioning into player i’s specific punishment rather than her own, when the post-

minmaxing phase payoffs are discounted at κ̃. Each inequality holds at κ̃ = 1 for each i and j 6= i. Since

the set of players is finite, there exists a value of κ ∈ (0, 1) such that the inequality holds for all κ̃ ∈ [κ, 1],

i ∈ N and j ∈ N\{i}.
Let L(δ) ≡

⌈
log κ
log δ

⌉
where d·e is the ceiling function. Observe that δL(δ) ∈ [δ

log κ
log δ

+1
, δ

log κ
log δ ] = [δκ, κ].

Therefore, limδ→1 δ
L(δ) = κ.

Lemma 2 guarantees that for any ε > 0, there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), there

exist sequences
{
{ai,τ}∞τ=0 : i = 0, 1, . . . , n

}
such that for each i and t, (1 − δ)

∑∞
τ=0 δ

τv(ai,τ ) = vi and∣∣∣∣vi − (1− δ)
∑∞

τ=t δ
τv(ai,τ )

∣∣∣∣ < ε. We fix an ε < (1− κ) min{mini,j 6=i(v
j
i − vii),mini v

i
i − vi}, and given

that ε, consider δ exceeding the appropriate δ.

We now describe the convention used to sustain v0. Consider the automaton (W,w(0, 0), f, γ), where

• W ≡
{
w(d, τ)|0 ≤ d ≤ n, τ ≥ 0

}
∪ {w(i, τ)|1 ≤ i ≤ n, 0 ≤ τ < L(δ)} is the set of possible states;

• w(0, 0) is the initial state;

• f : W → ONTU is the output function, where f(w(d, τ)) = (ad,τ , ∅) and f(w(i, τ)) = (ai, ∅).

• γ : W ×ONTU →W is the transition function. For states of the form w(d, τ), the transition is

γ
(
w(d, τ), (a,C)

)
=

w(j∗, 0) if C 6= ∅ , j∗ = minj∈C j

w(d, τ + 1) otherwise

For states in {w(i, τ)|0 ≤ τ < L(δ)− 1},

γ
(
w(i, τ), (a,C)

)
=


w(j∗, 0) if C /∈ {∅, {i}} , j∗ = minj∈C\{i} j

w(i, 0) if C = {i}

w(i, τ + 1) otherwise

For states of the form w(i, L(δ)− 1), the transition is

γ
(
w(i, L(δ)− 1), (a,C)

)
=


w(j∗, 0) if C /∈ {∅, {i}} , j∗ = minj∈C\{i} j

w(i, 0) if C = {i}

w(i, 0) otherwise

The convention represented by the above automaton yields payoff profile v0. By construction, the con-

tinuation values in different states, V (·), satisfy:∣∣∣∣∣∣vd − V (w(d, τ))
∣∣∣∣∣∣ < ε, τ = 0, 1, . . .

V (w(i, τ)) = (1− δL(δ)−τ )v(ai) + δL(δ)−τV (w(i, 0)), τ = 0, . . . , L(δ)− 1
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Below, we show that this convention is stable by showing that there is no profitable one-shot deviation

in any state of this automaton.

Stability in states of the form w(d, τ): Set B > sup{u∈V†,i∈N} ui. Consider a one-shot deviation to

(a,C) by coalition C. Let j∗ = min{j ∈ C}. For all τ , without the deviation j∗ obtains a payoff greater

than vdj∗ − ε. By deviating, j∗ obtains a payoff less than

(1− δ)B + δVj∗(w(j∗, 0)) = (1− δ)B + δ
[
(1− δL(δ))vj∗(aj∗) + δL(δ)vj

∗

j∗

]
For the deviation to be profitable, everyone in C, including player j∗, must be better off. So the one-shot

deviation is unprofitable if the above term is no more than vdj∗ − ε. We prove that this is the case both

for j∗ 6= d and j∗ = d.

First consider j∗ 6= d. Observe that

lim
δ→1

(1− δ)B + δ
[
(1− δL(δ))vj∗(aj∗) + δL(δ)vj

∗

j∗

]
= lim

δ→1

[
(1− δL(δ))vj∗(aj∗) + δL(δ)vj

∗

j∗

]
< vj

∗

j∗ ,

where the inequality follows from vj∗(aj∗) ≤ vj < vj
∗

j∗ . Because ε by construction is strictly less than

vdj∗ − v
j∗

j∗ , it follows that the deviation payoff is less than vdj∗ − ε when δ is sufficiently large.

Now suppose that j∗ = d. The deviation payoff being less than vdj∗ − ε can be re-written as

(1− δ)(B − vj
∗

j∗ ) + ε ≤ δ(1− δL(δ))(vj
∗

j∗ − vj∗(aj∗))

As δ → 1, the LHS converges to ε. Because limδ→1 δ
L(δ) = κ, the RHS converges to (1−κ)(vj

∗

j∗−vj∗(aj∗)).
By definition of ε, the above inequality holds, and therefore, there is no profitable one-shot deviation if

δ is sufficiently high.

Stability in states of the form w(i, τ): We prove that no coalition has a profitable one-shot deviation.

We first consider the case where C = {i}. Since player i is being minmaxed, her best possible deviation

generates a payoff of vi for her. She finds this deviation to be unprofitable if

(1− δL(δ)−τ )vi(ai) + δL(δ)−τvii ≥ (1− δ)vi + δ(1− δL(δ))vi(ai) + δL(δ)+1vii. (6)

Because vii > vi ≥ vi(ai), it suffices to show that

(1− δL(δ))vi(ai) + δL(δ)vii ≥ (1− δ)vi + δ(1− δL(δ))vi(ai) + δL(δ)+1vii.

Re-arranging terms:

(1− δ)(1− δL(δ))vi(ai) + (1− δ)δL(δ)vii ≥ (1− δ)vi.

Dividing by (1− δ) yields:

(1− δL(δ))vi(ai) + δL(δ)vii ≥ vi.
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Let us verify that this inequality holds for sufficiently high δ. Taking δ → 1 yields Inequality (4), which

is true. Hence Inequality (6) holds for sufficiently high δ.

If C 6= {i}, then j∗ exists. Player j∗ finds this one-shot deviation to be unprofitable if

(1− δL(δ)−τ )vj∗(ai) + δL(δ)−τvij∗ ≥ (1− δ)B + δ(1− δL(δ))vj∗(aj∗) + δL(δ)+1vj
∗

j∗ . (7)

We prove that this inequality is satisfied if δ is sufficiently high. Examining the LHS, observe that for all

τ such that 0 ≤ τ ≤ L(δ)− 1,

lim
δ→1

[
(1− δL(δ)−τ )vj∗(ai) + δL(δ)−τvij∗

]
= lim

δ→1

[(
1− κ

δτ

)
vj∗(ai) +

κ

δτ
vij∗
]

= (1− κ̃)vj∗(ai) + κ̃vij∗

for some κ̃ ∈ [κ, 1]. Examining the RHS of (7), observe that

lim
δ→1

[
(1− δ)B + δ(1− δL(δ))vj∗(aj∗) + δL(δ)+1vj

∗

j∗

]
= lim

δ→1

[
(1− δL(δ))vj∗(aj∗) + δL(δ)vj

∗

j∗

]
= (1− κ)vj∗(aj∗) + κvj

∗

j∗ ≤ (1− κ)vj∗ + κvj
∗

j∗ ≤ (1− κ̃)vj∗ + κ̃vj
∗

j∗ ,

where the first equality follows from taking limits, the second from limδ→1 δ
L(δ) = κ, the first weak

inequality follows from vj∗(aj∗) ≤ vj∗ , the second weak inequality follows from κ̃ ≥ κ and vj∗ < vj
∗

j∗ .

Since κ̃ ∈ [κ, 1], (5) delivers that (1− κ̃)vj∗(ai) + κ̃vij∗ is strictly higher than (1− κ̃)vj∗ + κ̃vj
∗

j∗ . This term

guarantees that (7) holds for sufficiently high δ.

A.3 Proof of Lemma 1 on p. 16

The “if” direction is true by definition. For the “only if” direction, consider a convention σ that respects

secret transfers for which coalition C has a profitable multi-shot deviation, σ′. In other words, there

exists a history h ∈ H such that Ui(h|σ′) > Ui(h|σ) for every i ∈ C. We show that the convention σ has

a profitable one-shot deviation, and therefore is not stable.

Since Ui(h|σ′) > Ui(h|σ) for every i ∈ C, it follows that
∑

i∈C Ui(h|σ′) >
∑

i∈C Ui(h|σ). Treat

coalition C as a hypothetical player whose payoff is the sum of the payoffs of members of coalition C.

Consider σ′ as a multi-shot deviation by player C that increases its payoff.

By Assumption 1, the convention σ has bounded continuation value. We establish, in Lemma 4

in the Supplementary Appendix that if coalition C has a profitable multi-shot deviation, that it also

has a profitable multi-shot deviation σ′ in which
{∑

i∈C Ui(h|σ′) : h ∈ H
}

is also bounded. Thus, the

hypothetical player C faces a decision tree with bounded values and given discounting, the standard

one-shot deviation principle applies. Therefore, there exists a history ĥ ∈ H such that

(1− δ)
∑
i∈C

ui

(
a(ĥ|σ′), T (ĥ|σ′)

)
+ δ

∑
i∈C

Ui

(
ĥ, a(ĥ|σ′), C, T (ĥ|σ′)

∣∣∣σ) >∑
i∈C

Ui(ĥ|σ)

Thus, as a hypothetical player, C has a profitable one-shot deviation. We construct transfers to divide
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these gains so that each member of coalition C strictly profits from this one-shot deviation. Let T ∗ be

the transfers matrix such that for all (j, k) /∈ C ×C, T ∗jk = Tjk(ĥ|σ′); but for (j, k) ∈ C ×C, T ∗jk satisfies

for every i ∈ C,

(1− δ)ui
(
a(ĥ|σ′), T ∗

)
+ δUi

(
ĥ, a(ĥ|σ′), C, T (ĥ|σ′)

∣∣∣σ) > Ui(ĥ|σ). (8)

Consider the two histories

h1 ≡
(
ĥ, a(ĥ|σ′), C, T (ĥ|σ′)

)
and h2 ≡

(
ĥ, a(ĥ|σ′), C, T ∗

)
.

By the construction of T ∗, h1 and h2 are identical up to the transfers within coalition C. Since the

convention σ respects secret transfers, it must be the case that for all i ∈ N ,

Ui

(
ĥ, a(ĥ|σ′), C, T (ĥ|σ′)

∣∣∣σ) = Ui

(
ĥ, a(ĥ|σ′), C, T ∗

∣∣∣σ).
Inequality (8) can therefore be re-written as, for every i ∈ C,

(1− δ)ui
(
a(ĥ|σ′), T ∗

)
+ δUi

(
ĥ, a(ĥ|σ′), C, T ∗

∣∣∣σ) > Ui(ĥ|σ). (9)

According to Definition 4, inequality (9) implies that σ is not a stable convention.

A.4 Proof of Theorem 3 on p. 17

We prove a stronger statement: every stable convention σ guarantees that for every coalition C and every

history h ∈ H, ∑
i∈C

Ui(h|σ) ≥ vC . (10)

Consider a convention σ such that there exists a coalition C and history ĥ such that
∑

i∈C Ui(ĥ|σ) < vC .

We prove that σ must not be stable.

The convention σ recommends an alternative a(h|σ) at every history h ∈ H. We construct a profitable

multi-shot deviation for coalition C. At every history h ∈ H, let d(h) ∈ BRC(a(h|σ)) be an alternative

in coalition C’s best-response to the recommended alternative. By the definition of vC and BRC(.), it

follows that
∑

i∈C vi(d(h)) ≥ vC >
∑

i∈C Ui(ĥ|σ). Since coalition C’s total generated payoff from d(h),∑
i∈C vi(d(h)), is higher than

∑
i∈C Ui(ĥ|σ), we can find transfers among players in C such that the payoff

of each individual player i ∈ C is higher than Ui(ĥ|σ). Formally, at every history h, there exist transfers

T̃C(h) ≡ [T̃ij(h)]i∈C,j∈N such that T̃ij(h) = 0 for all j ∈ N\C, and

vi(d(h)) +
∑
j∈C

T̃ji(h)−
∑
j∈C

T̃ij(h) > Ui(ĥ|σ)

for all i ∈ C. As a result, for each player i ∈ C, the experienced payoff from the stage-game outcome
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(
d(h), C, [T̃C(h), T−C(h|σ)]

)
satisfies

ui

(
d(h), [T̃C(h), T−C(h|σ)]

)
= vi(d(h)) +

∑
j∈C

T̃ji(h) +
∑

j∈N\C

Tji(h|σ)−
∑
j∈N

T̃ij(h)

≥ vi(d(h)) +
∑
j∈C

T̃ji(h)−
∑
j∈C

T̃ij(h)

>Ui(ĥ|σ)

where the weak inequality follows because Tij(h|σ) ≥ 0 for all j ∈ N , and T̃ij(h) = 0 for all j ∈ N\C.

Observe that the LHS concerns every history, including ĥ and those that follow. These steps prove that

the multi-shot deviation σ′ by coalition C, defined by σ′(h) ≡
(
d(h), C, [T̃C(h), T−C(h|σ)]

)
for every

history h ∈ H, is profitable: Ui(ĥ|σ′) > Ui(ĥ|σ) for every i ∈ C. Lemma 1 then implies that σ is not

stable.
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B Supplementary Appendix (Not for Publication)

B.1 Preliminary Results

Below, we list two preliminary results used in our proofs.

Lemma 3. Suppose σ is a stable convention and let diam(.) denote the diameter of a set. Then for any

player i and any history h ∈ H, the recommended transfers T = T (h|σ) from the convention must satisfy

∑
j 6=i

T ji ≤
1 + δ

1− δ
diam({U(h|σ) : h ∈ H}) + diam(V†IR)

Proof. At any history, the recommended alternative a = a(h|σ) and the recommended transfers T =

T (h|σ) from the convention must satisfy

(1− δ)[vi(a) +
∑
j 6=i

T ji] + δ inf{Ui(h|σ) : h ∈ H} ≤ sup{Ui(h|σ) : h ∈ H}.

Otherwise, player i would have a profitable one-shot individual deviation from accepting all incoming

transfers and reneging on all outgoing transfers. Rearranging terms, we have

∑
j 6=i

T ji ≤
sup{Ui(h|σ) : h ∈ H} − [(1− δ)vi(a) + δ inf{Ui(h|σ) : h ∈ H}

(1− δ)

=
sup{Ui(h|σ) : h ∈ H}

1− δ
− δ inf{Ui(h|σ) : h ∈ H}

1− δ
− vi(a)

By the triangle inequality,

∑
j 6=i

T ji ≤
∣∣∣∣sup{Ui(h|σ) : h ∈ H}

1− δ

∣∣∣∣+

∣∣∣∣δ inf{Ui(h|σ) : h ∈ H}
1− δ

∣∣∣∣+ |vi(a)| .

Since |sup{Ui(h|σ) : h ∈ H}| ≤ diam({U(h|σ) : h ∈ H}), |inf{Ui(h|σ) : h ∈ H}| ≤ diam({U(h|σ) : h ∈
H}), and |vi(a)| ≤ diam(V†IR), we have

∑
j 6=i

T ji ≤
1 + δ

1− δ
diam({U(h|σ) : h ∈ H}) + diam(V†IR)

Lemma 4. Suppose σ′ is a profitable multi-shot deviation by coalition C from a stable convention σ, then

there exists a profitable multi-shot coalitional deviation σ′′ from σ, such that the set {
∑

i∈C Ui(h|σ′′) :

h ∈ H} is bounded.

Proof. We break this argument into two steps.

Step 1: We show that the set {
∑

i∈C Ui(h|σ′) : h ∈ H} is bounded from above. It suffices to show that

{
∑

i∈C ui(σ
′(h)) : h ∈ H} is bounded from above.
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First we show that for player i /∈ C, his stage-game values in σ′ is bounded from below regardless of

h. Since i is making the same outgoing transfers in σ′(h) as in σ(h), we have

ui(σ
′(h))− ui(σ(h)) =

[
vi(a(h|σ′)) +

∑
k 6=i

Tki(h|σ′)
]
−
[
vi(a(h|σ)) +

∑
k 6=i

Tki(h|σ)
]

Rearranging terms, we have

ui(σ
′(h)) = ui(σ(h)) +

[
vi(a(h|σ′))− vi(a(h|σ))

]
−
∑
k 6=i

Tki(h|σ) +
∑
k 6=i

Tki(h|σ′)

≥ ui(σ(h)) +
[
vi(a(h|σ′))− vi(a(h|σ))

]
−
∑
k 6=i

Tki(h|σ). (11)

By definition,

Ui(h|σ) = (1− δ)ui(σ(h)) + δUi(h, σ(h)|σ),

or

ui(σ(h)) =
δUi(h, σ(h)|σ)− Ui(h|σ)

1− δ
.

Plugging the above equation into inequality (11), we have

ui(σ
′(h)) ≥ δUi(h, σ(h)|σ)− Ui(h|σ)

1− δ
+
[
vi(a(h|σ′))− vi(a(h|σ))

]
−
∑
k 6=i

Tki(h|σ).

In the inequality above, [δUi(h, σ(h)|σ)− Ui(h|σ)]/(1− δ) is bounded since σ has bounded continuation

values;
[
vi(a(h|σ′)) − vi(a(h|σ))

]
is bounded because there are finite number of alternatives; and lastly,∑

k 6=i Tki(h|σ) is bounded from above by Lemma 3. As a result, we can find number K such that

ui(σ
′(h)) ≥ K for every history h and every player i /∈ C.

After every history h ∈ H, since the total experienced utility across all players must equal the total

generated utility, and because a is a maximizer of
∑

i∈N vi(s),∑
i∈C

ui(σ
′(h)) +

∑
i/∈C

ui(σ
′(h)) ≤

∑
i∈N

vi(a),

or ∑
i∈C

ui(σ
′(h)) ≤

∑
i∈N

vi(a)−
∑
i/∈C

ui(σ
′(h)).

After plugging in the bounds derived above, we have∑
i∈C

ui(σ
′(h)) ≤

∑
i∈N

vi(a)− (n− |C|)×K ∀h ∈ H,

so the set {
∑

i∈C ui(σ
′(h)) : h ∈ H} is bounded from above.

34



Step 2: We show that {
∑

i∈C Ui(h|σ′) : h ∈ H} is bounded from below. Suppose otherwise. We can

construct another profitable deviation σ′′ such that {
∑

i∈C Ui(h|σ′′) : h ∈ H} is bounded: if
∑

i∈C Ui(ĥ|σ′)
falls below arg mina∈A

∑
i∈C vi(a), at all histories following ĥ we ask C to block and refuse all outgoing

transfers, while leaving the recommended alternative unchanged.

Formally, for a history ĥ ∈ H, let F (ĥ) ≡ {hĥ : h ∈ H} denote the set of histories that can follow from

ĥ. Let HC(σ′) ≡ {h ∈ H :
∑

i∈C Ui(h|σ′) < mina∈A
∑

i∈C vi(a)}. Let 0C denote the vector of zero-valued

transfers made from players in C. Define

σ′′(h) =


(
a(h|σ), C, [0C , T−C(h|σ)]

)
∀h ∈ F (ĥ) for some ĥ ∈ HC(σ′)

σ′(h) otherwise

By construction, the deviation σ′′ has continuation values bounded below by arg mina∈A
∑

i∈C vi(a), and

is is still profitable.

B.2 Proof of Theorem 2 on p. 14

Part 1: For every δ ≥ 0, every stable convention gives each player i a payoff of at least vi.

The proof mirrors that of the same part in Theorem 1, and so we elaborate on the necessary changes

to the argument below. Consider any convention σ and player i such that Ui(∅|σ) < vi. We first show

that player i has a profitable multi-shot deviation from this convention.

We consider the following multi-shot deviation: in every period, player i blocks and best-responds to

the convention, and refuses to make any outgoing transfers. Formally, this is a plan

σ′(h) =
(

(a(h|σ′)), {i}, [0i, T−i(h|σ)]
)
∀h ∈ H

where a(h|σ′) ∈ BRi
(
a(h|σ)

)
for every h ∈ H. By the definition of vi, this multi-shot deviation gives i

at least vi after every history, so Ui(∅|σ′) > Ui(∅|σ).

By Assumption 1, the convention σ has bounded continuation value. Moreover, Assumption 1 implies

that all incoming transfers player i receives on the path of the deviation σ′ are also bounded (as proven

in Lemma 3). As a result, player i faces a decision tree with bounded values in the deviation plan σ′ and

we can apply the standard one-shot deviation principle to prove that there exists a profitable one-shot

deviation for {i}. Therefore, σ is not stable.

Part 2: For every u ∈ U†IR, there is a δ < 1 such that for every δ ∈ (δ, 1), there exists a stable convention

with a discounted payoff equal to u.

Fix any u0 ∈ U†IR. We argue below, using transfers, that we can find player-specific punishments for u0:

consider the vectors {ui : i ∈ N} defined by

uij =

uj − ε if j = i,

uj + ε
n−1 if j 6= i.
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Observe that {ui}ni=1 ⊆ U
†
IR when ε is sufficiently small, and that for all i, uii < ui and for all j 6= i,

uji > uii. Therefore, this is a vector of player-specific punishments.

Given these player-specific punishments, let κ ∈ (0, 1) be such that for every κ̃ ∈ [κ, 1], the following

is true for every i:

(1− κ̃)vi(ai) + κ̃uii > vi (12)

For every j 6= i: (1− κ̃)vj(ai) + κ̃uij > (1− κ̃)vj + κ̃ujj (13)

By an argument identical to that which we saw in Theorem 1, there exists a value of κ ∈ (0, 1) such

that the inequality holds for all κ̃ ∈ [κ, 1], i ∈ N and j ∈ N\{i}. Let L(δ) ≡
⌈
log κ
log δ

⌉
where d·e is the

ceiling function. As before, we use the property that limδ→1 δ
L(δ) = κ.

Next we argue that there exists a finite set of payoff vectors whose convex hull contains the set U†IR.

Lemma 5. Let a ∈ arg maxa∈A
∑

i∈N vi(a) and a ∈ arg mina∈A
∑

i∈N vi(a) two alternatives that maxi-

mize and minimize players’ total generated payoffs, respectively. There exist payoff vectors {ũ1, . . . , ũM} ⊆
U(a) ∪ U(a), such that U†IR ⊆ co(ũ1, . . . , ũM ).

Proof. By definition,

U†IR ⊆ U
†
IR ≡

{
u ∈ Rn :

∑
i∈N

vi(a) ≤
∑
i∈N

ui ≤
∑
i∈N

vi(a) and ui ≥ vi∀i ∈ N

}
.

Since U†IR is a bounded polyhedron, it is also a polytope. Let x1, . . . , xK be its vertices. Any point inside

U†IR can then be expressed as convex combinations of these vertices. Since xk ∈ co(U(a) ∪ U(a)) for all

1 ≤ k ≤ K, for each k, there exist {ũk,1, . . . , ũk,mk} ⊆ U(a)∪U(a) such that xk ⊆ co(ũk,1, . . . , ũk,mk). As

a result U†IR ⊆ co(∪1≤k≤K
{
ũk,1, . . . , ũk,mk

}
).

Lemma 5 implies that there exist payoff vectors {ũ1, . . . , ũM} ⊆ U(a) ∪ U(a) such that U†IR ⊆
co(ũ1, . . . , ũM ), where ũm = u(ãm, T̃m) for some alternative ãm ∈ {a, a} and transfers matrix T̃m for

each m = 1, . . . ,M . Lemma 2 then guarantees that for any ε > 0, there exists δ ∈ (0, 1) such that

for all δ ∈ (δ, 1), there exist sequences
{
{ai,τ , T i,τ}∞τ=0 : i = 0, 1, . . . , n

}
such that for each i and t,

(1− δ)
∑∞

τ=0 δ
τu(ai,τ , T i,τ ) = ui and

∣∣∣∣ui − (1− δ)
∑∞

τ=t δ
τu(ai,τ , T i,τ )

∣∣∣∣ < ε. We fix an ε < (1− κ) min{
mini,j 6=i(u

j
i − uii),mini u

i
i − vi}, and given that ε, consider δ exceeding the appropriate δ.

Now we describe the convention that we use to sustain u0. Let 0 denote the transfer matrix where

all players make no transfers. Consider the convention represented by the automaton (W,w(0, 0), f, γ),

where

• W ≡
{
w(d, τ)|0 ≤ d ≤ n, τ ≥ 0

}
∪ {w(i, τ)|1 ≤ i ≤ n, 0 ≤ τ < L(δ)} is the set of possible states;

• w(0, 0) is the initial state;

• f : W → OTU is the output function, where f(w(d, τ)) = (ad,τ , ∅, T d,τ ) and f(w(i, τ)) = (ai, ∅,0);

36



• γ : W ×OTU →W is the transition function. For states of the form w(d, τ), the transition is

γ
(
w(d, τ), (a,C, T )

)
=

w(j∗, 0) if C 6= ∅, j∗ = arg minj∈C{uj(a, T )− ud,tj }

w(d, τ + 1) otherwise

For states in {w(i, τ)|0 ≤ τ < L(δ)− 1},

γ
(
w(i, τ), (a,C, T )

)
=



w(j∗, 0) if {C 6= ∅} ∩
(
{ui(a, T ) > vi} ∪ {i /∈ C}

)
j∗ = arg minC\{i}{uj(a, T )− vj(ai)}

w(i, 0) if {C 6= ∅} ∩ {ui(a, T ) ≤ vi} ∩ {i ∈ C}

w(i, τ + 1) otherwise

For states of the form w(i, L(δ)− 1), the transition is

γ
(
w(i, L(δ)− 1), (a,C, T )

)
=



w(j∗, 0) if {C 6= ∅} ∩
(
{ui(a, T ) > vi} ∪ {i /∈ C}

)
j∗ = arg minC\{i}{uj(a, T )− vj(ai)}

w(i, 0) if {C 6= ∅} ∩ {ui(a, T ) ≤ vi} ∩ {i ∈ C}

w(i, 0) otherwise

The convention represented by the above automaton yields payoff profile u0. By construction, the

continuation values in different states, V (·), satisfy:∣∣∣∣∣∣ud − V (w(d, τ))
∣∣∣∣∣∣ < ε, τ = 0, 1, . . .

V (w(i, τ)) = (1− δL(δ)−τ )v(ai) + δL(δ)−τV (w(i, 0)), 0 ≤ τ ≤ L(δ)− 1

In the NTU environment, since the feasible payoff set V† is bounded, whenever a coalition deviates,

we can find number B > 0 that bounds every player’s stage-game payoff. With transfers, however,

players’ stage-game payoffs are no longer bounded: in particular, we do not impose a priori bounds

on the transfers made among members of the blocking coalition. This makes it more difficult to deter

coalitional deviations, since players can use transfers to compensate each other.

Regardless, the total stage-game payoff of the deviating coalition is still bounded, so at least one

member still has a bounded payoff. The definition of j∗ in the automaton above ensures that the

“scapegoat” selected by the convention can be effectively deterred as δ → 1. It remains to show that this

convention is stable. This is the next step.

Stability in states of the form w(d, τ): If a coalition C 6= ∅ blocks in automaton state w(d, τ) and

the outcome (â, C, T̂ ) is realized, the convention punishes j∗ = arg minj∈C{uj(â, T̂ ) − ud,τj }. It follows
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that

uj∗(â, T̂ )− ud,τj∗ ≤
1

|C|

[∑
j∈C

uj(â, T̂ )−
∑
j∈C

ud,τj

]

≤ 1

|C|

max
a∈A

∑
j∈C

vj(a)−min
a∈A

∑
j∈C

vj(a) +
∑
j∈C

∑
k/∈C

T d,τjk


≤ 1

|C|

max
a∈A

∑
j∈C

vj(a)−min
a∈A

∑
j∈C

vj(a) + max
1≤m≤M

∑
j∈C

∑
k/∈C

T̃mjk

 ,
where the first inequality follows from the minimum among a set of numbers being less than their average;

the second inequality follows from the difference between
∑

j∈C uj(â, T̂ ) and
∑

j∈C u
d,τ
j resulting from

either differences in the generated payoffs from the realized alternative, or the outgoing transfers to players

in N\C; lastly, the third inequality follows because all T d,τ are drawn from {T̃m}Mm=1. Rearranging terms:

uj∗(â, T̂ ) ≤ max
j∈N,1≤m≤M

ũmj + max
C⊆N,C 6=∅

1

|C|

max
a∈A

∑
j∈C

vj(a)−min
a∈A

∑
j∈C

vj(a) + max
1≤m≤M

∑
j∈C

∑
k/∈C

T̃mjk

 .
In the inequality above, each term in the RHS is independent of δ and (d, τ). Thus, we can find a uniform

bound B1 such that uj∗(â, T̂ ) < B1 for every δ and (d, τ).

Given this bound, we can use the analogue of the argument used in Theorem 1. For all τ , j∗ obtains

a payoff greater than udj∗ − ε. By deviating, j∗ obtains a payoff less than

(1− δ)B1 + δVj∗(w(j∗, 0)) = (1− δ)B1 + δ
[
(1− δL(δ))vj(aj) + δL(δ)uj

∗

j∗

]
By the exact same argument as in Theorem 1, this one-shot deviation is unprofitable for j∗ and hence,

for coalition C if δ is sufficiently high.

Stability in states of the form w(i, τ): Suppose coalition C 6= ∅ blocks, leading to the outcome

(â, C, T̂ ), We prove that at least one player in C does not find this one-shot deviation to be profitable.

There are two cases to consider:

Case 1: i ∈ C and ui(â, T̂ ) ≤ vi. In this case, the convention selects player i to be the scapegoat. She

finds this deviation to be unprofitable if

(1− δL(δ)−τ )vi(ai) + δL(δ)−τuii ≥ (1− δ)vi + δ(1− δL(δ))vi(ai) + δL(δ)+1uii. (14)

which follows from Inequality (12) for sufficiently high δ (using steps identical to the analogous argument

in Theorem 1).

Case 2: Either i /∈ C or ui(â, T̂ ) > vi. In this case it cannot be that C = {i} because otherwise

ui(â, T̂ ) ≤ vi. The convention then punishes j∗ = arg minj∈C\{i}{uj(â, T̂ ) − vj(ai)}. Denote C\{i} by
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C ′. It follows that

uj∗(â, T̂ )− vj∗(ai) ≤
1

|C ′|

[ ∑
j∈C′

uj(â, T̂ )−
∑
j∈C′

vj(ai)
]

=
1

|C ′|

[ ∑
j∈C′∪{i}

uj(â, T̂ )−
∑

j∈C′∪{i}

vj(ai) + vi(ai)− ui(â, T̂ )
]

=
1

|C ′|

[ ∑
j∈C′∪{i}

uj(â, T̂ )−
∑

j∈C′∪{i}

vj(ai)
]

+
1

|C ′|

[
vi(ai)− ui(â, T̂ )

]
. (15)

Furthermore, ∑
j∈C′∪{i}

uj(â, T̂ )−
∑

j∈C′∪{i}

vj(ai) ≤ max
a∈A

∑
j∈C′∪{i}

vj(a)−min
a∈A

∑
j∈C′∪{i}

vj(a). (16)

The inequality above follows since in the outcome (â, C, T̂ ), all players outside of C ′ ∪ {i} are following

the recommendation from automaton state w(i, τ) and making zero transfers.

Finally, if i /∈ C then ui(â, T̂ ) ≥ mina∈A vi(a), since player i is following the recommendation from

automaton state w(i, τ) and makes zero outgoing transfers in the outcome (â, C, T̂ ); otherwise if i ∈ C
then ui(â, T̂ ) > vi. In either case,

vi(ai)− ui(â, T̂ ) ≤ vi(ai)−min{vi,min
a∈A

vi(a)} (17)

Plugging inequalities (16) and (17) into inequality (15), we have

uj∗(â, T̂ )− vj∗(ai) ≤
1

|C ′|

max
a∈A

∑
j∈C′∪{i}

vj(a)−min
a∈A

∑
j∈C′∪{i}

vj(a)− vi(ai) + min{vi,min
a∈A

vi(a)}


≡ b2(i, C ′)

As a result, across all states w(i, τ) and all possible blocking coalitions C 6= ∅, we have

uj∗(â, T̂ ) ≤ max
i∈N,C′⊆N\{i},C′ 6=∅

b2(i, C
′)

In the inequality above, all the terms in the RHS are independent of δ. Therefore, we can find a uniform

bound B2 such that uj∗(â, T̂ ) < B2 for every δ. We use these steps to show that player j∗ finds this

one-shot deviation to be unprofitable. Player j∗ does not benefit from this deviation if

(1− δL(δ)−τ )vj∗(ai) + δL(δ)−τuij∗ ≥ (1− δ)B2 + δ(1− δL(δ))vj∗(aj∗) + δL(δ)+1uj
∗

j∗ . (18)

This inequality is satisfied for sufficiently high δ, and the argument follows the same steps as that of the

analogous part of Theorem 1.
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B.3 Proof of Theorem 4 on p. 19

Part 1: Under secret transfers, for every δ ≥ 0, every stable convention implements payoffs only within

the efficient β-core.

We first argue that for every stable convention σ, an efficient alternative must be chosen at every history:

a(h|σ) ∈ A at every h ∈ H. Suppose otherwise that â ≡ a(ĥ|σ) /∈ A for some history ĥ, so that∑
i∈N vi(â) < maxa∈A

∑
i∈N vi(a). It follows that∑

i∈N
Ui(ĥ|σ) = (1− δ)

∑
i∈N

vi(â) + δ
∑
i∈N

Ui(ĥ, â, ∅, T̂ |σ)

< (1− δ) max
a∈A

∑
i∈N

vi(a) + δ
∑
i∈N

Ui(ĥ, â, ∅, T̂ |σ)

≤ (1− δ) max
a∈A

∑
i∈N

vi(a) + δmax
a∈A

∑
i∈N

vi(a)

= max
a∈A

∑
i∈N

vi(a)

= vN

where the strict inequality follows from the definition of â, the weak inequality follows from the total

experienced payoff being the total generated payoff in every period, and the final equality follows from

Assumption 2. This strict inequality contradicts Inequality (10) established in the proof of Theorem 3.

Having argued that a stable convention must choose actions in A at every history, the remainder of

the proof is identical, but replacing A with A.

Part 2: If the strict efficient β-core is non-empty, then for every payoff profile u ∈ Bs, there is a δ < 1

such that for every δ ∈ (δ, 1), there exists a stable convention with a discounted payoff equal to u.

Fix any payoff vector uN ∈ Bs. Below we construct “coalition-specific” punishments for all coalitions but

the grand coalition.

Lemma 6. There exist coalition-specific punishments {uC : C ∈ C\{N}} in Bs such that∑
i∈C

uCi <
∑
i∈C

uNi (19)

and for any coalition C ′ 6= C ∑
i∈C

uCi <
∑
i∈C

uC
′

i (20)

Proof. For any coalition C ∈ C\{N}, consider the vector uC defined by

uCi =

uNi − ε
|C| i ∈ C

uNi + ε
|N\C| i /∈ C

Compared to the payoff vector uN , in uC every player in C is charged equally, with a total summing up
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to ε; by contrast, players outside of C are paid equally, with a total of amount also summing up to ε.

The ε may be set sufficiently small to ensure all uC ’s are in Bs.
We show that these vectors satisfy inequalities (19) and (20). By construction,

∑
i∈C u

C
i =

∑
i∈C u

N
i −

ε <
∑

i∈C u
N
i , so Inequality (19) is satisfied. To verify (20), consider two coalitions C,C ′ ∈ C\{N} with

C 6= C ′. Coalition C can be partitioned as the union of two components C = (C\C ′) ∪ (C ∩ C ′). So∑
i∈C

uC
′

i =
∑

i∈C\C′
uC
′

i +
∑

i∈C∩C′
uC
′

i

=

 ∑
i∈C\C′

uNi +
|C\C ′|
|N\C ′|

ε

+

[ ∑
i∈C∩C′

uNi −
|C ∩ C ′|
|C ′|

ε

]
(21)

=
∑
i∈C

uNi −
[
|C ∩ C ′|
|C ′|

− |C\C
′|

|N\C ′|

]
ε

>
∑
i∈C

uNi − ε (22)

=
∑
i∈C

uCi

Equality (21) follows since compared to uN , uC
′

gives every player outside of C ′ an extra payoff of ε
|N\C| ,

while lowering the payoff of every player inside C ′ by ε
|C′| . Since C 6= C ′, either C\C ′ 6= ∅ or C ∩C ′ 6= C ′

must be true; in other words, either |C\C
′|

|N\C′| > 0 or |C∩C
′|

|C′| < 1. In either cases, inequality (22) follows,

which verifies (20).

Using Lemma 6, let {uC : C ∈ C\{N}} be the vector of coalition-specific punishments for uN . Fix

an alternative a ∈ A. Since {uC : C ∈ C} ⊆ U(a), we can find transfer matrices {TC : C ∈ C} such that

u(a, TC) = uC for all C ∈ C.
Let aeC ∈ arg mina∈A maxa′∈EC

∑
i∈C vi(a

′) be an efficient alternative that can be used to minmax

coalition C. Note that by construction,
∑

i∈C vi(a
e
C) ≤ veC . Given the coalition-specific punishments, let

κ ∈ (0, 1) be such that for every κ̃ ∈ [κ, 1], the following is true for every coalition C:

(1− κ̃)
∑
i∈C

vi(a
e
C) + κ̃

∑
i∈C

uiC > veC (23)

For every C ′ 6= C: (1− κ̃)
∑
i∈C′

vi(a
e
C) + κ̃

∑
i∈C′

uCi > (1− κ̃)veC′ + κ̃
∑
i∈C′

uC
′

i . (24)

Inequality (23) implies that in terms of total value, coalition C is willing to bear the cost of
∑

i∈C vi(a
e
i )

with the promise of transitioning into its coalition-specific punishment rather than staying at its minmax.

Inequality (24) implies that every coalition prefers punishing other coalitions than being punished itself.

By an argument identical to that we saw in Theorem 1, there exists a value of κ ∈ (0, 1) such that all the

inequalities above hold for all κ̃ ∈ [κ, 1], i ∈ N and j ∈ N\{i}. Let L(δ) ≡
⌈
log κ
log δ

⌉
where d·e is the ceiling

function. As before, we use the property that limδ→1 δ
L(δ) = κ.

We describe the convention that we use to sustain uN . Let 0 denote the transfer matrix where all

player make zero transfers. Consider the convention represented by the automaton (W,w(N), f, γ), where
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• W ≡
{
w(C) : C ∈ C

}
∪
{
w(C, τ)|C ∈ C\{N}, 0 ≤ τ < L(δ)

}
is the set of possible states;

• w(N) is the initial state;

• f : W → OTU is the output function: for every C ∈ C, f(w(C)) = (a, ∅, TC); for every C ∈ C\{N},
f(w(C, τ)) = (aeC , ∅,0);

• γ : W ×OTU →W is the transition function. For states of the form w(C), the transition is

γ
(
w(C), (a,C ′, T )

)
=

w(C ′, 0) if C ′ /∈ {N}

w(C) otherwise

For states in {w(C, τ)|0 ≤ τ < L(δ)− 1}, the transition is

γ(w(C, τ), (a,C ′, T )) =

w(C ′, 0) if C ′ /∈ {N}

w(C, τ + 1) otherwise

For states of the form w(C,L(δ)− 1), the transition is

γ(w(C,L(δ)− 1), (a,C ′, T )) =

w(C ′, 0) if C ′ /∈ {N}

w(C), otherwise

The convention represented by the above automaton yields payoff profile u0. By construction, the

continuation values in different states, V (·), satisfy:

V (w(C)) = uC , ∀C ∈ C

V (w(C, τ)) = (1− δL(δ)−τ )v(aeC) + δL(δ)−τV (w(C)), ∀C ∈ C, 0 ≤ τ ≤ L(δ)− 1

Next, we check that this automaton representation has no profitable one-shot coalitional deviation for

any C ∈ C. To this end, it suffices to check that for each C ∈ C, no deviation can result in higher total

value for C: if this is true, then it is impossible to make every player i ∈ C better off.

Since deviations by the grand coalition do not change continuation play, and the recommended alter-

natives are always efficient in all possible automaton states, the grand coalition N does not have profitable

deviations. It remains to check that none of the other coalitions have profitable one-shot deviations. This

is the next step.
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Stability in states of the form w(C): Suppose coalition C ′ blocks and the outcome (a′, C ′, T ′) is

realized. The total payoff of C ′ from this outcome satisfies∑
i∈C′

ui(a
′, T ′) =

∑
i∈C′

vi(a
′) +

∑
i∈C′

∑
j∈N\C′

T ′ji −
∑
i∈C′

∑
j∈N\C′

T ′ij

≤
∑
i∈C′

vi(a
′) +

∑
i∈C′

∑
j∈N\C′

T ′ji

≤ max
a∈A

∑
i∈C′

vi(a) + max
C∈C

∑
i∈C′

∑
j∈N\C′

TCji ≡ b1(C ′).

The final inequality follows from players outside of the blocking coalition C ′ making the same transfers as

recommended by the convention, and TC being the transfers that are recommended in automaton state

w(C). As a result, we can find number B1 ≡ maxC′∈C\{N} b1(C
′) that the total stage-game payoff for any

deviation coalition from any automaton state is less than B1. Crucially, B1 does not depend on δ.

Consider a one-shot deviation to (a,C ′, T ) by coalition C ′ ∈ C\{N}. Coalition C ′ has total payoff∑
i∈C′ u

C
i without deviating. By deviating, C ′ obtains a total payoff less than

(1− δ)B1 + δ
∑
i∈C′

Vi(w(C ′, 0)) = (1− δ)B1 + δ

[
(1− δL(δ))

∑
i∈C′

vi(a
e
C′) + δL(δ)

∑
i∈C′

uC
′

i

]

For the deviation to be profitable, the total value for C ′ must be higher. So the one-shot deviation is

unprofitable if the above term is no more than
∑

i∈C′ u
C
i . We prove that this is the case both for C ′ 6= C

and C ′ = C.

First consider C ′ 6= C. Observe that

lim
δ→1

(1− δ)B1 + δ

[
(1− δL(δ))

∑
i∈C′

vi(a
e
C′) + δL(δ)

∑
i∈C′

uC
′

i

]
= (1− κ)

∑
i∈C′

vi(a
e
C′) + κ

∑
i∈C′

uC
′

i <
∑
i∈C′

uC
′

i <
∑
i∈C′

uCi .

It follows that the one-shot coalition deviation is not profitable.

Now suppose that C ′ = C. The deviation payoff being less than
∑

i∈C′ u
C′
i can be re-written as

(1− δ)(B1 −
∑
i∈C′

uC
′

i ) ≤ δ(1− δL(δ))(
∑
i∈C′

uC
′

i −
∑
i∈C′

vi(a
e
C′))

As δ → 1, the LHS converges to 0. Because limδ→1 δ
L(δ) = κ, the RHS converges to (1− κ)(

∑
i∈C′ u

C′
i −∑

i∈C′ vi(a
e
C′)). So the above inequality holds, and therefore, there is no profitable one-shot deviation if

δ is sufficiently high.
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Stability in states of the form w(C, τ): Suppose coalition C ′ blocks and the outcome (a′, C ′, T ′)

is realized. Coalition C ′’s total payoff from this outcome satisfies∑
i∈C′

ui(a
′, T ′) =

∑
i∈C′

vi(a
′) +

∑
i∈C′

∑
j∈N\C′

T ′ji −
∑
i∈C′

∑
j∈N\C′

T ′ij

≤
∑
i∈C′

vi(a
′) +

∑
i∈C′

∑
j∈N\C′

T ′ji

≤ max
a∈A

∑
i∈C′

vi(a) ≡ b2(C ′).

The inequality above follows because, in states w(C, τ), the convention recommends players to make zero

transfers, so there are no incoming transfers from players outside of the blocking coalition C ′. As a result,

we can find number B2 ≡ maxC′∈C b2(C
′) that the total stage-game payoff for any deviating coalition

from any automaton state is less than B2. Note that B2 does not depend on δ. We now prove that no

coalition has a profitable one-shot deviation.

Case 1: C ′ = C. by the definition of aeC , when coalition C blocks the outcome (aeC , ∅,0), its stage-game

payoff cannot exceed veC . As a result, coalition C has no profitable deviation if

(1− δL(δ)−τ )
∑
i∈C

vi(a
e
C) + δL(δ)−τ

∑
i∈C

uCi ≥ (1− δ)veC + δ(1− δL(δ))
∑
i∈C

vi(a
e
C) + δL(δ)+1

∑
i∈C

uCi . (25)

Because
∑

i∈C u
i
C > veC ≥

∑
i∈C vi(a

e
C), it suffices to show that

(1− δL(δ))
∑
i∈C

vi(a
e
C) + δL(δ)

∑
i∈C

uCi ≥ (1− δ)veC + δ(1− δL(δ))
∑
i∈C

vi(a
e
C) + δL(δ)+1

∑
i∈C

uCi .

Re-arranging terms:

(1− δ)(1− δL(δ))
∑
i∈C

vi(a
e
C) + (1− δ)δL(δ)

∑
i∈C

uCi ≥ (1− δ)veC .

Dividing by (1− δ) yields:

(1− δL(δ))
∑
i∈C

vi(a
e
C) + δL(δ)

∑
i∈C

uCi ≥ veC .

Now taking the limit of the LHS as δ → 1 yields Inequality (23), and hence Inequality (25) is true for

sufficiently high δ.

Case 2: C ′ 6= C. Coalition C ′ finds no profitable one-shot deviation to be unprofitable if

(1− δL(δ)−τ )
∑
i∈C′

vi(a
e
C) + δL(δ)−τ

∑
i∈C′

uCi ≥ (1− δ)B2 + δ(1− δL(δ))
∑
i∈C′

vi(a
e
C′) + δL(δ)+1

∑
i∈C′

uC
′

i . (26)

We prove that this inequality is satisfied if δ is sufficiently high. Examining the LHS, observe that for all
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τ such that 0 ≤ τ ≤ L(δ)− 1,

lim
δ→1

[
(1− δL(δ)−τ )

∑
i∈C′

vi(a
e
C) + δL(δ)−τ

∑
i∈C′

uCi

]
= lim

δ→1

[(
1− κ

δτ

)∑
i∈C′

vi(a
e
C) +

κ

δτ

∑
i∈C′

uCi

]
= (1− κ̃)

∑
i∈C′

vi(a
e
C) + κ̃

∑
i∈C′

uCi

for some κ̃ ∈ [κ, 1].31

Examining the RHS of (26), observe that

lim
δ→1

[
(1− δ)B2 + δ(1− δL(δ))

∑
i∈C′

vi(a
e
C′) + δL(δ)+1

∑
i∈C′

uC
′

i

]
= lim
δ→1

[
(1− δL(δ))

∑
i∈C′

vi(a
e
C′) + δL(δ)

∑
i∈C′

uC
′

i

]
= (1− κ)

∑
i∈C′

vi(a
e
C′) + κ

∑
i∈C′

uC
′

i

≤(1− κ)veC′ + κ
∑
i∈C′

uC
′

i ≤ (1− κ̃)veC′ + κ̃
∑
i∈C′

uC
′

i ,

where the first equality follows from taking limits, the second from limδ→1 δ
L(δ) = κ, the first weak

inequality follows from
∑

i∈C′ vi(a
e
C′) ≤ veC′ <

∑
i∈C′ u

C
i , and the second weak inequality follows from

κ̃ ≥ κ and veC′ <
∑

i∈C′ u
C′
i . Since κ̃ ∈ [κ, 1], (24) delivers that (1 − κ̃)

∑
i∈C′ vi(a

e
C) + κ̃

∑
i∈C′ u

C
i is

strictly higher than (1− κ̃)veC′ + κ̃
∑

i∈C′ u
C′
i . This term guarantees that (26) holds for sufficiently high

δ.

B.4 Proof of Theorem 6 on p. 21

The argument comprises several steps. Throughout this argument, we restrict attention to stationary

conventions, i.e., those in which the recommendation is identical across all on-path histories.

First, we construct punishments for each player. Lemmas 7 and 8 establish the existence of stable

conventions σi that guarantee Ui(∅|σi) = 0 for each player i. The case where there is a single veto player

(|D| = 1), analyzed in Lemma 7, requires the discount factor to be sufficiently high. The case where

there are two or more veto players (|D| ≥ 2), analyzed in Lemma 8, applies for every discount factor.

Our second step compares the set of outcomes enforced using the above stable conventions as punish-

ments with those enforced by punishments where every member of a deviating coalition simultaneously

obtains 0. Lemma 9 proves that these two sets are identical.

The third step (Lemma 10) shows, given the earlier two steps, that a stationary convention is stable

if and only if every winning coalition obtains at least (1− δ).
The proof for the secret transfers component of our result follows immediately from Theorem 3. The

proof for the single veto-player case, in both the NTU and perfectly monitored transfers settings, follows

from combining Lemmas 7, 9 and 10. The proof for the multiple veto-player case, in both the NTU and

perfectly monitored transfers settings, follows from combining Lemmas 8 to 10.

31In the second equality, we use κ̃ rather than κ because τ is any integer between 0 and L(δ)− 1.
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Lemma 7. Suppose |D| = 1. When monitoring is perfect either with or without transfers, for every

player i ∈ N , there is a stable convention σi such that Ui(∅|σi) = 0 when δ > n−2
n−1 .

Proof. Without loss of generality, suppose the collegium D consists of player 1. Let â ≡ (1, 0, . . . , 0)

denote the unique alternative in the core, and a ≡ (0, 1
n−1 , . . . ,

1
n−1) denote the alternative that equally

divides the total payoff among all non-veto players.

Case 1: Non-Transferable Utility. Let σ1 be the core-reversion convention that recommends (a, ∅) on

path, and recommends (â, ∅) indefinitely after any history where blocking has occurred. σ1 gives player

1 zero payoff. We will verify that σ1 is stable.

No coalition has profitable deviations once continuation play reverts back to the core. To check

stability on path of play, consider a blocking coalition C. Since the game is non-dictatorial, if C is a

winning coalition, it must be the case that {1} ⊆ C but C 6= {1}. Let j 6= 1 be a player in C and consider

any deviation (a′, C) by C. Since a′j ≤ 1, we have

(1− δ)a′j + δ0 ≤ 1− δ ≤ 1

n− 1

so player j prefers following the convention over deviating and reverting to the core. As a result, no

coalition C has profitable one-shot deviation after any history, so σ1 is stable.

For i 6= 1, let σi be the convention that recommends (â, ∅) after every history. The convention is

stable, and gives each player i 6= 1 zero payoff.

Case 2: Perfectly Monitored Transfers. Let σ1 be the core-reversion convention such that σ1 recommends

(a, ∅,0) on path; suppose blocking (a′, C, T ′) has occurred, σ1 recommends (â, ∅,0) indefinitely afterwards

if u1(a
′, T ′) ≥ 0, but ignores the blocking if instead u1(a

′, T ′) < 0. σ1 gives player 1 zero payoff. We will

verify that σ1 is stable.

No coalition has profitable deviations once continuation play reverts back to the core. To check

stability on path of play, consider a blocking coalition C. Since the game is non-dictatorial, if C is a

winning coalition it must be the case that {1} ⊆ C and C 6= {1}.
Let C be a winning coalition. If u1(a

′, T ′) < 0, since there is no change in continuation value, player 1

finds the deviation unprofitable. If u1(a
′, T ′) ≥ 0, then it must be the case that

∑
j∈C\{1} uj(a

′, T ′) ≤ 1,

so there must be a player j ∈ C\{1} such that uj(a
′, T ′) ≤ 1, and we have

(1− δ)uj(a′, T ′) + δ(0) ≤ 1− δ ≤ 1

n− 1

so player j prefers following the convention over deviating and reverting to the core. As a result, no

coalition C has profitable one-shot deviation after any history, so σ1 is stable.

For i 6= 1, let σi be the convention that recommends (â, ∅,0) after every history. The convention is

stable, and gives each player i 6= 1 zero payoff.

Lemma 8. If |D| ≥ 2, when monitoring is perfect either with or without transfers, for every player

i ∈ N , there is a stable convention σi such that Ui(∅|σi) = 0 for every δ.
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Proof. Without loss of generality, suppose {1, 2} ⊆ D. Let a1 ≡ (1, 0, . . . , 0) and a2 ≡ (0, 1, 0, . . . , 0) be

two alternatives that allocate all payoff to player 1 and 2, respectively. It follows that both a1 and a2 are

in the core.

Case 1: Non-Transferable Utility. Let σ1 be the convention that recommends (a2, ∅) regardless of history;

for all i 6= 1, let σi be the convention that recommends (a1, ∅) regardless of history. Each σi is stable,

and Ui(∅|σi) = 0 for every i ∈ N .

Case 2: Perfectly Monitored Transfers. Let σ1 be the convention that recommends (a2, ∅,0) regardless

of history; for all i 6= 1, let σi be the convention that recommends (a1, ∅,0) regardless of history. Each

σi is stable, and Ui(∅|σi) = 0 for every i ∈ N .

Lemma 9. Suppose the set of payoff profiles from stable conventions is U . For each player i ∈ N , let

ui ≡ minu∈U ui be player i’s smallest possible payoff from stable conventions.

Non-Transferable Utility: let (a, ∅) be a stage-game outcome. Then (a, ∅) can be sustained as the outcome

of a stationary stable convention if and only if for every coalition C and alternative a′ ∈ EC(a), there is

a player i ∈ C such that

(1− δ)vi(a′) + δui ≤ vi(a) (27)

Perfectly Monitored Transfers: let (a, ∅, T ) be a stage-game outcome. Then (a, ∅, T ) can be sustained as

the outcome of a stationary stable convention if and only if for every coalition C, alternative a′ ∈ EC(a),

and transfers T ′C , there is a player i ∈ C such that

(1− δ)ui(a′, [T ′C , T−C ]) + δui ≤ ui(a, T )

Proof. We prove the result for the case of non-transferable utility. The proof for perfectly monitored

transfers uses a similar argument, the only difference being the augmentation of stage-game outcomes

with transfers.

To see the “only if” direction, suppose there exists a coalition C and alternative a′ such that inequal-

ities (27) fails for every i ∈ C. Towards a contradiction, suppose also that there exists a stationary stable

convention σ that sustains (a, ∅). Since σ is a stable convention, it follows that Ui(h|σ) ≥ ui for every

i ∈ C and all h ∈ H. As a result, for every i ∈ C,

(1− δ)vi(a′) + δUi(a
′, C|σ) ≥ (1− δ)vi(a′) + δui > vi(a),

which implies that (a′, C) is a profitable deviation for coalition C, contradicting σ being a stable conven-

tion.

For the “if” direction, Inequality (27) implies that for every coalition C and alternative a′ ∈ EC(a),

there exits a player i∗|(a′,C) and a stable convention σi
∗|(a′,C) such that

(1− δ)vi∗|(a′,C)
(a′) + δUi∗|(a′,C)

(a′, C|σi
∗|(a′,C)) ≤ vi∗|(a′,C)

(a). (28)
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Consider a convention σ that recommends (a, ∅) on path, but switches to σi
∗|(a′,C) if deviation (a′, C)

has occurred. Inequality (28) implies that on path, no coalition can find a deviation that makes every

member better-off. In addition, the fact that σi
∗|(a′,C) is a stable convention for each i∗|(a′,C) ensures that

after any off-path history, no coalition can find deviation that makes every member better-off. Therefore

σ is a stationary stable convention that sustains (a, ∅).

Lemma 10. Suppose there exist stable conventions {σi : i ∈ N} such that Ui(∅|σi) = 0 for all i ∈ N .

Then for every fixed δ, the set of payoff profiles sustainable by stationary stable conventions is UPM (δ).

Proof. Since the game is non-dictatorial, no single player can form a winning coalition. It follows that

vi = 0 for all i ∈ N . For each player i, 0 is i’s smallest possible payoff from all stable conventions

(achieved, in particular, by the stable convention σi).

Case 1: Non-Transferable Utility. By Lemma 9, in order for a payoff profile u to be sustainable by a

stationary stable convention, it is necessary and sufficient that for every winning coalition C ∈ W, there

exist no alternative a′ ∈ EC(a) such that for every i ∈ C

(1− δ)a′i + δ · 0 = (1− δ)a′i > ui. (29)

Note that for every winning coalition C, this is true if and only if∑
i∈C

ui ≥
∑
i∈C

(1− δ)a′i = 1− δ

for all a′i ∈ EC(a). To see why, note that EC(a) consists of all points on the unit simplex such that∑
i∈C a

′
i = 1, so if

∑
i∈C ui < (1− δ) · 1, there must be a certain a′, representing a division of total payoff

1 among players in C, such that inequality (29) holds for every i ∈ C.

It follows that a payoff profile u is sustainable by a stationary stable convention if and only if∑
i∈C

ui ≥ 1− δ

for every C ∈ W.

Case 2: Perfectly Monitored Transfers. Let (a, ∅, T ) be an outcome that can be sustained by a stationary

stable convention, and u ≡ u(a, T ). By Lemma 9, this is true if and only if for every winning coalition

C ∈ W, there exist no alternative a′ ∈ EC(a) and transfers T ′C such that for every i ∈ C,

(1− δ)
[
a′i +

∑
j∈C

T ′ji −
∑
j∈C

T ′ij

]
+ (1− δ)

∑
j /∈C

Tji + δ · 0 > ui.

In the inequality above, it is without loss to focus on alternative a′ such that
∑

i∈C a
′
i = 1. Let sCi (T ) ≡

(1−δ)
∑

j /∈C Tji denote the total transfer player i receives from outside of coalition C. Note that sCi (T ) ≥
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0. Since
∑

i∈C

[
a′i +

∑
j∈C T

′
ji −

∑
j∈C T

′
ij

]
=
∑

i∈C a
′
i = 1, the above condition is satisfied if and only if

there are no numbers {u′i}i∈C such that
∑

i∈C u
′
i = 1, and for every i ∈ C,

(1− δ)u′i + sCi (T ) > ui.

Following a similar argument as that in Case 1, this is satisfied if and only if for every winning coalition

C, ∑
i∈C

ui ≥ 1− δ +
∑
i∈C

sCi (T ). (30)

Now, since sCi (T ) ≥ 0 for all C, i and T , it follows that u ∈ UPM (δ), so nothing outside of UPM (δ) can

be sustained.

To see everything in UPM (δ) can be sustained, fix any u ∈ UPM (δ) and let a ≡ u be the alternative

identified with u, we will show the outcome (a, ∅,0) can be sustained by a stationary stable convention.

Now, for every winning coalition C, since sCi (0) = 0 for all C and i, it follows that inequality (30) is

satisfied if and only if ∑
i∈C

ui ≥ 1− δ. (31)

Since u ∈ UPM (δ), inequality (31) indeed holds for every winning coalition, so u can be sustained by a

stationary stable convention.

B.5 Proofs of Results in Section 5

B.5.1 Proof of Lemma 1∗

The proof follows identical arguments as the “only if” direction in the proof of Lemma 1, except now we

only focus on coalitions that are in S.

B.5.2 Proof of Theorem 5

Part 1: Given S ⊆ C, for every δ ≥ 0, every stable convention implements payoffs only within D(S).

The proof follows identical arguments as in the proof of Theorem 3, except that now we only focus on

multi-shot deviations by coalitions in S, and make use of Lemma 1∗ instead of Lemma 1.

Part 2: If Ds(S) is non-empty, then for every payoff profile u ∈ Ds(S), there is a δ < 1 such that for

every δ ∈ (δ, 1), there exists a stable convention with a discounted payoff equal to u.

Since Ds(S) is always empty when the grand coalition can make secret transfers, if Ds(S) is non-empty,

it must be that N /∈ S. Fix any payoff vector u0 ∈ Ds(S). Let Ŝ ≡ S ∪N , the first step is to construct

“Ŝ-specific” punishments for all coalitions (and individuals) in Ŝ.

Lemma 6∗. There exist Ŝ-specific punishments {uC : C ∈ Ŝ} in Ds(S) such that∑
i∈C

uCi <
∑
i∈C

u0i
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and for any C ′ 6= C ∑
i∈C

uCi <
∑
i∈C

uC
′

i

Proof. The argument uses the same construction as in Lemma 6, except here the payoff vectors are only

constructed for coalitions and players in Ŝ.

For every C ∈ Ŝ, let aC ∈ arg mina∈A maxa′∈EC
∑

i∈C vi(a
′) be an alternative that can be used

to minmax C. Note that by construction,
∑

i∈C vi(aC) ≤ vC . Given the Ŝ-specific punishments, let

κ ∈ (0, 1) be such that for every κ̃ ∈ [κ, 1], the following is true for every C ∈ Ŝ:

(1− κ̃)
∑
i∈C

vi(aC) + κ̃
∑
i∈C

uCi > vC (32)

For every C ′ ∈ Ŝ, C ′ 6= C: (1− κ̃)
∑
i∈C′

vi(aC) + κ̃
∑
i∈C′

uCi > (1− κ̃)
∑
i∈C′

vi(aC′) + κ̃
∑
i∈C′

uC
′

i . (33)

Inequality (32) implies that in terms of total value, coalition C is willing to bear the cost of
∑

i∈C vi(aC)

with the promise of transitioning into its coalition-specific punishment rather than staying at its minmax.

Inequality (33) implies that every coalition prefers punishing other coalitions than being punished itself.

By an argument identical to that we saw in Theorem 1, there exists a value of κ ∈ (0, 1) such that all the

inequalities above hold for all κ̃ ∈ [κ, 1], i ∈ N and j ∈ N\{i}. Let L(δ) ≡
⌈
log κ
log δ

⌉
where d·e is the ceiling

function. As before, we use the property that limδ→1 δ
L(δ) = κ.

Since Ds(S) ⊆ U†IR, by Lemma 5, there exist payoff vectors {ũ1, . . . , ũM} ⊆ U(a) ∪ U(a) such that

Ds(S) ⊆ co(ũ1, . . . , ũM ), where ũm = u(ãm, T̃m) for some alternative ãm ∈ {a, a} and transfers matrix

T̃m for each m = 1, . . . ,M . Lemma 2 then guarantees that for any ε > 0, there exists δ ∈ (0, 1) such

that for all δ ∈ (δ, 1), there exist sequences
{
{ad,τ , T d,τ}∞τ=0 : d ∈ Ŝ ∪ {0}

}
such that for each d and t,

(1− δ)
∑∞

τ=0 δ
τu(ad,τ , T d,τ ) = ud and

∣∣∣∣ud − (1− δ)
∑∞

τ=t δ
τu(ad,τ , T d,τ )

∣∣∣∣ < ε. We fix an ε such that

ε < (1− κ) min

{
min

d∈Ŝ,d′∈Ŝ∪{0},d′ 6=d

(∑
i∈d

ud
′
i −

∑
i∈d

udi
)
,min
d∈Ŝ

∑
i∈d

udd − vd

}
,

and given that ε, consider δ exceeding the appropriate δ.

We now describe the convention that we use to sustain u0. Let 0 denote the transfer matrix where

all players make no transfers. Consider the convention represented by the automaton (W,w(0, 0), f, γ),

where

• W ≡
{
w(d, τ)|d ∈ Ŝ ∪ {0}, τ ≥ 0

}
∪ {w(C, τ)|C ∈ Ŝ, 0 ≤ τ < L(δ)} is the set of possible states;

• w(0, 0) is the initial state;

• f : W → OTU is the output function, where f(w(d, τ)) = (ad,τ , ∅, T d,τ ) and f(w(C, τ)) = (aC , ∅,0);
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• γ : W ×OTU →W is the transition function. For states of the form w(d, τ), the transition is

γ
(
w(d, τ), (a,C ′, T )

)
=


w(C ′, 0) if C ′ ∈ Ŝ

w(j∗, 0) if C ′ ∈ C\Ŝ, j∗ = arg minj∈C′{uj(a, T )− ud,tj }

w(d, τ + 1) if C ′ = ∅

For states of the form {w(i, τ)|0 ≤ τ < L(δ)− 1} where i ∈ N , the transition is

γ(w(i, τ), (a,C ′, T )) =



w(C ′, 0) if C ′ ∈ Ŝ

w(j∗, 0) if {C ′ ∈ C\Ŝ} ∩
(
{ui(a, T ) > vi} ∪ {i /∈ C ′}

)
j∗ = arg minC′\{i}{uj(a, T )− vj(ai)}

w(i, 0) if {C ∈ C\Ŝ} ∩ {ui(a, T ) ≤ vi} ∩ {i ∈ C ′}

w(C, τ + 1) if C ′ = ∅

For states of the form {w(C, τ)|0 ≤ τ < L(δ)− 1} where C ∈ S, the transition is

γ(w(C, τ), (a,C ′, T )) =


w(C ′, 0) if C ′ ∈ Ŝ

w(j∗, 0) if C ′ ∈ C\Ŝ, j∗ = arg minj∈C′{uj(a, T )}

w(C, τ + 1) if C ′ = ∅

For states of the form w(C,L(δ)− 1), the transition is

γ(w(C,L(δ)− 1), (a,C ′, T )) =

γ(w(C, 0), (a,C ′, T )) if C ′ 6= ∅

w(C), if C ′ = ∅

The convention represented by the above automaton yields payoff profile u0. By construction, the

continuation values in different states, V (·), satisfy:

V (w(C)) = uC , ∀C ∈ Ŝ

V (w(C, τ)) = (1− δL(δ)−τ )v(aeC) + δL(δ)−τV (w(C)), ∀0 ≤ τ ≤ L(δ)− 1, C ∈ Ŝ

Stability in states of the form w(d, τ): Depending on whether or not the blocking coalition can

make secret transfers, there are two cases to consider.

Case 1: C ′ ∈ C\Ŝ. Suppose the outcome (â, C ′, T̂ ) is realized, then the convention punishes player

j∗ = arg minj∈C′{uj(â, T̂ ) − ud,τj }. Following the same argument as in the proof of Theorem 2, this

one-shot deviation is unprofitable for j∗ and hence, for coalition C ′ if δ is sufficiently high.
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Case 2: C ′ ∈ Ŝ. The convention punishes coalition C ′. Since all T d,τ are drawn from {T̃m}Mm=1, we have∑
i∈C′

ui(â, T̂ ) ≤ max
a∈A

∑
j∈C

vj(a) + max
1≤m≤M

∑
j∈C

∑
k/∈C

T̃mjk .

In the inequality above, each term in the RHS is independent of δ and (d, τ). Thus, we can find a uniform

bound B1 such that the total payoff from deviation for coalition C ′,
∑

i∈C′ ui(â, T̂ ) is less than B1 for

every C ′, δ and (d, τ). Coalition C ′ has total payoff of at least
∑

i∈C′ u
C
i − ε without deviating. By

deviating, C ′ obtains a total payoff less than

(1− δ)B1 + δ
∑
i∈C′

Vi(w(C ′, 0)) = (1− δ)B1 + δ

[
(1− δL(δ))

∑
i∈C′

vi(aC′) + δL(δ)
∑
i∈C′

uC
′

i

]

For the deviation to be profitable, the total value for C ′ must be higher. So the one-shot deviation is

unprofitable if the above term is no more than
∑

i∈C′ u
C
i − ε. We prove that this is the case both for

C ′ 6= C and C ′ = C.

First consider C ′ 6= C. Observe that

lim
δ→1

(1− δ)B1 + δ

[
(1− δL(δ))

∑
i∈C′

vi(aC′) + δL(δ)
∑
i∈C′

uC
′

i

]
= (1− κ)

∑
i∈C′

vi(aC′) + κ
∑
i∈C′

uC
′

i <
∑
i∈C′

uC
′

i <
∑
i∈C′

uCi − ε

The last inequality above follows from the definition of ε. It follows that the one-shot coalition deviation

is not profitable for C ′.

Now suppose that C ′ = C. The deviation payoff being less than
∑

i∈C′ u
C′
i can be re-written as

(1− δ)(B1 −
∑
i∈C′

uC
′

i ) + ε ≤ δ(1− δL(δ))(
∑
i∈C′

uC
′

i −
∑
i∈C′

vi(aC′))

As δ → 1, the LHS converges to ε. Because limδ→1 δ
L(δ) = κ, the RHS converges to (1− κ)(

∑
i∈C′ u

C′
i −∑

i∈C′ vi(aC′)). By the definition of ε, the above inequality holds, and therefore, there is no profitable

one-shot deviation if δ is sufficiently high.

Stability in states of the form w(i, τ) where i ∈ N : If C ′ ∈ C\Ŝ, we can verify that such

deviations are not profitable using the same arguments as in the proof of Theorem 2. If C ′ ∈ Ŝ, then the

same arguments as in the proof of Theorem 4 apply, except that instead of aeC (or aeC′), coalitions are

minmaxed using aC (or aC′).

Stability in states of the form w(C, τ) where C ∈ S: Again, there are two cases to consider.

Case 1: C ′ ∈ Ŝ. The same arguments as in the proof of Theorem 4 applies, except that instead of aeC (or

aeC′), coalitions are minmaxed using aC (or aC′).

Case 2: C ′ ∈ C\Ŝ. Suppose the outcome (â, C ′, T̂ ) is realized. The convention punishes j∗ = arg minj∈C′{uj(â, T̂ )}.
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It follows that

uj∗(â, T̂ ) ≤ 1

|C ′|

[ ∑
j∈C′

uj(â, T̂ )
]
≤ 1

|C ′|

[ ∑
j∈C′

vj(â)
]
≤ 1

|C ′|

[
max
a∈A

∑
j∈C′

vj(a)
]
≡ b2(C ′).

The first inequality above follows since the minimum among any numbers is less than their average; the

second inequality follows because when C ′ blocks, all players outside of C ′ are following the recommen-

dation from the convention and making zero transfers, so the total value of C ′ cannot be higher than the

total utility generated from â.

Define B2 ≡ maxC′∈C b2(C
′), so uj∗(â, T̂ ) < B2 for all C ′ and δ. B2 provides a bound on the payoff

obtained by j∗ when C ′ deviates. Player j∗ does not benefit from this deviation if

(1− δL(δ)−τ )vj∗(aC) + δL(δ)−τuCj∗ ≥ (1− δ)B2 + δ(1− δL(δ))vj∗(aj∗) + δL(δ)+1uj
∗

j∗ .

In addition, since C ∈ S and j∗ ∈ N , it must be that C 6= j∗. The inequality above is satisfied for

sufficiently high δ, and the argument follows the same steps as that of the analogous part of Theorem 1.

B.6 Existence of Payoff Set for Efficient β-Core

The following result helps provide necessary and sufficient conditions for the non-emptiness of Bs and

Ds(S).

Proposition 1. Let (N,φ) be a characteristic function game. The set

Λ ≡

{
u ∈ Rn :

∑
i∈N

ui = φ(N),
∑
i∈C

ui > φ(C) for all C ∈ C\{N}

}

is non-empty if and only if for every set of weights
{

0 ≤ λC ≤ 1 : C ∈ C\{N}
}

such that

∀i :
∑

C∈C\{N},i∈C

λC = 1

the following condition holds: ∑
C∈C\{N}

λC φ(C) < φ(N)

Proposition 1 is analogous to the Bondareva-Shapley Theorem (Peleg and Sudhölter 2007) but uses

strict rather than weak inequalities. It allows us to determine whether Λ is empty by solving the following

linear programming problem:

max
∑

C∈C\{N}

λCφ(C)

s.t. 0 ≤ λC ≤ 1 ∀C ∈ C\{N}∑
C∈C\{N},i∈C

λC = 1 ∀i ∈ N
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The set Λ is nonempty if and only the value of the program above is strictly less than φ(N).

To determine whether Bs is empty, one can apply Proposition 1 by setting φ(N) = maxA
∑

i∈N vi(a),

and φ(C) = veC for every C ∈ C\{N}. Similarly for Ds(S), we can set φ(N) = maxA
∑

i∈N vi(a),

φ(C) = vC for all C ∈ S, and φ(C) =
∑

i∈C vi for all C /∈ S ∪ {N}.

B.6.1 Preliminaries

To prove Proposition 1, we use a variant of Motzkin’s Theorem of the Alternative. We first state the

original result in Lemma 11 (see Chapter 2.4 of Mangasarian 1994) and then prove the variant that we

need in Lemma 11∗ below. For notational clarity, we use bold capital letters (A) to denote matrices, bold

lowercase letters (x) for vectors, and plain lowercase letters (x) for numbers. We use x > 0 to denote

xi > 0 for all i, and x ≥ 0 to denote xi ≥ 0 for all i.

Lemma 11. (Motzkin’s Theorem of the Alternative) Let A 6= 0, B, and D be given matrices.

Then either

Ax > 0, Bx ≥ 0, Dx = 0 has a solution x

or {
ATw + BTy + DTz = 0

w ≥ 0, w 6= 0, z ≥ 0
has a solution w,y, z

but never both.

While Lemma 11 deals with the solvability of systems of homogeneous linear inequalities, for our

purpose, Lemma 11∗ deals with the solvability of systems of non-homogeneous linear inequalities.

Lemma 11∗. Let A 6= 0 and D be given matrices. Then either

Ax > b, Dx = d has a solution x (I)

or {
ATy + DTz = 0,y ≥ 0 with

bTy + dTz > 0 or
(
bTy + dTz = 0 and y 6= 0

) has a solution y, z (II)

but never both.

Proof. Letting x = u/t where t > 0, statement (I) above is equivalent to
Au− tb > 0

t > 0

Du− td = 0

has a solution u, t

or 

[
A −b
0 1

][
u

t

]
> 0

[
D −d

] [u
t

]
= 0

has a solution

[
u

t

]
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Applying Lemma 11 to the system above, we have that statement (I) is mutually exclusive to
[
AT 0

−bT 1

]
ỹ +

[
D

−dT

]
z = 0

ỹ ≥ 0, ỹ 6= 0

has a solution ỹ, z

where ỹ = (y, y∗) (note that y∗ is a number). This is equivalent to
ATy + DTz = 0

bTy + dTz = y∗

y ≥ 0; y∗ ≥ 0; and y, y∗ not both equal to 0

has a solution y, y∗, z

which can be further simplified to{
ATy + DTz = 0,y ≥ 0 with

bTy + dTz > 0 or
(
bTy + dTz = 0 and y 6= 0

) has a solution y, z

This is statement (II), and thus completes the proof.

B.6.2 Proof of Proposition 1

For every C ∈ C\{N}, let χC denote the n-dimensional row vector consisting of 0’s and 1’s, with the i-th

entry being 1 if and only if i ∈ C. The non-emptyness of Λ is equivalent to the solvability of the following

system of linear inequalities:


...

χC
...




x1

x2

x3
...

xn


>


...

φ(C)
...

 (34)

and

[
1 1 1 · · · 1

]


x1

x2

x3
...

xn


= φ(N) (35)

By Lemma 11∗, it follows that the solvability of inequalities (34) and (35) is mutually exclusive to the

existence of numbers µ ∈ R and {γC ≥ 0 : C ∈ C\{N}} that satisfy (36) and (37) below:

∀i :
∑

C∈C\{N},i∈C

γC = µ (36)
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

∑
C∈C\{N}

γCφ(C) > µφ(N)

or∑
C∈C\{N}

γCφ(C) = µφ(N) with γC 6= 0 for some C

(37)

In the equations above, (36) implies that µ ≥ 0. However µ cannot be 0, for otherwise (36) would

imply that all γC ’s are zero, making (37) impossible. Define λC ≡ γC/µ. It follows that Λ is non-empty

if and only if there does not exist numbers {λC ≥ 0 : C ∈ C\{N}} that satisfy

∀i :
∑

C∈C\{N},i∈C

λC = 1 (38)

and 

∑
C∈C\{N}

λCφ(C) > φ(N)

or∑
C∈C\{N}

λCφ(C) = φ(N) with λC 6= 0 for some C

(39)

Since (38) already implies λC 6= 0 for some C, (39) can be simplified, and Λ is non-empty if and only if

there are no numbers {λC ≥ 0 : C ∈ C\{N}} that satisfy
∀i :

∑
C∈C\{N},i∈C

λC = 1

∑
C∈C\{N}

λCφ(C) ≥ φ(N)

In other words, any numbers {λC ≥ 0 : C ∈ C\{N}} that satisfy
∑

C∈C\{N},i∈C λC = 1 for all i must

at the same time satisfy
∑

C∈C\{N} λCφ(C) < φ(N), which completes the proof.

B.7 Communicating about Secret Transfers

In this section, we investigate whether communication rounds can be added to the game to elicit infor-

mation about secret transfers from members of a blocking coalition and use that information to deter

deviations. We consider a tractable variant of this problem, following approaches to study communica-

tion in repeated games with private monitoring (Compte 1998; Kandori and Matsushima 1998). Suppose

that each player can privately observe only the transfers that are sent or received by herself, but can

communicate publicly at the end of each period. We consider “semi-public conventions” where behavior

across periods conditions only on the publicly observable history, but that within a period can condition

on private information. We show that the analogue of a one-shot deviation principle (Lemma 1) applies,

which generates the same coalitional payoff guarantee.

Let us describe the game. At each period t, players first choose alternatives and transfers, as in our

baseline game. Each player then chooses a publicly observed message mi ∈M, where the set of messages
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is sufficiently rich to describe all potential transfers (M ⊇ T ). Let Mn denote the space of all feasible

profiles of messages m = (m1, . . . ,mn). Messages are communicated simultaneously.

The set of public outcomes at the end of each period isOTUp ≡
{
o = (a,C,m)|a ∈ A,C ∈ C,m ∈Mn

}
.

The set of public histories is the set of finite sequences of public outcomes Hp ≡ ∪∞t=0(OTUp )t. For each

player i and transfers matrix T , let Ii(T ) ≡ {Tjk|j = i or k = i} denote the transfers in T that are paid

out or received by player i, and let Ii ≡
{
Ii(T )|T ∈ T

}
denote the set of all possible Ii(T ). Player i’s

semi-public histories are elements in Hi ≡ Hp × (A× C × Ii).

Definition 9. A semi-public convention σ is a collection of mappings {σp} ∪ {σi}ni=1, where σp : Hp →
A× C × T is the public component of the convention, and σi : Hi →M is the private reporting strategy

for player i.

When defining coalitional deviations, a coalition C when blocking can choose any a′ in EC(a), change

its transfer schedule to any T ′C , and send any profile of messages mC = ×i∈Cmi. Given players’ private

reporting strategies {σi}ni=1, if a coalition C blocks after public history h ∈ Hp choosing alternative a′ and

transfers T ′C = [T ′ij ]i∈C,j∈N , we use m−C(h, a, T ′C |σ−C) ≡ ×i/∈Cσi
(
h, a′, C, Ii

[
T ′C , T−C(h|σp)

])
to denote

the resulting public messages from players outside of the blocking coalition.

Definition 10. A semi-public convention σ = {σp}∪ {σi}ni=1 is stable if for every public history h ∈ Hp,
there exists no coalition C, alternative a′ ∈ EC(a(h|σ)), transfers T ′C = [T ′ij ]i∈C,j∈N , and messages

m′C = ×i∈Cm′i, such that

For every i ∈ C: (1− δ)ui
(
a′,
[
T ′C , T−C(h|σp)

])
+ δUi

(
h, a′, C,

[
m′C ,m−C(h, a, T ′C |σ−C)

] ∣∣∣σp) > Ui(h|σp)

We can analogously define a coalition’s multi-shot deviation from a semi-public convention as we did

in Section 4.

Definition 11. A multi-shot deviation by coalition C from a semi-public convention σ = {σp} ∪ {σi}ni=1

is a distinct collection of mappings σ′ = {σ′p} ∪ {σ′i}ni=1 such that

1. For any public history h ∈ Hp where σ′(h) = (a′, C ′, T ′) 6= σ(h), it must be that C ′ = C, a′ ∈
EC(a(h|σ)) and T ′−C = T−C(h|σ).

2. For all i /∈ C, σ′i = σi: players outside C follow their original reporting strategy.

A multi-shot deviation σ′ by coalition C is profitable if there exists a public history h such that Ui(h|σ′) >
Ui(h|σ) for all i ∈ C.

Note that the analogue of Lemma 1 applies in this setting: if a coalition has a profitable multi-shot

deviation (including at the communication stage), then it has a profitable one-shot deviation.

Lemma 12. A semi-public convention σ is stable if and only if no coalition has a profitable multi-shot

devaition.

For brevity, we do not write the proof below but the argument is identical to that of Lemma 1.

Therefore, Theorem 3 continues to apply: in any stable semi-public convention, every coalition must

achieve payoffs of at least its coalitional minmax.
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