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Abstract

Which social norms and networks maximize cooperation in bilateral relationships?
We study a network of players in which each link is a repeated bilateral partnership
with two-sided moral hazard. The obstacle to community enforcement is that each
player observes the behavior of her partners in their partnerships with her, but not
how they behave in other partnerships. We introduce a new metric for the rate
at which information diffuses in a network, which we call viscosity, and show that it
provides an operationalmeasure for how conducive a network is to cooperation. We
prove that clique networks have the lowest viscosity and that the optimal equilibrium
of the clique generates more cooperation and higher average utility than any other
equilibrium of any other network. This result offers a strategic foundation for the
perspective that tightly knit groups foster the most cooperation.
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1 Introduction
Motivation: A large and recent literature emphasizes the role of networks in informal
enforcement, describing how the network influences the extent to which a firm can trust
its workers to exert effort or deliver goods, a trader can trust a partner to be honest, or
a community can share risk. The longstanding view is that groups that are more “so-
cially connected” or “tightly knit” have more powerful social incentives and generate the
greatest cooperation.1 The logic is intuitive: a tightly knit network diffuses information
quickly and effectively so that if a player shirks on one of her partners, her other partners
come to learn of it. Faster diffusion generates stronger social incentives, and thus each
bilateral partnership can use this “social collateral” to enhance cooperation. Yet this pow-
erful logic has lacked a strategic framework in which this mechanism is transparent. Our
motivation is to develop strategic foundations for the informational role of networks in
supporting cooperation in bilateral relationships.

We study a networked society in which each link is an ongoing bilateral partnership
with two-sidedmoral hazard. Each partnershipmeets at exponentially distributed arrival
times to play a prisoners’ dilemma at stakes that it chooses. Higher stakes increase coop-
eration payoffs for the partnership but increase the temptation to shirk even faster—and
thus require stronger incentives to preserve cooperation. Two partners can cooperate at
modest stakes using bilateral grim trigger strategies between them, but involving other
members of the community in their enforcement arrangement enables them to coop-
erate at higher stakes, using rewards and punishments in other relationships to enforce
cooperation in their own. This is the essence of community enforcement.

Yet, community enforcementmust overcome the obstacle of privatemonitoring: each
player knows what transpires within her own partnerships, but does not observe how her
partners interact with others, and so she lacks direct access to information that would en-

1Within sociology, see Festinger, Schachter, and Back (1948), Granovetter (1985), Coleman (1988),
Raub andWeesie (1990), and Granovetter (2005) for a survey. Within economics, the impact of social con-
nectedness and networks on economic behavior is highlighted by Glaeser, Laibson, and Sacerdote (2002),
and features prominently in discussions of risk-sharing (Besley, Coate, and Loury 1993; Udry 1994; Bloch,
Genicot, and Ray 2008; Ambrus, Möbius, and Szeidl 2010), and trading without enforcement (McMillan
and Woodruff 1999; Dixit 2003).
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able her to reward or punish her partners for what they have done in other relationships.
The social network can mitigate this difficulty, since each link is not only a productive
relationship, but also a conduit for information. For a fixed level of patience, which net-
works support more cooperation and why?

Preview of results: We offer a partial answer to this difficult question. Restrict atten-
tion to all networks in which each player has at most d partnerships, and to all Nash
equilibria on these networks in which behavior is stationary on the equilibrium path
(such equilibria may feature rich non-stationary punishments). Our main result is that
the optimal network is composed of disjoint islands of d + 1 players that are completely
connected; i.e., cliques of degree d.

More precisely, we prove in Theorem 1 that there exists a perfect Bayesian equilib-
rium on the clique of degree d that attains a weakly higher utilitarian average payoff than
any Nash equilibrium of any network in which no player has more than d partnerships.
The comparison is sharper if we restrict attention to equilibria in which players always
work on the equilibrium path, i.e. mutual effort equilibria: the perfect Bayesian equi-
librium that we construct on the clique is unanimously preferred to any mutual effort
Nash equilibrium of any network within this class. An implication of our result is that if
each player can have degree no greater than d, then it is optimal to organize society into
cliques of degree d (ignoring remainder issues).

We prove analogous results in which we incorporate an explicit cost of linking rather
than a constraint on degrees in the network. The complete network is optimal if linking
costs are linear or concave, and an optimally sized clique is Pareto efficient if linking costs
are strictly convex. All of these network comparisons apply for every level of patience and
frequency of interaction.

Our approach: At first glance, onemay envision that these results involve a “two-stage”
optimization process: for a fixed discount rate, find an optimal equilibrium for each net-
work, and then optimize over the set of networks. Despite being conceptually straightfor-
ward, such an approachwould be technically challenging at both stages. Given ourmoni-
toring assumptions, even finding an optimal equilibrium on a single asymmetric network
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for a fixed discount rate typically requires imposing functional form assumptions and re-
sorting to numerical methods to solve a nonlinear convex optimization problem. Scaling
to a large set of possible networks and every possible discount rate is simply infeasible.

We bypass these difficulties by directly connecting the speed of information diffusion
with the incentives for cooperation, and then comparing that speed across networks.
Consider the incentives that Ann faces in deciding whether to work in her partnership
with Bob in a particular network. The key question that she must ask herself is, were she
to shirk, would she be able to take advantage of her other partners before they punished
her? At the core of her incentives is the speed at which information propagates through
this network from her partnership with Bob back to her other partnerships. Were Ann to
interact with everyone in the network—as in the random matching environment studied
by Kandori (1992) and Ellison (1994)—then a direct “contagion-infection” measure that
describes the travel speed of infection to a random node (e.g., Golub and Jackson 2012)
would be appropriate. But in our setting, Ann interacts only with those with whom she
has partnerships. Thus her strategic calculations hinge on the number, length, and ar-
rangement of paths within the network from Bob that return to her other partners. To
account for these incentives, we derive a new network measure, viscosity, which mea-
sures the discounted probability that Ann will be able to take advantage of another one
of her partners (say, Carol) before Carol can punish Ann.

Although it is intuitive that the speed of transmission should connect to incentives in
any network and in any equilibrium of the repeated game on that network, we face the
challenge that the one-shot deviation principle does not apply in our setting. Accord-
ingly, it would be difficult to assess what are the equilibria for a fixed network, and any
bounds that apply to them. We sidestep this challenge by restricting attention to equilib-
ria that are stationary on the path of play and considering the simplest possible deviation:
shirking forever on every partner. In any such Nash equilibrium, such a deviation cannot
be strictly profitable. Our first key lemma (Lemma 1) formalizes this incentive constraint
and shows that it can be used to generate a fundamental connection between viscosity
and incentives.

The constraint expressed above is loose for many networks. Our second key lemma
(Lemma 2) derives a setting for which it is tight: on a clique there exists an equilibrium in
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which the most profitable deviation is to shirk forever on every player, and moreover this
is the bestNash equilibriumon this network. This equilibrium can be constructed so as to
be not only a Nash equilibrium, but also a perfect Bayesian equilibrium. In particular, we
implement it using contagion strategies (Kandori 1992; Ellison 1994) in which all players
shirk on all their partners once they are off the equilibrium path. On a clique, for all
parameters and without making functional form assumptions, these contagion equilibria
exist; Pareto dominate all other mutual effort equilibria; and, if the stage game satisfies
strategic complementarity, maximize the utilitarian average across equilibria.

Our third key lemma (Lemma 3) shows that the viscosity of any network is bounded
below by the viscosity of the clique with the same maximal degree. Computing viscos-
ity for each network is infeasible, so instead we construct a more fundamental coupling
argument to uniquely map each path that propagates punishment on any arbitrary net-
works with a path on the corresponding clique that propagates it through (weakly) fewer
links. The approach transparently mirrors the powerful intuition that the indirect paths
between Bob and each of Ann’s other partners on the clique are shorter than they could
be on any other network with maximal degree d.

Our main result connects these lemmas to establish that there exists an equilibrium
on the clique that outperforms all equilibria (that are stationary on the equilibrium path)
on non-clique networks bounded by the same degree. We prove that the equilibrium we
identify Pareto dominates allmutual effort equilibria on the non-clique networks by using
the connection between speed and incentives uncovered in the earlier lemmas, and that it
has higher utilitarian average than any non-mutual effort equilibrium (assuming strategic
complementarity) by considering and constructing an “aggregated incentive constraint”
that must be satisfied by all stationary Nash equilibria, including those in which players
may shirk on the path of play.

Broader contributions: Our results on community enforcement and cliques crystal-
lize features of networks and norms that foster cooperation. In most settings, one may
envision that the members of a partnership are the only ones privy to its details, or at
least have the best knowledge of whether each has been cooperating. Even if these rela-
tionships lack payoff interlinkages, strategic interlinkages can be leveraged towards more
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cooperation. Our setting models how these strategic interlinkages and the formation of
a new relationship benefits the community if it completes a cycle, and thereby serves as
a conduit for information.

Our logic builds upon the foundations for community enforcement proposed by Kan-
dori (1992) in his study of cooperation in an anonymous random matching environment.
In applying this logic to our framework (repeated prisoners’ dilemmas on networks with
variable stakes), we emerge with several new conclusions. First, on a clique (or any com-
plete graph), contagion equilibria generally exist and are the best equilibria within a large
class for a fixed discount rate. Second, and more importantly, contagion equilibria can be
shown to dominate equilibria of other networks with a (weakly) lower maximal degree.
Thus, the usefulness of contagion as a tool for understanding the limits of community en-
forcement is not predicated on anonymity in a random matching environment, but can
apply even when players have identities, and interact in an intricate network topology.

In developing these strategic foundations for cooperation in networks, ourwork offers
a concrete measure for how conducive a network is to cooperation. The rich literature
on networks has resorted to an array of network measures—including clustering coeffi-
cients, number of common partners, length of shortest path, differences in eigenvector
centrality—many of which are motivated by questions of information diffusion but lack
foundations in strategic play over time. Viscosity presents a step in the direction of identi-
fying a global measure that accounts for how the structure of paths in a network between
two partners influences their level of cooperation.

Finally, we hope that our model serves as a tractable framework to study community
enforcement. We formulate a variable-stakes framework in which individuals select the
level of cooperation. Apart from the inherent realism in many applications, this environ-
ment generates a convenient metric to compare equilibria and networks, and permits
analytical comparisons of equilibria across these settings. Were we to adopt the standard
approach that fixes stage game payoffs, we would have to indirectly compare networks
by the intervals of discount factors for which cooperative equilibria exist. Variable stakes
have been used in prior work (Ghosh and Ray 1996; Kranton 1996; Watson 1999), but
usually towards a different end: building cooperation over time helps screen out myopic
players. We have found it convenient to use a similar framework to study the incentive
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compatibility of communication in our companion paper (Ali and Miller 2013), and we
believe that a number of community enforcement questions can be tractably posed and
answered in this setting.

Related literature: We build on ideas in both repeated games and networks. We have
already discussed how we build on the idea of contagion first developed by Kandori
(1992), Ellison (1994), and Harrington (1995). Other papers on community enforcement
have also seen these papers to be a point of origin, but have taken different directions:
Takahashi (2010) constructs folk theorems when players are anonymous but limited in-
formation about them is available exogenously, Deb (2011) and Deb and González-Díaz
(2011) construct folk theorems when anonymous players engage in interactions that do
not take the form of prisoners’ dilemmas, and Renault and Tomala (1998) construct folk
theorems for players whose ability tomonitor each other is given by a directed graph. Our
work is orthogonal to these important results, and deriving a folk theorem in our setting
is considerably less interesting: since each partnership in our model shares a common
history, if two partners were arbitrarily patient they could simply use their bilateral rela-
tionship alone to sustain high payoffs, so every feasible and individually rational payoff in
each bilateral relationship can be sustained. Thus, in our setting, the important issue is
not in sustaining cooperation at the limits of patience but to augment bilateral relation-
ships when players are not patient enough to achieve high payoffs on their own.

We now contrast our work with the recent literature on network-based cooperation.
In principle, networks may serve two roles: they determine who can punish a player
for shirking, and how quickly they can find out whom to punish. Most papers focus
on the first of these roles, by studying environments in which monitoring is perfect and
information diffusion has no role (Karlan, Möbius, Rosenblat, and Szeidl 2009; Jackson,
Rodriguez-Barraquer, and Tan 2012). Our work complements these results by focusing
on information propagation as the source of social collateral, in amodel where the history
of each partnership is privately observed by those partners.

The closest paper is Lippert and Spagnolo (2011), who study how network-based co-
operation can pool incentive constraints when relationships that have slack in their bilat-
eral incentive constraints can be used to subsidize other relationships, analogous to the

6



logic of multimarket collusion (Bernheim and Whinston 1990). In their setting, com-
munity enforcement can help some but not all relationships. They describe the benefits
of information propagation, formalizing the insight that indirect paths foster coopera-
tion through the channel of information propagation. However, in their environment,
where stakes are fixed and all pairs of partners meet simultaneously, the main focus is on
whether a network has cycles or takes a tree-like structure. We establish that the insight
of information propagation is considerably more general and powerful: community en-
forcement can benefit all relationships, and networks can be ranked by the speed with
which information propagates back to a player’s local neighborhood.

Another strand of the literature studies local interaction environments in which each
player takes a single action that affects all of his neighbors, rather than interacting with
each of them bilaterally. Haag and Lagunoff (2006) study optimal network design in
this setting and find that cliques optimally separate impatient players from those who are
more patient. Because a player’s action is observed by all of her neighbors in a local inter-
action environment, the force is complementary to information propagation. Recently,
Wolitzky (2012) uses contagion equilibria to support public good provision with private
monitoring, andNava andPiccione (2012) construct “temporary” contagion equilibria for
local interaction games in which players are uncertain about the network structure. Both
papers focus on synchronous local interaction rather than asynchronous bilateral interac-
tions, and offer results and insights that are better suited towards public and community
good applications. By contrast, in our model, each relationship is independent unless
the players introduce strategic interdependence through their own actions, and players
are potentially heterogeneous in the number and scale of their different relationships.
Accordingly, our results speak to the role of network structures in informal contracting,
trade, and bilateral risk-sharing arrangements.

2 Model
Network: A society is a finite set of players,N ≡ {1, . . . ,n}, connected by an undirected
network G, which is a set of cardinality-2 subsets ofN. The network is commonly known
by the players, and is fixed throughout the game. We use {ij} to indicate a link, and define
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∣G∣ to be the number of links in G. Much of our analysis concerns the incentives of each
player on the link: accordingly, we use ij to signify “player i on link {ij}” as distinct from ji
(“player j on link {ij}”).

In networkG, player i’s neighborhood Ni is the set of players to whomplayer i is linked:
Ni ≡ { j ∈ N ∶ {ij} ∈ G}. The cardinality of Ni is player i’s degree, denoted by di. A path
from player i to j is a sequence of nodes i1, . . . , iZ such that {iziz+1} ∈ G for each z ∈
{1, ...,Z − 1}, i1 = i, iZ = j, and each node in the sequence is distinct. A cycle is a sequence
of nodes i1, . . . , iZ−1, i1 such that i1, . . . , iZ−1 is a path, and {i1iZ−1} ∈ G. A network G
is connected if for every two players i and j, there exists a path from player i to j. A
component G′ of G is a maximal connected subnetwork; i.e., if {ij} ∈ G′ then {kℓ} ∈ G′ if
and only if there exists a path in G that contains both {ij} and {kℓ}.

Social interactions: Time is continuous, and players discount payoffs realized at time t
in R+ by the common discount rate r > 0. Each link in the network is governed by
an independent Poisson recognition process with the common rate λ > 0. Whenever
link {ij} is recognized, players i and j engage in a two-stage interaction that occurs in that
instant:

1. Stake selection stage: Players i and j simultaneously propose the stakes at which they
should interact. Player i’s proposal is ϕ̂ij ∈R+. Their stakes are set to the minimum
of their announcements: ϕij = min{ϕ̂ij, ϕ̂ji}.2 We use ϕ ∈ R+ as a generic stakes
parameter when the identities of the players along the link are unimportant.

2. Action stage: Each player simultaneously chooses an action fromA ≡ {work, shirk}.
Their stakes determine the payoffs; higher stakes increase the payoffs from mutual
effort but strengthen the temptation to shirk. Specifically, given stakes ϕ they face
the prisoners’ dilemma in Figure 1.

The “temptation reward” T and the “victim’s penalty” V are smooth functions satisfying
T(0) = V(0) = 0, as well as V(ϕ) > 0 and T(ϕ) > ϕ for all ϕ > 0. Thus if the stakes
are positive, shirking is the strictly dominant action in the stage game for each player.

2Our results do not depend on this functional form; our proofs would apply unchanged if the min
function were replaced with any arbitrary function F ∶ R2

+ → R+ with the property that for every ϕ ∈ R+,
F(ϕ,ϕ) = ϕ.
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Player j
Work Shirk

Player Work ϕ,ϕ −V(ϕ),T(ϕ)
i Shirk T(ϕ),−V(ϕ) 0,0

Figure 1. The prisoners’ dilemma of stakes ϕ

Throughout the paper we assume that the temptation reward is increasing in the follow-
ing manner:

Assumption 1 (Increasing Temptation). T is strictly increasing and strictly convex, with
T ′(0) = 1 and limϕ→∞T ′(ϕ) =∞.

The important implication from Assumption 1 is that T(ϕ)/ϕ—the ratio of the pay-
offs from shirking vs. working while one’s partner works—is close to 1 at low stakes but
increases without bound as the stakes increase. As a consequence, the players require
proportionally stronger incentives to work at higher stakes. We use the specification
T(ϕ) = ϕ + ϕ2 in examples. Allowing players to set the stakes of their relationships is a
key feature of our framework, on which we comment in Section 6.

For some of our results (namely, those that involve equilibria in which players some-
times shirk on the equilibrium path), we also restrict attention to prisoners’ dilemmas in
which the incremental gain from working in the stage game is higher when one’s part-
ner works: this is a condition of supermodularity on the stage game, also referred to as
strategic complementarity.

Definition 1. The stage game satisfies strategic complementarity if V(ϕ) ≥ T(ϕ)−ϕ for
all ϕ > 0.

Strategic complementarity also implies that for any fixed stakes it is utilitarian optimal
for every player to work.

Monitoring and equilibrium: As play unfolds, each player observes only what tran-
spires along his own links, and observes neither themeeting times nor the behavior along
any other links. Therefore this is a game of private monitoring.
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Eachmeeting between twoplayers is an interaction, characterized by the link {ij}t that
was recognized, the time t at which it was recognized, the stakes (ϕ̂t

ij, ϕ̂
t
ji) that players i

and j proposed in the stake selection stage, and the actions (atij,atji) that they chose in the
action stage. A player’s realized utility in the game is her discounted sum of stage game
payoffs. Formally, if she participates in interactions ({ij}tz , tz, ϕ̂tz

ij , ϕ̂
tz
ji ,atzij ,atzji )∞z=1, then her

realized utility is ∑∞z=1 e−rtz ûi(ϕ̂tz
ij , ϕ̂

tz
ji ,atzij ,atzji ), where ûi ∶ R2

+ × {work, shirk}2 → R is the
stage game payoff function shown in Figure 1. Of course, realized utility is unbounded,
since the stage game itself is unbounded. Nonetheless, due to Assumption 1, expected
utility in equilibrium will be bounded from both above and below by incentive compati-
bility constraints for any fixed λ > 0 and r > 0.

For a player i, when one of his links is recognized at time t, his (private) history hti
is a list of all his interactions up to (but not including) time t, along with the link that is
recognized at time t. A history hti is regular if it contains finitely many interactions, none
of which occur simultaneously. We denote the set of player i’s possible regular histories
ending with a recognition of link {ij} at time t as Ht

ij, and write Hij ≡ ⋃t∈[0,∞)Ht
ij and

Hi ≡ ⋃j∈Ni Hij.
Observe that, regardless of the players’ strategies, with probability one the realization

of play is such that every realized link recognition is associated with a regular history for
each partner on that link. Therefore we can without loss of generality ignore behavior
that arises at histories that are not regular, as such behavior does not affect any player’s
expected utility at any of his regular histories. Accordingly, we define a (behavior) strategy
for player i as a function σi = (σS

i , σ
A
i ) such that σS

i ∶ Hi → ∆[0,∞) is his stake-selection
strategy and σA

i ∶ Hi ×R2
+ → ∆A is his action strategy. We define a history to be on the

path of play of σ if it is regular and in the support of σ; we use “on the equilibrium path”
synonymously when σ is or may be an equilibrium. An information set for player i in the
stake selection phase is on the path of play of σ if her associated history hi is on the path
of play; her information set in the action phase of the same interaction is on the path of
play if also the stakes proposals just realized were in the support of σ conditional on hi.
Similarly, an information set is off the path of play if it is associated with a regular history
but is not in the support of σ.

We restrict attention to equilibria that are stationary on the equilibrium path: along
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each link, the partners’ choices lead to the same distribution of stakes and actions at every
history on the equilibrium path.

Definition 2. A strategy profile σ is stationary if for every {ij} ∈ G

1. there exists σS
ij ∈ ∆[0,∞) such that σS

i (h) = σS
ij for every history h ∈ Hij on the path

of play;
2. there exists σA

ij ∶R2
+ →∆A such that σA

i (h, ϕ̂ij, ϕ̂ji) = σA
ij (ϕ̂ij, ϕ̂ji) for every history h ∈

Hij on the path of play of σ and every pair of stakes proposals (ϕ̂ij, ϕ̂ji) ∈ Supp(σS
ij)×

Supp(σS
ji).

Note that the set of feasible deviations for a player is unrestricted, and that behavior
may be non-stationary off the equilibrium path. For the most part we refer to station-
ary equilibria merely as “equilibria,” except in stating formal results where we use the
“stationary” modifier to make clear exactly the scope of the result.

Abusing terminology somewhat, we say that a strategy profile σ is aNash equilibrium
if, for each player i, σi maximizes her expected utility conditional on each of her infor-
mation sets on the equilibrium path.3 A Nash equilibrium is a weak perfect Bayesian
equilibrium if there exists a system of beliefs consistent with Bayesian updating on the
equilibrium path such that, for each player i, σi also maximizes her expected utility con-
ditional on each of her information sets off the equilibrium path. The key element of
weak perfect Bayesian equilibrium is sequential rationality: the requirement to maxi-
mize expected utility at regular histories off the equilibrium path. Observe that Bayesian
updating on the path of play of a stationary strategy profile is unimportant: player i’s
expected continuation utility at any private history on the path of play of a stationary
strategy profile is measurable with respect to the identity of his current partner. More-
over, our results on weak perfect Bayesian equilibrium actually apply regardless of the
system of beliefs (see Lemma 5). Accordingly, we do not indulge in developing notation
for systems of beliefs.

3A more traditional definition would apply to mixed strategies rather than behavior strategies, and con-
dition only on the initial node of the game rather than on each equilibrium-path information set. Such a
definition would allow for non-maximizing behavior at a zero-probability set of regular histories on the
equilibrium path. We adopt this stronger definition to facilitate comparison with perfect Bayesian equilib-
ria.
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For some of our efficiency results, it is useful to distinguish a particular class of equi-
libria that is often focal in applications: those in which players work on the equilibrium
path.

Definition 3. A stationary strategy profile σ is a mutual effort profile if σA
ij (ϕ̂ij, ϕ̂ji) as-

signs probability 1 to work for all (ϕ̂ij, ϕ̂ji) in Supp(σS
ij) × Supp(σS

ji).

A strategy profile σ Pareto dominates another strategy profile σ̃ if no player is worse
off with σ and at least one player is strictly better off. The utilitarian value of a strategy
profile is the average of players’ expected payoffs that it delivers on the path of play.

3 An Example
Webeginwith an example that highlights the essence of our approach. Consider a society
in which each of Ann, Bob, and Carol is connected to the other two players. Suppose that
T(ϕ) = ϕ+ϕ2, and consider equilibria in which all pairs coordinate on the same stakes at
every on-path history.

Ann

Carol

Bob

Figure 2. A triangle network

Bilateral enforcement: Consider the benchmark of bilateral strategies, in which be-
havior is strategically independent across links. Effectively, each pair plays an infinitely
repeated prisoners’ dilemma in isolation. Nash reversion is an optimal punishment in
this class of strategies: consider strategies in which both players in a partnership work if
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and only if neither of them has ever deviated. Under these strategies, when Ann meets
Bob, her incentive constraint to work along the equilibrium path is

ϕ + ϕ2 ≤ ϕ + ∫
∞

0
e−rtλϕdt.

The highest stakes at which working is incentive compatible is λ/r.

Instantaneous public monitoring: In contrast to bilateral enforcement, suppose that
everyone in society observes all the meetings, stakes announcements, and actions along
every link in real time. Then if Ann shirks on Bob, it immediately becomes common
knowledge among Ann, Bob, and Carol that continuation play is off the equilibrium path.
In this alternative environment, consider an equilibrium in which once anyone shirks,
everyone subsequently shirks perpetually. Ann’s incentive constraint when she meets
Bob along the equilibrium path is:

ϕ + ϕ2 ≤ ϕ + 2∫
∞

0
e−rtλϕdt.

The highest stakes at which working is incentive compatible are 2λ/r, doubling what is
attainable under bilateral enforcement. Ann is willing to cooperate with Bob at higher
stakes because of the immediate punishment that she receives from Carol if she shirks
on Bob. This benchmark is infeasible in our environment because each player observes
only the activity along his or her own links, so Carol cannot instantaneously learn that
Ann should be punished.

Contagion strategies: In contagion strategies, a player works if all of his partners have
always worked in the past; otherwise he shirks. If Ann shirks on Bob, Bob will shirk
on Carol at their next interaction, and from then on Carol will shirk on both Ann and
Bob. Ann’s only chance for further gain is to meet Carol before Carol becomes “infected.”
According to her strategy, Ann should then shirk in her next interaction with Carol, so
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her cooperation phase incentive constraint is

ϕ + ϕ2 + ∫
∞

0
e−rte−λtλe−λt(ϕ + ϕ2)dt ≤ ϕ + 2∫

∞

0
e−rtλϕdt.

Here, e−λtλ is the density of Ann’s first meeting with Carol, and e−λt is the probability that
at that first meeting Carol will not yet have met Bob. The highest stakes at which working
is incentive compatible are ( r+4λr+3λ)

λ
r , strictly greater than what is attainable under bilateral

enforcement.
To verify that contagion is sequentially rational, we must show that each of Ann and

Bob wish to shirk on Carol after Ann shirks on Bob. Consider the interaction in which
Bob meets Carol and is unsure if Carol has already been “infected.”4 If Carol hasn’t been
infected, an upper-bound for Bob’s payoff from working forever with Carol is ϕ + λ

r ϕ,
which is outweighed by the immediate payoff of ϕ + ϕ2 from shirking today. Therefore,
working forever cannot be sequentially rational for Bob once Ann has shirked; discount-
ing guarantees that Bob is then best off by shirking immediately on Carol rather than
delaying it. The intuition is simple: once Ann has shirked on Bob and continues to do so
in the future, her presence is no longer a carrot-and-stick that can be used to encourage
Bob to cooperate with Carol. The same logic, of course, applies to Ann when she meets
Carol after having shirked on Bob.5

The transmission of information through the network, as crystallized by contagion,
exploits the strategic interdependence of networked relationships. When Ann cheats
Bob, she forfeits the opportunity to also cheat Carol if Bob should meet Carol first. This
uncertainty dampens her motive to shirk and thereby enables her to cooperate at higher
stakes. The diffusion of information from Bob to Carol permits the relationship between
Ann and Carol to become “social collateral” for the relationship between Ann and Bob.

This force emerges from the combination of asynchronous interaction and cycles in
the network. Were all behavior constrained to instead be synchronous, Ann could simul-

4If Ann was the first to shirk, she may have shirked on Carol as well as Bob. Another possibility is that
Carol was the first to shirk, and Ann was spreading the contagion to Bob.

5Notice that there is an additional force: Bob believes that even if he works with Carol, she will be
eventually infected by Ann. However, this force adds slack to off-path incentives: it suffices for Bob to
believe that Ann will no longer work with him for him to have a strict incentive to shirk on Carol.
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taneously shirk on Bob andCarol, and so analogous to themultimarket logic of Bernheim
and Whinston (1990), no Nash equilibrium could support anything more than the stakes
of bilateral grim trigger. Similarly, if the network were a tree in which Ann was linked to
both Bob andCarol (so Bob andCarol were not linked to each other), then no equilibrium
could support mutual effort at stakes greater than under bilateral enforcement—shirking
on Bob would not cause Carol to suffer any consequences in her relationship with Ann.
A network must have cycles to transmit punishments.

Triangle vs. circles: Shorter cycles transmit punishment more quickly. Consider a so-
ciety comprising n ≥ 3 individuals connected in a circle. Under contagion strategies, after
Ann shirks on Bob, Bob will shirk on Carol, Carol will shirk on Dante, and the contagion
will spread around the circle. Ann’s only chance to capture another temptation reward is
to meet her other neighbor before he becomes contagious. We show that Ann’s incentive
constraint is

ϕ + ϕ2 + (ϕ + ϕ2)
n−2
∑
z=1
( λ

r + 2λ)
z
≤ ϕ + 2∫

∞

0
e−rtλϕdt.

Evidently, Ann’s other neighbor is less likely to be contagious for greater n, and so the
maximal stakes on each link are attained for n = 3. At the same time, each player has
the same degree in the circle as in the triangle. Therefore, if n is divisible by 3 then re-
arranging the network into n

3 triangles induces shorter indirect paths, and hence faster
punishments, larger stakes, and higher payoffs. This force pushes optimal network design
towards cliques.

4 Main Result
Our main result compares stationary Nash equilibria across networks. We call a com-
pletely connected network inwhich there are d+1 players the clique of degree d; we denote
such a network byG (d). Our main result shows that the clique of degree d is optimal, in
a precise sense, among networks with degree bounded by d.
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Theorem 1. For every interaction rate λ and discount rate r, there exists a stationary weak
perfect Bayesian equilibrium σ∗ on the clique G (d) delivering each player expected utility
of u(d), such that for any connected network G ≠ G (d) in which no player has more than
d partnerships:

(a) Every stationary mutual effort Nash equilibrium on network G delivers expected
utility to player i strictly less than than (di/d)u(d), where di ≤ d is player i’s degree
in G;

(b) If the stage game satisfies strategic complementarity, then every stationary Nash
equilibrium on network G has utilitarian value strictly less than (d/d)u(d), where
d ≤ d is the average degree on G.

Moreover, σ∗ is sequentially rational for any system of beliefs consistent with Bayesian
updating on the equilibrium path.

Intuitively, cliques maximize the level of cooperation because they maximize the rate
at which information about a player’s defection diffuses to his neighbors. We show that
on any clique there exists a “binding contagion” equilibrium that exploits the diffusion of
information to its fullest extent, while satisfying sequential rationality off the equilibrium
path. Hence our result applies even when limiting attention to community enforcement
mechanisms that are sequentially rational.

If we restrict attention to mutual effort equilibria, then a clique of degree d “Pareto
dominates” every other network in which degrees are bounded by d: each player in the
clique is at least as well off, and some are strictly better off—even on a per-link basis (i.e.,
one’s average utility divided by one’s degree). If we allow for equilibria in which play-
ers shirk on the equilibrium path, then non-clique networks are not necessarily Pareto
dominated. Nonetheless, if the game satisfies strategic complementarity then the binding
contagion equilibrium on the clique is utilitarian optimal.6

A major challenge in ranking networks is that it is difficult to know which equilib-
ria exist and are efficient on any given network (particularly asymmetric networks), for

6Our comparisons ignore any remainder that might arise if the population of players is not divisible by
d + 1. Formally, we could make Pareto comparisons between two networks by replicating them both to
form two “replica networks,” each containing the least common multiple of the original populations.
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any given interaction rate, and for any given discount rate. Our argument uses three
preliminary lemmas to sidestep this challenge. Lemma 1 connects incentives in a Nash
equilibrium to the speed of information transmission on an arbitrary network. Every
equilibrium must satisfy the constraint that no player should prefer to shirk forever on
all his partners. This incentive constraint features a key coefficient that we term viscos-
ity, because its reciprocal describes the maximal discounted rate at which information
can diffuse. Viscosity depends only on the network, the interaction rate, and the dis-
count rate, but not on the details of any particular equilibrium. Lemma 2 offers a tighter
characterization for cliques, producing a closed form expression for viscosity and con-
structing a binding contagion equilibrium. Lemma 3 uses a coupling argument to show
that an arbitrary network with maximal degree d has higher viscosity than the clique of
degree d.

We then use these Lemmas to prove both parts of Theorem 1. For the first part, we
show that in any mutual effort Nash equilibrium on G, any player’s average stakes are
lower than what our binding contagion equilibrium on the clique of degree d can deliver.
Thenwe show that under strategic complementarity any non-mutual effort Nash equilib-
rium can be bested, in utilitarian terms, by a mutual effort strategy profile, which in turn
is bested by our binding contagion equilibrium. But first we remark on two conditions
in the theorem: strategic complementarity and stationarity.

Remark 1 (Strategic complementarity may not be not necessary). Under strategic com-
plementarity, the incentive constraint for a player to work is looser when his partner
also works. Given any non-mutual effort equilibrium, strategic complementarity enables
us to construct a mutual effort strategy profile at stakes calibrated to deliver at least as
much utilitarian value, all while satisfying an aggregated incentive constraint on the equi-
librium path. The aggregated incentive constraint we use is that no player should be able
to benefit by deviating to always shirking, even if his neighbors learned of and punish his
deviation at the maximal rate (as given by the viscosity of a clique with the same maximal
degree as the network in which he finds himself ). Such a constraint is, of course, neces-
sary for any equilibrium, including non-mutual effort equilibria. But it is not sufficient,
since in a non-mutual effort equilibrium contagion fails to spread whenever a contagious
player is expected to shirk by his non-contagious partner. Therefore our proof estab-
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lishes only that strategic complementarity is sufficient for part (b) of Theorem 1. It could
still be the case that our binding contagion equilibrium outperforms non-mutual effort
equilibria even when ϕ < T(ϕ) − V(ϕ) < 2ϕ. (We know this cannot be the case when
T(ϕ) − V(ϕ) > 2ϕ, i.e., when for fixed stakes work-work is not on the Pareto frontier of
the stage game.)

Remark 2 (Stationarity is with loss of generality). Restricting attention to stationary
equilibria is with loss of generality, because it rules out behavior in which Carol pro-
poses stochastically higher stakes with Ann if she has recently interacted with Bob, but
stochastically lower stakes otherwise. With such behavior on the equilibrium path, by
choosing to work with Bob, Ann benefits from the prospect of future cooperation with
Carol at higher stakes if Bob and Carol meet in between; but if she chooses to shirk
on Bob then she can successfully shirk on Carol only if Bob and Carol have not met in
between, in which case the stakes will be low. In order to implement such behavior,
however, Carol must condition her stakes selection strategy on her private information,
rather than merely on information that is commonly known between Ann and herself.
She must also be given incentives to choose whichever mixture over stakes proposals her
strategy specifies for her private information. Such behavior would be quite complex to
stitch together into a perfect Bayesian equilibrium. Indeed, the literature has found con-
structing equilibria on the frontier of private monitoring games for fixed discount factors
to be exceedingly difficult.

Stationarity also rules out simpler classes of behavior, such as the possibility that two
partners might vary their stakes or their work-shirk choices in a way that is measurable
with respect to their common knowledge history of what has happened in their own
relationship. For mutual effort equilibria, such behavior cannot improve on the optimal
stationary perfect Bayesian equilibrium we identify; thus we could slightly strengthen
part (a) of Theorem 1. More broadly, we cannot say the same for part (b), since non-
mutual effort equilibria might benefit from non-stationarity in other ways.
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4.1 Three Key Lemmas
Connecting viscosity to Nash equilibria across networks: We begin by describing
on-path behavior in a mutual effort pure strategy profile. On the path of play, whenever
link {ij} is recognized partners i and j always select stakes ϕij and work. Thus on-path
behavior for each player i is summarized by an individual stakes profile: Φi = (ϕij)j∈Ni ,
which is a profile of stakes in all of player i’s relationships. The collective stakes profile,
Φ = (Φi)i∈N, is an element of the subset of R2∣G∣

+ in which ϕij = ϕji for all {ij} ∈ G.
When link {ij} is recognized at time t, if player i has never observed any deviation

then her payoff from following her strategy is ϕij + λ
r ∑k∈Ni ϕik. Now consider her gain

from deviating. Since no one other than player j observes her deviation, it is unclear
what player i’s most profitable deviation might be, nor does it suffice to consider one-
shot deviations. Instead, we study the following simple deviation: with each partner k in
Ni, player i proposes ϕik and then shirks. What is the worst that could happen to player i
if she deviates in this way?

Suppose that player i’s first deviation from on-path play is to shirk on partner j at
time t. Then, whenever player j meets another player j′ after time t, suppose the equilib-
rium calls for player j to “communicate” to j′ the bad news that a deviation has occurred.
Such communication could either be encoded through stakes selection on link {jj′}, or
player j shirking on partner j′ as in contagion (Kandori 1992; Ellison 1994); at this stage
of the argument, it does not matter how bad news spreads. What matters is that player j
conveys the information about the deviation to each of his partners when he meets them,
they convey the same to their partners, and so on. No process could spread bad news
faster.

Now suppose that if link {ik} is recognized at time t+ τ , player k works only if he has
not heard the bad news about player i’s deviations; otherwise he shirks. Given the conta-
gious process by which bad news spreads, let xijk(τ) be the probability that, immediately
after her first deviation on link {ij} at time t, player i assigns to player k being willing to
work on link {ik} at time t + τ . Now we can bound player i’s payoff from this deviation
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from below with

T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)∫
∞

0
e−rτλ xijk(τ)dτ.

The first term is what player i earns immediately by shirking on player j, and the second
term is a lower bound for what she expects to earn in the future by shirking on her other
neighbors. We combine the effects of xijk, λ, and r on the left hand side into a single term,
the ijk viscosity factor Xijk ≡ ∫

∞
0 e−rτλxijk(τ)dτ . Since a player’s payoff from shirking on

every partner cannot exceed her cooperation payoff, an individual stakes profile can be
compatible with a mutual effort equilibrium in pure strategies only if

T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)Xijk ≤ ϕij +
λ

r ∑k∈Ni

ϕik . (ICCoop
ij )

Our first result generalizes this insight to all pure and mixed Nash equilibria. Since
we restrict attention to equilibria that are stationary on the path of play, let µS

ij be the
distribution of equilibrium path stakes on link {ij}, pwwij (ϕ) be the on-path probability of
mutual effort when stakes ϕ are realized, pwsij (ϕ) be the on path probability that player i
works while player j shirks, and pssij (ϕ) be the on-path probability of mutual shirking.
Player i’s expected equilibrium stage game payoff from link {ij} being recognized is

uij ≡ ∫
∞

ϕ=0
(pwwij (ϕ)ϕ + pwsji (ϕ)T(ϕ) − pwsij (ϕ)V(ϕ)) dµS

ij.

Consider player i’s payoff from following the stake proposal strategy but deviating at the
action stage to shirking regardless of the realized stakes:7

wij ≡ ∫
∞

ϕ=0
T(ϕ) (pwwij (ϕ) + pwsji (ϕ)) dµS

ij.

Our first key lemma argues that a counterpart of ICCoop
ij holds: in every Nash equilib-

7With mixed stake proposals, player i’s best multi-shot deviation may also involve deviating in stake
proposal stages. But for Lemma 1 we need only a necessary condition, not a sufficient condition, for equi-
librium, so it suffices to consider deviations only in action stages.
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rium each player i must prefer to follow her equilibrium strategy than to shirk on all her
partners forever.

Lemma 1. For every stationary Nash equilibrium σ, every player i in N, and every neigh-
bor j in Ni,

wij + ∑
k∈Ni/{j}

wikXijk ≤ uij +
λ

r ∑k∈Ni

uik. (1)

Proof. Consider an equilibrium path history in which players i and j meet at time s. The
strategy profile σ is a Nash equilibrium only if the expected payoff from following the
equilibrium strategy, denoted on the RHS, is at least that of every deviation. We argue
that the LHS is a lower bound for player i’s payoff when following the stake proposal
strategy and deviating at the action stage to shirking on each partner. The payoff wij is
obtained immediately. The probability with which player k observes off-path behavior at
time s + t is no greater than 1 − xijk(t), and so, a lower bound on the payoff that player i
obtains from link {ik} is wikXijk, leading to the constraint in (1). □

Contagion and viscosity on cliques: Lemma 1 states a necessary condition for Nash
equilibrium on any network. For a clique of degree d, we can show that this condition
binds for a particular perfect Bayesian equilibrium—contagion—and characterize vis-
cosity in closed form. Later we will show that is indeed the optimal “binding contagion”
equilibrium identified in Theorem 1.

Lemma 2. For the clique of degree d, and every pair of links {ij} and {ik},

Xijk = X(d) ≡
1

d − 1
d
∑
m′=2
( 1
m′

m′

∏
m=2

λm(d −m + 1)
r + λm(d −m + 1)) . (Clique Viscosity)

In the clique of degree d, there exists a pure strategy mutual effort weak perfect Bayesian
equilibrium in which the equilibrium path stakes on each link, ϕ(d), solve

T(ϕ)
ϕ
=

1 + dλ
r

1 + (d − 1)X(d)
. (2)
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and each player’s expected equilibrium path payoff is u(d) ≡ dλ
r ϕ(d).

Proof. Wederive (d−1)X(d) by considering the expected payoff from the following “con-
tagion process.” Players i and j are contagious at time 0, and at each stage, whenever the
link between a contagious player and an uninfected player is recognized, the latter is in-
fected and becomes contagious. If player i meets an uninfected partner, she obtains 1,
and otherwise she obtains 0. Recurse on the number of contagious neighbors to obtain
player i’s expected payoff from this process: suppose that there are m − 1 of player i’s
neighbors that are currently contagious. Then there are m(d + 1 −m) links by which the
contagion spreads to an uninfected neighbor of player i; of these d + 1 −m are links of
player i. Therefore, (d − 1)X(d) equals χ(2), where, for m ≥ 2,

χ(m) = ∫
∞

0
e−rte−λm(d−m+1)tλm(d −m + 1) ( 1

m + χ(m + 1)) dt

= λm(d −m + 1)
r + λm(d −m + 1) (

1
m + χ(m + 1)) .

The recursion is initialized by setting χ(d + 1) = 0, since all players obtain zero when
everyone is contagious. This generates the Clique Viscosity expression in Lemma 1.

Now define ϕ(d) as in (2). We first argue that (2) has a unique non-zero solution.
Notice that for a player k to not be contagious by time t in the process described above,
she must have met neither player i nor player j. Therefore, xijk(t) ≤ e−2λt < e−λt, so

X(d) < ∫
∞

0
e−rte−λtλdt = λ

r + λ <
λ

r .

Therefore, the fraction on the righthand side of (2) is strictly greater than 1. By Assump-
tion 1, the equation has a unique non-zero solution.

We now describe the weak perfect Bayesian equilibrium that implements mutual ef-
fort at stakes ϕ(d). Consider a strategy profile σ(d) such that for each link {ij} in G and
each history h in Hij, player i plays according to which of the two phases she is in:

1. Cooperation phase: σS
i (h) = ϕ(d), and σA

i (h, ϕ̂ij, ϕ̂ji) = work if and only if ϕ̂ij = ϕ̂ji =
ϕ(d).

2. Contagion phase: σS
i (h) = ϕ(d), and σA

i (h, ϕ̂ij, ϕ̂ji) = shirk for all ϕ̂ij, ϕ̂ji.
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Each player begins in the cooperation phase. If player i is in the cooperation phase at
history h, then she stays in the cooperation phase if and only if both players i and j an-
nounced stakes ϕ(d) and worked; otherwise, she transitions to the contagion phase. The
contagion phase is absorbing.

To prove that σ(d) is a weak perfect Bayesian equilibrium, we have to show that in-
centives are satisfied in both cooperation and contagion phases, given appropriate beliefs.
By construction, cooperation phase incentives bind: setting stakes equal to ϕ(d) on each
link makes ICCoop

ij on each link {ij} bind. Lemma 5 in Appendix A proves that if players
are indifferent between working and shirking on the equilibrium path, then the play-
ers strictly prefer to shirk off the equilibrium path—regardless of their beliefs—because
their incentive to work strictly declines in the number of contagious players. The proof
exploits the players’ ability to select their stakes, and adapts Lemma 1 of Ellison (1994) to
this setting. Therefore, σ(d) is a weak perfect Bayesian equilibrium. □

Comparing viscosity across networks: Our next result shows that the clique of degree
d minimizes viscosity among all networks in which no player has more than d partners.

Lemma 3. Consider any connected network G whose maximal degree is at most d and is
not the clique of degree d. Then Xijk > X(d) for every pair of links {ij},{ik} in G.

Proof. Consider a graph G that is the clique of degree d and let ζ(t) = 1 − xijk(t) on this
graph. Being that G is symmetric, xijk(t) = xijm(t) for every m ≠ i, j. Observe that

ζ(t + dt) = ζ(t) + (1 − ζ(t))(λdt) (2 + (d − 2)ζ(t)) +O(dt)2.

Therefore, taking limits dt→ 0,

dζ(t)
dt = (1 − ζ(t))λ (2 + (d − 2)ζ(t)) . (3)

Divide both sides of the above equation by 1 − ζ(t) and observe that

d
dt (− log(1 − ζ(t))) =

dζ(t)
dt

1 − ζ(t)
= 2λ + (d − 2)λζ(t). (4)
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Now consider any connected graph G whose maximal degree is at most d and is not the
clique of degree d. For every playerm ≠ i, j, let ζm(t) = 1−xijm(t), and let ζi(t) = ζj(t) = 1.
Using an argument identical to that which we used to derive (4), we obtain

d
dt (− log(1 − ζk(t))) = ∑

m∈Nk

λζm(t). (5)

We now argue the claim by induction: suppose that for every k ≠ i, j, ζk(t) ≤ ζ(t). This
induction hypothesis is satisfied at t = 0 since both equal 0 at that time. By the induction
hypothesis, we can combine Equations (4)-(5) to generate the following inequality:

d
dt (− log(1 − ζk(t))) = ∑

m∈Nk

λζm(t)

≤ ∑
m∈Nk

λζm(t).

CONTINUE FROM HERE. □

4.2 Proof ofTheorem 1
We use the lemmas of Section 4.1 to prove our main result. Consider a network G with
maximal degree d.

Mutual effortNash equilibria: Consider amutual effort Nash equilibrium inwhichµS
ij

is the distribution of equilibriumpath stakes on link {ij}. Using Lemma 1, the equilibrium
path incentive constraint (the analogue of (1)) is

∫
∞

0
ϕij dµS

ij +
λ

r ∑k∈Ni
∫
∞

0
ϕik dµS

ik ≥ ∫
∞

0
T(ϕij)dµS

ij + ∑
k∈Ni/{j}

(∫
∞

0
T(ϕik)dµS

ik)Xijk.
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Let ϕij = ∫
∞
0 ϕij dµS

ij, and consider the individual stakes profile Φi = (ϕij)j∈Ni . It follows
from Jensen’s Inequality (since T is convex) and Lemma 3 that

ϕij +
λ

r ∑k∈Ni

ϕik ≥ T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)Xijk ≥ T(ϕij) + ∑
k∈Ni/{j}

T(ϕik)X(d). (6)

Since the above inequality is true for each of player i’s links, there are di inequalities of
this form for player i. Therefore, adding and averaging across them

1
di
∑
j∈Ni

ϕij +
λ

r ∑k∈Ni

ϕik ≥
1
di
∑
j∈Ni

⎛
⎝
T(ϕij) + ∑

k∈Ni/{j}
T(ϕik)X(d)

⎞
⎠

= (1 + (di − 1)X(d))
⎛
⎝

1
di
∑
j∈Ni

T(ϕij)
⎞
⎠

≥ (1 + (di − 1)X(d))T
⎛
⎝
∑j∈Ni ϕij

di
⎞
⎠
,

where the final inequality follows from Jensen’s Inequality. Using ϕ′i ≡ 1
di ∑j∈Ni ϕij, the

above inequality implies

T(ϕ′i)
ϕ′i
≤

1 + di λr
1 + (di − 1)X(d)

.

Our aim is to show that ϕ′i ≤ ϕ(d). If di = d, then this follows from Assumption 1 since
the RHS corresponds to T(ϕ(d))/ϕ(d). Otherwise, if di < d it suffices to show that

1 + di λr
1 + (di − 1)X(d)

<
1 + dλ

r
1 + (d − 1)X(d)

,

which is equivalent toX(d) < λ
r+λ , already established in the proof of Lemma 2. Therefore

ϕ′i ≤ ϕ(d). Since player i’s payoff in equilibrium σ is diλ
r ϕ′i, it follows from di ≤ d and

ϕ′ ≤ ϕ(d) that her payoff in equilibrium σ is less than u(d). Since player i is arbitrary,
every player’s expected payoff from equilibrium σ in networkG is less than u(d). Observe
that if the component that contains player i is not G (d), then the first inequality in (6)
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is strict, which translates into every subsequent inequality in this line of reasoning being
strict.

Non-mutual effort Nash equilibria: Proving that u(d) bounds the utilitarian value
of an equilibrium that may involve shirking on the equilibrium path involves a series of
steps.

Step 1: Derive an aggregate incentive constraint. The “aggregate expected equilibrium
utility” of an equilibrium with shirking on the equilibrium path can be written as:

U(σ) ≡ λ

r ∑i∈N
∑
j∈Ni

uij =
λ

r ∑{ij}∈G
(uij + uji) =∑

i∈N
∫
∞

0
e−rte−diλtλ∑

j∈Ni

(uij +
λ

r ∑k∈Ni

uik)dt.

Applying Lemma 1 and Lemma 3 implies that for each player i and link {ij},

wij + ∑
k∈Ni/{j}

wikX(d) ≤ wij + ∑
k∈Ni/{j}

wikXijk ≤ uij +
λ

r ∑k∈Ni

uik. (7)

It follows that for every i,

λ

r ∑j∈Ni

uij = ∫
∞

0
e−rte−diλtλ∑

j∈Ni

(uij +
λ

r ∑k∈Ni

uik)dt

≥ ∫
∞

0
e−rte−diλtλ∑

j∈Ni

(wij + ∑
k∈Ni/{j}

X(d)wik)dt

= λ

r + diλ
(1 + (di − 1)X(d))∑

j∈Ni

wij,

≥ λ

r + dλ(1 + (d − 1)X(d))∑
j∈Ni

wij,

where the first inequality follows from (7) and the second inequality follows from X(d) <
λ

r+λ . Define

W(σ) = λ

r + dλ(1 + (d − 1)X(d)) ∑
{ij}∈G
(wij +wji).
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Adding across each of the i players implies that U(σ) ≥ W(σ), an aggregated incentive
constraint.

Step 2: Find a dominating mutual effort profile that satisfies the aggregate constraint.
We construct a mutual effort strategy profile σ̃ on G such that U(σ̃) ≥ U(σ) ≥ W(σ) ≥
W(σ̃). Consider the function f (ϕ) ≡max{0, 1

2(T(ϕ) −V(ϕ))}, and for a set A ⊂R+, de-
fine f −1(A) ≡ {ϕ ∈ R+ ∶ f (ϕ) ∈ A}. If the stage game satisfies strategic complementarity,
then f (ϕ) < ϕ/2. Therefore

T(f (ϕ)) < T(ϕ/2) < T(ϕ)
2 , (8)

where the first inequality follows from T being strictly increasing, and the second in-
equality from T being strictly convex.

Using f , we construct a new distribution of stakes ρSij from µS
ij. For every measurable

subset A of R+, let

ρSij(A) = ∫
ϕ∈A

pwwij (ϕ)dµS
ij + ∫

ϕ∈A
∫
ϕ̂∈f −1({ϕ})

(pwsij (ϕ̂) + pwsji (ϕ̂)) dµS
ij dϕ + 1(0 ∈ A)∫

ϕ
pssij (ϕ)dµS

ij.

Consider a mutual effort profile in which if i < j, for every history h ∈ Hij, σ̃S
i (h) = ρSij,

and if i > j, σ̃S
i (h) = supϕ∈Supp(ρSij)

ϕ. Such a stake proposal strategy profile implements the
distribution ρSij in each link {ij}. Since σ̃ is a mutual effort profile, players work on the
equilibrium path.

To argue that U(σ̃) ≥ U(σ), let ũij and w̃ij be the analogues of uij and wij. By con-
struction of f , u, and ũ,

ũij + ũji = ∫
∞

0
2ϕdρSij

= ∫
∞

0
2ϕpwwij (ϕ)dµS

ij + ∫
∞

0
2ϕ∫

ϕ̂∈f −1({ϕ})
(pwsij (ϕ̂) + pwsji (ϕ̂))dµS

ij dϕ

= ∫
∞

0
2ϕpwwij (ϕ)dµS

ij + ∫
∞

0
∫
ϕ̂∈f −1({ϕ})

2f (ϕ̂)(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ

≥ ∫
∞

0
2ϕpwwij (ϕ)dµS

ij + ∫
∞

0
∫
ϕ̂∈f −1({ϕ})

(T(ϕ̂) −V(ϕ̂))(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ

= uij + uji.
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Since this holds for every {ij} in G, it follows that U(σ̃) ≥ U(σ).
We take the analogous steps forW: to prove thatW(σ̃) ≤W(σ), it suffices to establish

that for every {ij} in G, w̃ij + w̃ji ≤ wij +wji:

w̃ij + w̃ji = ∫
∞

0
2T(ϕ)dρSij (9)

= ∫
∞

0
2T(ϕ)pwwij (ϕ)dµS

ij + ∫
∞

0
2T(ϕ)∫

ϕ̂∈f −1({ϕ})
(pwsij (ϕ̂) + pwsji (ϕ̂))dµS

ij dϕ

(10)

= ∫
∞

0
2T(ϕ)pwwij (ϕ)dµS

ij + ∫
∞

0
∫
ϕ̂∈f −1({ϕ})

2T(f (ϕ̂))(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ

(11)

≤ ∫
∞

0
2T(ϕ)pwwij (ϕ)dµS

ij + ∫
∞

0
∫
ϕ̂∈f −1({ϕ})

T(ϕ̂)(pwsij (ϕ̂) + pwsji (ϕ̂))dµS
ij dϕ (12)

= wij +wji, (13)

where the inequality follows from (8), and the rest from construction.8

Step 3: Prove that the binding contagion equilibrium on the clique dominates σ̃.
Define

ϕ′ ≡
∑{ij}∈G ∫

∞
0 ϕijdρSij
∣G∣

to be the average on-path path stakes in the strategy profile σ̃. Consider a pure strategy
mutual effort strategy profile σ′ in which the stakes on each link {ij} in G are ϕ′. By
construction, U(σ′) = U(σ̃). Observe that

W(σ′) = λ

r + dλ(1 + (d − 1)X(d))2∣G∣T(ϕ′)

≤ λ

r + dλ(1 + (d − 1)X(d))2 ∑
{ij}∈G

∫
∞

0
T(ϕij)dρSij =W(σ̃),

8Eq. 9 is the only place in the proof where we use strategic complementarity. Strategic complementarity
is clearly a necessary condition for the inequality in Eq. 9 to be satisfied. However, Eq. 9 is merely sufficient
(not necessary) to establish Step 2 of the proof. Therefore our proof does not established whether strategic
complementarity is necessary for part (b) of Theorem 1.
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inwhich the inequality follows from Jensen’s Inequality. Therefore,U(σ′) ≥W(σ′), which
by substitution implies that

2∣G∣λ
r ϕ′ ≥ 2∣G∣λ

r + dλ(1 + (d − 1)X(d))T(ϕ′) Ô⇒ T(ϕ′)
ϕ′
≤ r + dλ
r + rX(d)(d − 1)

= T(ϕ(d))
ϕ(d)

,

which by Assumption 1 implies that ϕ′ ≤ ϕ(d). Summarizing, the utilitarian value of σ is

U(σ)
n ≤ ∣G∣n (

λ

r ϕ(d)) ≤
dλ
r ϕ(d) = u(d), (14)

in which the second inequality follows from ∣G∣/n ≤ d. Notice that if G includes a com-
ponent that is not G (d), the first inequality in (7) is strict for some player i and link {ij},
and thus the first inequality in (14) is also strict. ∎

5 Costly Linking
Establishing relationships can be costly, in which case an optimal network must balance
the benefits of linking with its costs. The previous section analyzed the setting with a
constraint on the maximal degree. This section applies those insights when linking costs
take a more general form.

Suppose that if player i has di links, she pays a linking cost c(di) at time 0. Her net
payoff is the sum of her expected equilibrium payoff from interaction (henceforth inter-
action payoffs) minus the linking costs incurred at time 0. An equilibrium’s net value is
the average net payoff in society.

The linking cost function c is non-decreasing and, as a normalization, satisfies c(0) =
0. We study linking costs that belong to one of two categories below: for d ≥ 1, linking
costs are

1. Concave if c(d)/d is non-increasing.
2. Strictly convex if c(d)/d is strictly increasing.

A special case of concave linking costs is that in which linking costs are linear.
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In this environment there are two benefits to forming a link: it creates a new rela-
tionship, and it indirectly benefits other relationships if it completes a cycle (ignoring
potential off-path complications). The first benefit is internalized by the partners who
form the link, while the latter is a positive externality. Since the marginal linking cost is
either flat or decreasing, an extreme solution dominates inwhich if it is worthwhile to link
to anyone then it is better to link to everyone. Since it is symmetric, the complete net-
work has a binding contagion equilibrium in which off-path incentives are guaranteed.
In this equilibrium, each player earns a net payoff of u(n− 1)− c(n− 1); by symmetry this
is also the equilibrium’s net value.

Theorem 2. Suppose that linking costs are concave.

1. Consider any stationary mutual effort equilibrium on any incomplete network. If a
player has a non-negative net payoff, then her net payoff is strictly less than u(n −
1) − c(n − 1).

2. Consider any stationary equilibrium on any incomplete network, and suppose the
stage game satisfies strategic complementarity. If the equilibrium’s net value is non-
negative, then its net value is strictly less than u(n − 1) − c(n − 1).

Thus the complete network Pareto dominates other networks if players follow a mu-
tual effort equilibrium, and is utilitarian optimal even when shirking is allowed on the
equilibrium path.

Proof. Consider a non-empty incomplete network G in which some player i obtains in-
teraction payoff ui in a mutual effort equilibrium, and ui ≥ c(di). From Theorem 1, it
follows that

ui
di
< u(n − 1)

n − 1 ,

and, because linking costs are concave, c(di)/di ≥ c(n − 1)/(n − 1). Combining these two
inequalities and multiplying by n − 1 yields

u(n − 1) − c(n − 1) > (n − 1
di
) (ui − c(di)) ≥ ui − c(di).
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Now consider an equilibrium in which shirking occurs on the equilibrium path. From the
argument in Theorem 1, it follows that the average interaction payoff is strictly less than
u(n − 1). Because linking costs are concave, it also follows that the average linking cost
is at least c(n − 1)/(n − 1), and therefore, it follows as above that the net value is strictly
less than u(n − 1) − c(n − 1). □

Comparisons across networks are more subtle if c(⋅) is convex. Now a player may
not find it in her own interest to link to all other players, but others always benefit from
her doing so. Since a player’s preference is no longer aligned with others’ preferences, we
address the weaker question of whether a clique is on the Pareto frontier. We prove that
that there exists a Pareto efficient clique: if any player does better on another networkG in
a mutual effort equilibrium, then there must be another player who is worse off inG than
in the clique. We find this Pareto efficient clique by considering the “best clique size.” If
linking costs are sufficiently convex, there exists some (generically unique) optimal clique
G (d∗) such that d∗ uniquely maximizes u(d)− c(d), and if there is no interior optimum,
then the optimal clique is the complete network.

Theorem 3. Suppose that linking costs are strictly convex. For every network G and every
stationary mutual effort equilibrium, if there exists a player whose net payoff is strictly
greater than u(d∗)− c(d∗), then there exists another player whose net payoff is strictly less
than u(d∗) − c(d∗).

Proof. Consider a networkG and a mutual effort equilibrium in which some player earns
a strictly higher net payoff than u(d∗) − c(d∗). Necessarily, the component containing
this player cannot be a clique since by Theorem 1 no clique yields any player a net value
greater than u(d∗)− c(d∗). Within this component, consider the player with the highest
degree, d′. By Theorem 1, her interaction payoff is strictly less than u(d′), the interaction
payoff shewould obtain in a clique of her owndegree,G (d′); meanwhile, her linking costs
inG andG (d′) are identical. It follows that her net payoff is strictly less than u(d′)−c(d′),
which by definition is no greater than u(d∗) − c(d∗). □

Stronger comparisons emergewhen contrasting contagion on cliques to smaller classes
of networks. Consider the class of networks that are regular, i.e., those in which all play-

31



ers share the same degree. Since the linking costs on a regular network are identical to
those on the clique with the same degree, Theorem 1 has a direct corollary.

Corollary 1. No stationary mutual effort equilibrium on any regular network can yield
any player a payoff that exceeds u(d∗)−c(d∗). Moreover, if the stage game satisfies strate-
gic complementarity, no equilibrium on any regular network attains a higher net value
than u(d∗) − c(d∗).

6 Discussion
This paper characterizes networks that optimally sustain cooperation. Our main result
(Theorem 1) compares a perfect Bayesian equilibrium on a clique of degree d to Nash
equilibria on all networks that have maximal degree d. The perfect Bayesian equilibrium
on the clique takes the form of a “binding contagion” equilibrium. It Pareto dominates all
mutual effort equilibria on these other networks, and is utilitarian optimal even among
equilibria that may not feature mutual effort. In the remainder of this section, we com-
ment on various features of our framework.

Variable stakes: We represent the level of cooperation in a mutual effort equilibrium
by the endogenously selected stakes at which cooperation is incentive compatible. In our
view, permitting individuals to select the stakes of their relationship is a realistic formu-
lation of partnerships because it allows partners to choose the terms on which they co-
operate. Such cooperative arrangements are ubiquitous: in risk-sharing arrangements,
individuals choose how much self-insurance they can attain; in trading and employer-
employee relationships, the seller of a good or service chooses how much effort to exert,
and the the buyer chooses how much to pay.

Ghosh and Ray (1996) and Kranton (1996) were the first to note the relevance of
variable stakes in community enforcement, but to elucidate a different force: building
cooperation over time helps screen out myopic players and deters patient players from
shirking and re-matching with a new partner.9 Our stylized framework for stakes and

9See Watson (1999, 2002) and Athey, Calvano, and Jha (2010) for related insights. Haag and Lagunoff
(2007) and Wolitzky (2012) use continuous action sets to study local interaction settings, where a player

32



stake selection departs from theirs, but identical results would hold for many different
formulations of variable stakes, including theirs. In terms of the stake selection protocol,
all that is needed is that it be sufficiently permissive: for every ϕ > 0, there must be some
strategy profile of the partnership that implements ϕ with probability 1.10 It also would
suffice for players to select stakes only at time 0, rather than at each interaction. More-
over, similar results would also hold if, as in Ghosh and Ray (1996), players in each part-
nership simultaneously chose actions from a continuum in which higher actions benefit
the partner but come at a greater cost.

Apart from realism, the inherent flexibility of variable stakes simplifies analysis and
exposition considerably. In contrast to the standard repeated games approach of fixing
the stage game payoffs and then identifying sets of discount factors for which cooperation
arises, we can identify themaximal level of cooperation given a fixed level of patience and
then directly compare payoffs across equilibria and networks at the same discount rate.
Were the stakes ϕ fixed, we would be compelled to distinguish networks and equilibria by
the sets of parameters for which incentive conditions are satisfied, which is both indirect
and less transparent. Moreover, in fixed stakes environments it is particularly challenging
to verifying both equilibrium path incentives and the credibility of punishments off the
equilibrium path.

Stationary behavior on the path of play: An important assumption that we make to
tractably compare networks is restrict attention to equilibria that are stationary on the
equilibrium path. This restriction is with loss of generality, and rules out the following
kind of behavior: Carol sets higher stakes with Ann if she has recently interacted with
Bob, and lower stakes otherwise. Such behavior facilitates cooperation between Ann and
Bob in the following way: by choosing to work with Bob, Ann benefits from the prospect
of future cooperation with Carol at higher stakes if Bob and Carol meet in between, but if
she chooses to shirk on Bob then she can successfully shirk onCarol only if Bob andCarol
have not met, in which case the stakes must be low. Unlike a setting in which behavior

takes a single action with respect to her entire neighborhood.
10For example, similar results would hold if players were required to both propose ϕ for ϕ to be selected,

or the average of two proposals were selected.
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on each link is publicly observed, such non-stationary behavior potentially offers greater
incentives for cooperation.

We abstract from this kind of behavior for two reasons. First, it is difficult to stitch
together this form of complex behavior into a perfect Bayesian equilibrium, because it
would have to be that Ann would not wish to shirk on Carol at the higher stakes de-
scribed above, and thus, some non-stationary behavior with Bob is needed for incentives
at that later stage. Thus, the mere construction of such an equilibrium for a non-trivial
network appears challenging. Second, even if we could construct such equilibria, existing
techniques would not permit us to compare sets of equilibria across networks for fixed
parameters and patience.

Nash equilibrium and communication: Although we construct a perfect Bayesian
equilibrium in “binding contagion” strategies that is optimal amongNash equilibria, there
also exist other Nash equilibria that attain the same payoffs and implement the same be-
havior on the equilibrium path. A particularly interesting class of equilibria is enabled if
we add a communication stage to each interaction, prior to the stake selection stage. In
the communication stage both partners simultaneously choose which interactions from
their private history to reveal; for simplicity we assume that they can conceal interactions,
but not fabricate or falsify them. In this environment the following is a Nash equilibrium:

• In every communication stage, reveal your private history truthfully;
• In every stake selection stage, propose stakes ϕ;
• In every action stage, work if and only if you have never seen or heard of your

current partner deviate.

Under these strategies, players who have deviated are “ostracized” permanently. The best
deviation is to shirk on all your partners, while doing your best to conceal your own past
deviations. A deviator faces exactly the same punishment as in the binding contagion
equilibrium.

Restricting attention to Nash equilibria, one can enrich the game with further oppor-
tunities to communicate. Suppose that players also meet at rate µ > 0 purely to com-
municate (in addition to meeting at rate λ to interact). We have verified that Theorem 1
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still holds, with one small change: there exists a Nash equilibrium on the clique of de-
gree d that Pareto dominates all mutual effort equilibria and is utilitarian optimal among
all equilibria on all networks with maximal degree d.

The key distinction between this result and Theorem 3 is that this Nash equilibrium is
not a perfect Bayesian equilibrium. The challenge is with the incentive to communicate
truthfully off the equilibrium path. In Ali and Miller (2013) we show that if sequen-
tial rationality is required then no “permanent ostracism” equilibrium can outperform
mere bilateral enforcement. The problem is not with the equilibrium path incentive con-
straints; instead the problem arises from the requirement that the “victim” of a deviator
must prefer to reveal the truth off the equilibrium path. In that paper we discuss how
more complex “temporary ostracism” equilibria can outperform bilateral enforcement.

Equilibrium Networks: We focus on optimal networks rather than equilibrium net-
works through- out this paper. Many well-studied network formation games generate
multiple equilibrium net- works, often including efficient networks. To see this most
transparently, consider a two-sided linking process in which each player simultaneously
proposes the partnerships she wishes to en- gage in, and the ij partnership forms if and
only if both players i and j propose it. Once formed, the network is common knowledge.
It is straightforward to see that any network G can arise in an equilibrium of this game if
it yields a non-negative net payoff for each player, via the follow- ing strategy pro�le: if
network G arises then players follow an equilibrium that guarantees each of them non-
negative net payoffs, but if any other network forms then each player perpetually shirks.
This simple punishment deters players from deviating in the network formation stage.
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Appendix A Binding contagion
In this section we show that the Nash equilibrium payoffs identified in Lemma 2 can be
implemented in weak perfect Bayesian equilibrium using “binding contagion” strategies
that are sequentially rational regardless of the system of beliefs.

Let πi(M) be player i’s continuation payoff in a contagion strategy profile when she
believes that M ⊆ N is the set of contagious players. In a contagion profile, if M is non-
empty then it must include player i. A sufficient condition for player i to prefer to shirk
on player k is

ϕik + πi(M) ≤ T(ϕik) + πi(M ∪ {k}). (ICCont
ij )

If M ⊂ Ni ∪ {i}, then this inequality embodies the incentives that player i faces when
she knows (from her past history) that players in M are contagious, and believes that the
remaining players are cooperative. If ICCont

ij is satisfied, then player i prefers to shirk even
if player k is not contagious.

Generally, contagious players need not hold such optimistic beliefs about their part-
ners, but beliefs that attribute greater probability to others being contagious create a
stronger incentive to shirk. Establishing incentives to shirk under the most optimistic
beliefs about others ensures that contagious behavior is incentive compatible for all be-
liefs.

We first prove the analogue of Lemma 1 of Ellison (1994): in a contagion equilibrium,
the marginal incentive to work decreases in the number of contagious players.

Lemma 4. For every set of players M ⊆ N with i ∈M,

πi(M/{j}) − πi(M ∪ {j}) ≤ πi({i}) − πi({i, j}), (15)
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with strict inequality if M contains any player j′ ∉ {i, j}.

Proof. We establish this claim for every generic sequence of link recognitions (in which
no two linksmeet simultaneously) and then take expectations over them. Let ξ = (τz, ℓz)∞z=1
be a sequence of link recognitions that take place in [0,∞), where (τz)∞z=1 is the ordered
list of link recognition times and (lz)∞z=1 is the list of links in their order of recognition.

Fix a player i and suppose that M0 is the set of players who are contagious (including
player i) at a time normalized to zero. If the subsequent sequence of link recognitions
follows ξ, then the set of contagious players at time τz is

Cz(M0, ξ) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mo if z = 0,
Cz−1(M0, ξ) if z > 0 and either lz ⊆ Cz−1(M0, ξ) or lz ⊆ N/Cz−1(M0, ξ),
Cz−1(M0, ξ) ∪ lz otherwise.

(16)

When two players who are both cooperative or both contagious meet, no player changes
phase; it is only when a contagious player meets a cooperative player that the latter
also becomes contagious. Define πi (M0∣ξ) to be the equilibrium continuation payoff
of player i when players in M0 (including player i) are in the contagion phase at time
zero, the realization of recognition times is {τz}∞z=1. By calculation,

πi (M0∣ξ) − πi (M0 ∪ {j}∣ξ)

=
∞
∑
z=1

e−rτz ∑
k∈Ni

T (ϕik)1(ℓz = {i, k} and k ∈ Cz(M0 ∪ {j}, ξ)/Cz(M0, ξ))

≤
∞
∑
z=1

e−rτz ∑
k∈Ni

T (ϕik)1(ℓz = {i, k} and k ∈ Cz({i, j}, ξ)/Cz({i}, ξ))

= πi ({i}∣ξ) − πi ({i, j}∣ξ)

(17)

where 1 is the indicator function. The weak inequality follows from

Cz (M0 ∪ {j}, ξ) /Cz (M0, ξ) ⊆ Cz ({i, j}, ξ) /Cz ({i}, ξ) , (18)
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since the set of players who catch contagion via a path through player j is decreasing in
the number of other players through whom contagion can spread. Therefore, since (17)
holds for every ξ, taking the expectation over ξ yields (15) with weak inequality.

Moreover, suppose there exists some j′ ∈ M0/{i} and k ∉ M0, in which case Eq. 18
is strict for every sequence of link realizations starting with ℓ1 = {j′k} and ℓ2 = {ik}.11
Hence Eq. 18 is strict with probability at least (n(n − 1))−2, so taking expectations over ξ
yields (15) with strict inequality. □

Working with contagion equilibria poses a well-known challenge (Kandori 1992; El-
lison 1994): if the reward for working far exceeds the punishment for shirking, then a
contagious player may prefer to delay infecting others and instead choose to work. We
identify a class of contagion equilibria that solves this problem:

Definition 4. A contagion profile is binding if ICCoop
ij holds with equality for each neigh-

bor j in Ni, for each player i in N.

The virtue of making incentives bind on the path of play is that contagious players
have an incentive to shirk. The logic is analogous to that of Lemma 1 of Ellison (1994):
the marginal gain from working is decreasing in the number of contagious players and so
indifference on the equilibrium path implies that a player prefers to shirk off the equilib-
rium path.

Lemma 5. Every binding contagion profile is an equilibrium, with a strict incentive to
shirk at every history off the equilibrium path, regardless of the system of beliefs.

Proof. Consider a binding contagion profile with collective stakes profile Φ. First, this
profile satisfies cooperation phase (i.e., equilibrium path) incentive constraints by con-
struction. Second, regardless of the system of beliefs, any player who knows she is at
an information set off the equilibrium path also knows that at least one other player is
contagious—if she has not deviated, then the partner whom she first observed play an
off-path action is contagious, and if she has deviated, then the partner who first observed
her deviate is contagious. Therefore it suffices to establish contagion phase incentives

11Indeed, if j′ = j then the lefthand side of Eq. 18 is the empty set and so Eq. 18 is strict for every sequence
of link realizations starting with ℓ1 = {jk}.
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when {ik} is recognized and the set of contagious playersM contains player i and at least
one other player.

If ϕ̂ik or ϕ̂ki differ from ϕik, or if either player i or player k has shirked with the other
in a previous interaction, player i has a strict incentive to shirk since player k will shirk.
Instead, suppose as in ICCont

ij on p. 38 that neither of these have occurred, and player i
believes that players M are in the contagion phase, where M ⊆ N/{k} and ∣M∣ ≥ 2. Let
πi(∅) represent player i’s equilibrium continuation payoff. It follows from binding ICCoop

ij
on p. 20 that

T(ϕik) − ϕik = πi(∅) − πi({i, k}) = πi({i}) − πi({i, j}) > πi(M) − πi(M ∪ {j}), (19)

where the first equality is an expression of binding ICCoop
ij , the second inequality follows

from all of player i’s cooperation phase incentive constraints binding, and the inequality
follows from Lemma 4. Adding ϕij + πi (M ∪ {j}) to each side of the inequality yields
ICCont

ij , so the incentive to shirk in the contagion phase is strictly satisfied at all off-path
histories. □

41


	Introduction
	Model
	An Example
	Main Result
	Three Key Lemmas
	Proof of Theorem 1

	Costly Linking
	Discussion
	References
	Binding contagion

