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a b s t r a c t

Models of rational herding typically involve a finite action space. An intuition for herding is that this
coarseness of the action space relative to the space of potential beliefs is responsible for herding, andwere
the action space sufficiently rich, learning would be complete. That intuition is false: simple examples
illustrate that learning may be incomplete even if the action space is isomorphic to the space of beliefs.
What then distinguishes models with ’’coarse’’ versus ’’rich’’ action spaces? This paper develops the
language of responsiveness to formalize this distinction. Responsiveness assesses the sensitivity of optimal
actions with respect to their rationalizing beliefs. If the optimal action always changes with beliefs, then
complete learning is guaranteed regardless of the information structure. By contrast, if the action that
is optimal at certainty remains optimal near-certainty, then complete learning is guaranteed if and only
if information can induce unbounded likelihood ratios. The lens of responsiveness unifies results across
coarse and rich action spaces.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The observational learning literature, initiated by Banerjee
(1992) and Bikhchandani et al. (1992), studies a population of
players sequentially facing the same decision problem, with each
player observing the full history of prior choices. The literature
offers an informational rationale for imitation: after observing sev-
eral individualsmaking the same choice, an individual is inclined to
imitate thembecause their consensus is informative. This imitation
can generate herds on the wrong action and potentially lead to
incomplete learning.

✩ This paper develops results that were originally in the working paper ‘‘Social
Learning with Endogenous Information,’’ which has now been divided into this
paper and a companion paper on ‘‘Herding with Costly Information.’’ This note has
benefited from conversations with Erik Eyster, Ben Golub, Joel Sobel, and especially
Aislinn Bohren and Navin Kartik, and from the careful reading and suggestions of an
anonymous referee. This work is financially supported by NSF grant SES-1127643.

E-mail address: nageeb@psu.edu.

An intuition commonly expressed for herding is that the coarse-
ness of the action set obscures a player’s information. Because oth-
ers do not directly observe a player’s information about the state
of the world, they can infer it only through her choice of action.
If the action set is finite, that filtering is potentially imperfect. By
contrast, Lee (1993) shows that in a continuous-action environ-
ment, that filtering problem disappears. Each player’s beliefs are
perfectly revealed through her actions, and so there is no loss from
observing only players’ actions and not their information. These
contrasting results from Bikhchandani et al. (1992) and Lee (1993)
may lead one to believe that there is an important distinction
between finite and continuous action spaces.

Focusing on that distinctionmaybe incorrect. One can construct
examples in which the set of weakly undominated actions is con-
tinuous – and hence the action space is ‘‘rich’’– and nevertheless
herds ensue. Example 2 on p. 5 is one such example, and more
examples appear in Huck and Oechssler (1998), Chari and Kehoe
(2004), and Ali (2017). These examples raise the question: if the
distinction is not between ‘‘coarseness’’ and ‘‘richness,’’ what is the
appropriate categorization?

https://doi.org/10.1016/j.econlet.2017.11.029
0165-1765/© 2017 Elsevier B.V. All rights reserved.
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This note proposes a new categorization through the lens of
responsiveness. Responsiveness assesses the sensitivity of optimal
actions to their rationalizing beliefs, and thus, specifies a joint test
for the state-dependent utility function and the set of feasible ac-
tions. If the optimal action always shiftswith a player’s beliefs, then
the decision problem is responsive and otherwise, it is unresponsive.
An unresponsive decision problem is certainty-unresponsive if an
action that is optimal when a player is completely certain remains
optimal whenever she is near-certain.

The prototypical example of the responsive decision problem is
the quadratic-loss prediction problem studied by Lee (1993) and
others.1 The quintessential example of a certainty-unresponsive
decision problem is any decision problem with a finite action
space; however, a decision problemwith a continuous action space
can also be certainty-unresponsive.

The main result of this paper establishes the following:

Learning is complete in a certainty-unresponsive decision problem
if and only if the information structure induces unbounded likeli-
hood ratios. Learning is complete in a responsive decision problem
regardless of the information structure.

In other words, all decision problems that are certainty-
unresponsive inherit the behavior of models with finite action
spaces (identified by Smith and Sørensen, 2000), and respon-
sive decision problems inherit the behavior typically attributed to
continuous action spaces. When a decision problem is certainty-
unresponsive, once players are nearly certain of a state, their ac-
tions cease to reveal their belief. Accordingly, beliefs remain fixed,
unless it is the case that there exists a signal realization that can
overturn that near-certainty. Thus, an information structure with
unbounded likelihood ratios is needed (and suffices) to ensure
that learning does not stop until complete certainty of the state
is attained.

When the likelihood ratios are bounded, players eventually
cease to respond to their information even before reaching com-
plete certainty. In this case, learning is incomplete. One may
wonder in this case whether learning is still ‘‘adequate’’ (Aghion
et al., 1991): do players learn all that is relevant for their payoffs?
Because limit beliefs place strictly positive probability on both
states of the world, and the optimal action in each state is distinct,
players’ learning stops at a place where they would still value
learning more. Learning is thus inadequate.

By contrast, when the decision problem is responsive, every
player reveals her information through her optimally chosen ac-
tion. Because each player can perfectly infer the full history of
prior signal realizations, observational learning reduces to pure
statistical learning. By the Strong Law of Large Numbers, learning
is necessarily complete.

The goal of this paper is to develop and show that the lens of re-
sponsiveness clarifies and unifies results on coarse and rich action
spaces in observational learning. Related ideas appear in several
other papers. Lee (1993) studies conditions on the action set that
are necessary and sufficient for complete learning when the payoff
function is quadratic loss and the signal has finite support. His
analysis emphases the importance of ‘‘connectedness.’’ Arieli and
Mueller-Frank (2017) show more generally that decision prob-
lems are responsive for all but a meager set of continuous utility
functions so long as the set of feasible actions contains no iso-
lated points. Arieli (2017) studies the role of responsiveness in a
model of observational learning across generations in which each
generation has payoff-interdependencies. My work complements
these prior results in that I focus on the standard observational
learning framework to revisit the distinction between coarse and

1 A partial list is Vives (1993), Eyster and Rabin (2010, 2014), and Guarino and
Jehiel (2013).

rich action spaces. Apart from developing the notion of certainty-
unresponsive, the contribution here is to unify results on coarse
and rich action spaces in the language of responsiveness. A com-
panion paper (Ali, 2017) highlights the role of responsiveness
when information is costly: learning is inhibited by unresponsive-
ness because any experiment that cannot ‘‘swing’’ a player’s action
has no value, and so information has to be sufficiently persuasive to
have value. By contrast, in responsive decision problems, a player
values all kinds of information because she always has a motive to
‘‘tweak’’ her action.2

2. Model

2.1. Setup

Decision problem: Each of an infinite sequence of players t =

1, 2, 3, . . . , chooses from A, the set of feasible actions, which is
a compact subset of ℜ with at least two distinct elements. The
payoff of each action depends on the state of the world ω, which
is either ‘‘high’’ (ω = 1) or ‘‘low’’ (ω = 0). Choosing action a
in state ω generates a payoff of u(a, ω), which is continuous in a
for each ω. Without loss of generality, I assume that no action is
weakly dominated, and therefore, there is no loss of generality in
assuming that u(a, 0) is strictly decreasing in a and u(a, 1) is strictly
increasing in a. The lowest and highest actions inA are denoted by
a and a respectively, and these are optimal in ω = 0 and ω = 1
respectively. A decision problem is a pair (A, u).

Beliefs and information: Players share a common prior that as-
cribes probability π ∈ (0, 1) to the state being high. Each player
obtains information about the state: given the state ω, an individ-
ual obtains a signal realization si in [0, 1] that is governed by a
conditional c.d.f. F (·, ω), independently of the signal realizations of
other players. No signal realization perfectly reveals the state: the
distributions F (·, 0) and F (·, 1) aremutually absolutely continuous,
and have common support 6. As is conventional, I normalize the
realization to be the posterior probability that would be ascribed
to the high state were the prior neutral.3

The information structure is at least moderately informative:
there exists p ∈ [0, 1] such that F (p, 0) ̸= F (p, 1). The closure of
the convex hull of 6 is denoted

[
p, p

]
. An information structure

induces bounded beliefs if 0 < p ≤ p < 1 and induces unbounded
beliefs if p = 0 and p = 1. To simplify exposition, I assume that
F (·, ω) is continuously differentiable for each ω.

Histories and equilibrium: Each player observes actions of all pre-
decessors but not their information. The public history observed
by player j is hj

≡ (ai)i=1,...,j−1. I study Perfect Bayesian Equilibria
(henceforth PBE). For a PBE, and equilibrium history hj, let µ(hj) =

Pr(ω = 1|hj) summarize the public belief after history hj. Consider
a set H of infinite length (equilibrium) histories, and for such a
history h∞, let hj

∞ be its truncation to actions in periods 1, . . . , j−1.
For ω ∈ {0, 1}, let Hω denote the set of histories in H such that
limj→∞µ(hj

∞) = ω. Learning is complete if for each ω ∈ {0, 1},
Pr (h∞ ∈ Hω | ω) = 1, and otherwise, learning is incomplete.

2 Other analyses of social learning study variations of the standard framework
that ensure that ‘‘collective behavior’’ is responsive even if the action space is
discrete. Avery and Zemsky (1998) highlight how prices that adjust with the
public history can ensure that individuals’ pricing choices are responsive to their
information. Goeree et al. (2006) augment payoffs with private taste shocks for
either action and show that such shocks can induce a strictly positive fraction of
types to be sensitive to their information. Analogously, Eyster et al. (2014) study
how congestion costs may ensure that some agent behaves in a ‘‘responsive’’ way
infinitely-often. Eyster and Rabin (2014) study the quadratic-loss prediction prob-
lem across general observational structures, and impose a condition that ensures
that the record of actions reveals information.
3 In other words, if F is differentiable at p, and p ∈ 6, p =

f (p,1)
f (p,1)+f (p,0) .
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2.2. Responsiveness of the decision problem

For a belief that places probability µ on the state being high,
let a∗(µ) denote a maximizer of µu(a, 1) + (1 − µ)u(a, 0).4 This
optimal action rule a∗(µ) is non-decreasing in µ because u(a, 0) is
decreasing in a and u(a, 1) is increasing in a. BecauseA contains no
weakly dominated actions, a is uniquely optimal when µ = 0, a is
uniquely optimal when µ = 1, and for each a ∈ A, there exists µ

such that a = a∗(µ).

Definition 1. A decision problem (A, u) is responsive if for every
µ, ν in [0, 1] where µ ̸= ν, a∗(µ) ̸= a∗(ν), and otherwise, it is
unresponsive.

Being responsive is a demanding condition for a decision prob-
lem: any change in belief induces a player to ‘‘tweak’’ her action.
Formally, it demands that a∗

: [0, 1] → A be injective, and
so a rational player’s belief can be inferred from her action.5

A necessary condition for a (A, u) to be responsive is that A is
isomorphic to [0, 1], but that is not sufficient, as Example 2 below
indicates. Prior to describing the examples, it is worth highlighting
a particular failure of responsiveness, namely when it fails near-
certainty. This is described below as ‘‘certainty-unresponsive.’’

Definition 2. A decision problem (A, u) is certainty-unresponsive if
an extreme action, a or a, is optimal at an interior belief: a∗(µ) ∈

{a, a} for µ ∈ (0, 1).

A particular example of a certainty-unresponsive decision prob-
lem iswhenA is finite: eachweakly undominated action is optimal
over a range of beliefs, including those that are optimal when
players are completely certain of the state. But Example 2 and
examples in Chari and Kehoe (2004) and Ali (2017) indicate that
even continuous action investment problems may be certainty-
unresponsive.

I illustrate notions of responsiveness and unresponsiveness us-
ing the following examples.

Example 1. Consider the prediction problem studied by Lee
(1993): suppose A = [0, 1] and u(a, ω) = −(a − ω)2. The optimal
action rule is a∗(µ) = µ, and so (A, u) is a responsive decision
problem.

The prediction problem described above is the paragon of re-
sponsiveness. However, a slight adaptation of this action space
results in the decision problem becoming certainty-unresponsive.

Example 2. Truncate A defined in Example 1 to A′
= [ε, 1] for

some ε ∈ (0, 1). Then a∗(µ) = min{ε, µ}, and thus, the optimal
action chosen when the player is certain that ω = 0 remains the
same when the player ascribes probability at least 1 − ε to ω = 0.
Therefore, the decision problem (A′, u) is certainty-unresponsive.

The action spaces in Examples 1 and 2 are both isomorphic to
the space of beliefs, [0, 1], and to each other. Nevertheless, the
decision problems exhibit different behaviors across beliefs, and
this difference – as we shall see in Theorem 1 – results in different
implications for herding.

4 If there are multiple optimal actions at a belief µ, select the lowest one.
5 In this vein, this work connects to the literature on eliciting beliefs from

actions (Savage, 1971; Karni, 2009), where the objective is to design decision
problems in which actions reveal beliefs.

3. The main result

Theorem 1. Fix a prior π ∈ (0, 1).

(a) If (A, u) is responsive, then learning is complete.
(b) If (A, u) is certainty-unresponsive, then learning is complete if

the information structure induces unbounded beliefs, and is in-
complete if the information structure induces bounded beliefs.6

(c) If (A, u) is unresponsive, then there exists an open and dense set
of prior-signal combinations such that learning is incomplete.

Responsiveness plays an intuitive role: do actions fully reveal
information?When (A, u) is responsive, actions are fully revealing
and this perpetual accumulation of information inexorably con-
centrates public belief to the truth (a.s.), as in Lee (1993). Other-
wise, if the decision problem is unresponsive, information is lost
because an individual’s action is a coarse signal of his beliefs (even
if his action space is a continuum).When this coarsenessmanifests
at extreme beliefs – as it does in certainty-unresponsive decision
problems – extreme signal realizations are needed to sway actions
from an inefficient herd, exactly as in the finite-action case studied
by Smith and Sørensen (2000).

Proof of Theorem 1. Let B(µ, p) denote the posterior probability
that the state is high when the prior is µ and the signal realization
is p. For a measurable set of actions A, let

P(A, µ) ≡ {p ∈ 6 : a∗(B(µ, p)) ∈ A}

and α(A, µ, ω) ≡

∫
P(A,µ)

dF (p, ω).

I define the ‘‘support’’ of actions:

A(µ) = {a ∈ A : α((a − ε, a + ε) ∩ A, µ, ω) > 0
for every ε > 0 and ω ∈ {0, 1}}.

Let p∗(a, µ) and p∗(a, µ) be the sup and inf of P({a}, µ) respectively.
Since F (·, ω) is continuously differentiable, it follows that for every
measurable subset A, α(A, µ, ω) is continuous in µ. Let β(a, µ) be
the updated public belief when action a ∈ A(µ) is chosen at public
belief µ; for every action a such that p∗(a, µ) ̸= p or p∗(a, µ) ̸= p,
β(a, µ) is continuous in µ. Define the cascade set of beliefs to be
C ≡

⋃
a∈A{µ ∈ [0, 1] : P({a}, µ) = 6}.

Lemma 1. A public belief µ ∈ C if and only if α(A, µ, 0) =

α(A, µ, 1) for every measurable A.

Proof. If µ ∈ C, then the definition of C implies that there
exists an action a such that P({a}, µ) = 6. Therefore, for each
ω, α(A, µ, ω) = 1 if a ∈ A, and α(A, µ, ω) = 0 if a ̸∈ A.
Suppose that µ ̸∈ C. Then there exists an action ã such that
F (p∗(ã, µ), ω) ∈ (0, 1), and consider the set of actions [a, ã]:
by Lemma A.1 of Smith and Sørensen (2000), it follows that
F (p∗(ã, µ), 1) < F (p∗(ã, µ), 0). □

For each stateω, consider the likelihood ratiowith respect to the
other state: lt1(h

t ) =
1−µt (ht )
µt (ht ) and lt0(h

t ) = 1/lt1(h
t ). Treat ⟨lti (·)⟩

∞

t=1 as
a stochastic process, and note that it is a non-negative martingale
conditioning on ω = i. The Martingale Convergence Theorem
ensures that it converges almost-surely to a random variable l∞i
whose support is in [0, ∞).

6 This result is not the tightest possible because the environment, as in Smith
and Sørensen (2000), assumes that private beliefs are bounded away from both 0
and 1 or from neither. A tighter result is possible when one allows for information
structures that are bounded away from one but not the other. Say that a decision
problem is certainty-unresponsive at ω ∈ {0, 1} if a∗(µ) = a∗(ω) for µ ∈ (0, 1).
Also, say that private beliefs are unbounded at ω ∈ {0, 1} if ω ∈ [p, p]. Then the
argument of Theorem 1(b) establishes the following tighter claim: Suppose that the
decision problem is certainty-unresponsive at ω. Then learning is complete at ω′

̸= ω

if and only if private beliefs are unbounded at ω′ .
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Lemma2. Conditional onω = i, the likelihood ratio l is in the support
of l∞i implies that 1

1+l is a subset of C if i = 1, and l
1+l is a subset of

C if i = 0.

Proof. Suppose towards a contradiction that the support of l∞1
includes l such that µ =

1
1+l is not in C. Consider action ã such that

F (p∗(ã, µ), ω) ∈ (0, 1), and β(ã, µ) < µ; such an action must exist
by Lemma 1 and the law of iterated expectations. Bymonotonicity,
for each a ∈ [a, ã] ∩ A(µ), |β(a, µ) − µ| ≥ |β(ã, µ) − µ|. Let
α̃ =

α([a,ã],µ,1)
2 . Since α(·, µ, ω) and β(·, µ) are continuous in µ, it

follows that there exists ε > 0 such that for everyµ′
∈ (µ−ε, µ+

ε), the updated belief is in (µ − ε, µ + ε) with probability at most
1 − α̃, yielding a contradiction. An analogous argument applies
for l∞0 . □

Now suppose (A, u) is responsive. Then C = {0, 1}, and since
the Martingale Convergence Theorem ensures that l∞i has support
in [0, ∞), Lemma 2 implies that Pr(l∞i = 0 | ω = i) = 1.

Suppose that (A, u) is certainty-unresponsive. If the informa-
tion structure induces unbounded beliefs, C = {0, 1}, and so as
above, Pr(l∞i = 0 | ω = i) = 1. Now suppose that the information
structure induces bounded beliefs. Let µ be the highest belief such
that a∗(µ) = a; analogously, let µ be the lowest belief such that
a∗(µ) = a. We consider the following cases below.

1. Suppose that 0 < µ < µ < 1. Define

l∗ ≡

(
1 − µ

µ

)(
1 − p

p

)
, l∗ ≡

(
1 − µ

µ

)(
1 − p
p

)
.

It follows that once lt1 enters [0, l∗] ∪ [l∗, ∞], all subsequent
players choose the same action regardless of their signal
realization. Learning is incomplete in both ω = 0, 1.

2. Suppose that µ > 0 but µ = 1. To show that learning
is incomplete with strictly positive probability, it suffices to
establish that there exists l such that Pr(l∞1 > l | ω = 1) > 0.
Suppose otherwise. Then, E[l∞1 | ω = 1] = 0. However, it
must also be that for every t , Pr(lt1 < l∗) = 1 since otherwise,
there is positive probability that the public likelihood ratio
converges to a positive number. Since lt1 is dominated by l∗,
we can apply the Bounded Convergence Theorem to establish

that E[l∞1 | ω = 1] = limt→∞E[lt1 | ω = 1], which equals
l01 > 0 since ⟨lt1⟩ is a martingale, yielding a contradiction.

3. The argument is analogous for µ = 0 but µ < 1 by
considering the stochastic process ⟨lt0⟩.

Finally, suppose that (A, u) is unresponsive. Consider an action
a and a range of beliefs [µ, µ) such that for every µ ∈ [µ, µ),
a∗(µ) = a. Consider any combination of prior-signal combination
(π, s) such that π ∈ [µ, µ), and B(π, p) < µ and B(π, p) > µ. For
such combinations, every player chooses action a regardless of her
signal realization. □
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