S. Nageeb Ali

University of California, San Diego

March 1, 2011

### Motivation

- Temptation  $\rightarrow$  Commitment.
- But what does a DM know about his temptations?
- E.g. in quasi-hyperbolic discounting,

$$U(u_t, u_{t+1}, \dots) = E_t \left( u_t + \beta \sum_{\tau=1}^{\infty} \delta^t u_{t+\tau} \right).$$

- Usual practice fixes DM's beliefs at  $\hat{\beta}$ .
  - Sophistication:  $\hat{\beta} = \beta$ .
  - Naivete:  $\hat{\beta} = 1$ .
  - Partial naivete:  $\hat{\beta} \in (\beta, 1)$ .
- Beliefs influence commitment (and dynamic) choice.

S. Nageeb Ali

Introduction

### Conceptual Issues

- Partial sophistication: beliefs incompatible with experience.
- Difficult to understand when solution concept is appropriate.

"I think that behavioral economics would be well served by concerted attempts to provide learning-theoretic (or any other foundations) for its equilibrium concepts. At the least, this process might provide a better understanding of when the currently used concepts apply...." - Drew Fudenberg

### Conceptual Non-issues

#### Leaves open big questions:

Introduction

- (When) Is Sophistication = Long-run limit of learning?
- How does the *technology* of commitment affect learning?
- What is the pathway from  $Naivete \rightarrow Limit\ of\ learning$ ?
- Who becomes sophisticated and who remains naive?

#### Leaves open big questions:

Introduction 00000000000

- (When) Is Sophistication = Long-run limit of learning?  $\checkmark$
- How does the *technology* of commitment affect learning?  $\checkmark$
- What is the pathway from  $Naivete \rightarrow Limit\ of\ learning?$
- Who becomes sophisticated and who remains naive?

- Long-run *Planner* chooses a menu in each period.
- Myopic *Doer* picks from menu based on i.i.d. taste-shock and persistent temptation.
- Planner does not know extent of Doer's temptation, but learns over time through Bayesian updating.

UCSD S. Nageeb Ali

### Learning

- Commitment vs. flexibility  $\rightarrow$  Experimentation.
  - Flexibility necessary for learning.
  - But is costly if Doer has strong temptations.
- Learning may be incomplete.
- Necessary and sufficient condition on commitment technology for as-if sophistication.

#### Full Commitment Distinguishability

$$\equiv$$
 for every  $(\theta_G, \theta_B)$ ,

there exists a commitment technology such that Planner can fully commit  $\theta_B$  and not  $\theta_G$ .

Consumption-savings setting: FCD ✓

Addiction: <del>FCD</del>

Introduction 00000000000

Costly self-control / willpower: FCD ✓ (sometimes)

FCD

Globally adequate learning regardless of  $\delta$  and prior.

Globally adequate learning

≡ For every Doer type, Planner eventually attains same payoffs as fully informed Planner.

UCSD S. Nageeb Ali

## Main Result: Necessity



For every  $\delta$ , learning is inadequate for some open set of priors.

#### Inadequate learning

≡ Strictly positive measure of types for which Planner fails to attains same payoffs as fully informed Planner with strictly positive probability.

### Related Literature

- Dual Selves: Thaler and Shefrin (1981), Bernheim and Rangel (2004), Fudenberg and Levine (2006, 2010a,b).
- Commitment vs. Flexibility: Gul and Pesendorfer (2001, 2005), Amador, Werning, and Angeletos (2006).
- Learning: Easley and Kiefer (1988), Aghion, Bolton, Harris, and Julien (1991), Fudenberg and Levine (1993a,b).
- Partial naivete: Many papers here; you've either read or written them anyway.

# Example

For *context*, consider the "Gym Environment":

- In each period, DM chooses to work out  $(a_t = 1)$  or not  $(a_t = -1)$ .
- Firm charges lump-sum L in each period.
- DM rejects contract: payoff of 0 in that period.
- DM accepts contract:
  - Pays lump-sum.
  - Immediate cost  $c_t$  uniform from [0, 1].
  - (Delayed) Benefit of  $b \in [0, 1]$ .

Doer chooses whether to exercise if contract is signed:

- No temptation:  $c_t \leq b$ .
- Temptation:  $c_t \leq \theta b$  for  $\theta < 1$ .
- In either case, Doer is myopic.

# Planner: Choosing Contract / Menu

Planner pays for membership iff:

$$\mu_0 b \left( b - \frac{b}{2} \right) + (1 - \mu_0) \theta b \left( b - \frac{\theta b}{2} \right) \geqslant L.$$

Standard Sophisticated about temptation Uncertain about Doer's Type

### Learning

If Planner signs a contract, he can learn from Doer's exercise choices.

- Suppose Planner observes  $a_0$  but not  $c_0$ . (Will relax later).
- If Planner signed contract at t = 0:

$$\frac{\mu_1}{1-\mu_1} = \left(\frac{\mu_0}{1-\mu_0}\right) \times \underbrace{\left(\frac{b}{\theta b}\right)}_{q=1} \underbrace{\left(\frac{1-b}{1-\theta b}\right)}_{q=-1}$$

### Dynamic Programming

$$V(\mu) = \max \left\{ \begin{array}{l} \text{Today's Value} + \text{Discounted Expected Value} \\ 0 \end{array} \right\}$$

Solution: Planner enrolls iff  $\mu \geqslant \mu^*$ .

Beliefs are endogenous but converge a.s.

S. Nageeb Ali

#### Eventual Beliefs and Choices

#### Theorem

**1** If the Doer is tempted  $(\theta)$ , Planner eventually stops enrolling a.s.

$$\Pr\left(\lim_{t\to\infty}\mu_t<\mu^*|\theta\right)=1.$$

2) If the Doer is not tempted, with positive probability, the Planner's always enrolls and with positive probability, stops enrolling.

$$\Pr\left(\lim_{t\to\infty}\mu_t\in\underbrace{[0,\mu^*)}_{Ineffiency}\cup\{1\}|Not\ tempted\right)=1.$$

S. Nageeb Ali

#### Partial Commitments

Suppose that Doer of either type can be *nudged* to exercise through rewards.

• Exercise iff  $c_t \leq \theta b + z$ .

Planner can sign a commitment contract in which

- Planner sets  $z = b \theta b$ .
- Pays upfront  $(1-\theta)(\theta b)^2$ .

Contract: Zero expected transfers, and induces first-best when Planner is confident that Doer's type is  $\theta$ .

## Globally Adequate Learning

Fact

 $Commitment\ contracts \Rightarrow\ Globally\ adequate\ learning.$ 

#### General Framework

#### Generalizes examples in several ways:

- Continuum of types.
- Partial commitments come in two forms: Nudges and Menus.
  - Nudges influence payoffs of Doer, e.g., Antabuse, commitment contracts, promises and peer-based shame mechanisms.
  - Menus restrict choices of Doer, e.g., illiquid assets.
  - Paper studies both; for talk, will focus on menus.
- Planner can observe signals of past taste-shocks.

## Setting

- Action  $a_t \in A \equiv [a, \overline{a}]$  is chosen in period t = 0, 1, 2, ...
- In each period, state  $s \in S \equiv [s, \overline{s}]$  is drawn, iid with cdf F.

UCSD S. Nageeb Ali

### Planner's Payoffs

Planner has payoffs u(a, s) that are

- Strictly quasi-concave in a for each state s,
- Satisfy strict single crossing in (a, s)

 $\Rightarrow a_P(s)$  is single-valued and non-decreasing in s.

Assume unique  $\hat{a}$  that is ex ante optimal.

### Commitment

Planner chooses a menu, a closed and non-empty subset of actions, M.

- F is the set of all *logically feasible* menus.
- M is the set of all economically feasible menus.
- M is closed (in the Hausdorff metric topology).
- $\mathcal{M}$  contains full flexibility (M=A) and full commitment  $(M = \{\hat{a}\}).$

### Doer

Doer of type  $\theta$  solves

$$Max_{a \in M} W(a, s, \theta)$$

where W is:

- Continuous, strictly quasi-concave
- Satisfies strict single-crossing property in (a, s) and  $(a, \theta)$ .

 $\Rightarrow a_D(s, \theta, M)$  is non-decreasing in s and  $\theta$ .

### Temptation

### Assumption

The Doer is tempted to undertake lower actions than the Planner:

$$u(a, s) \succeq W(a, s, \theta)$$

by the single-crossing condition for every  $\theta$ .

UCSD S. Nageeb Ali

### Full Information Benchmark

$$\pi(\theta, M) = \int_{\mathcal{S}} u(a_D(s, \theta, M), s) dF.$$

$$\pi^*(\theta) \equiv \max_{\mathit{M} \in \mathcal{M}} \pi(\theta, \mathit{M}).$$

$$\hat{\pi} = \int_{S} u(\hat{a}, s) dF.$$

- Planner begins with prior  $\mu_0$ .
- After each period, Planner obtains signal about prior state.
- History  $h^t$  denotes history of commitments, actions, and signals in periods 0, ..., t-1.
- $\mu_t$  is relevant posterior.

$$V(\mu;\delta) = \max_{M \in \mathcal{M}} \left\{ (1 - \delta) \int_{\Theta} \pi(\theta, M) d\mu + \delta \int_{P(\Theta)} V(\mu'; \delta) dQ(\mu, M) \right\}$$

Model

00000000000000000

# Adequacy

#### Definition

Learning is adequate for a type  $\theta$  if the Planner's payoffs when uncertain eventually converge to the full information benchmark.

$$\Pr\left(\lim_{t\to\infty}V(\mu_t;\delta)=\pi^*\left(\theta\right)|\theta\right)=1.$$

### Role of Commitments in Learning

- If the Planner retains some flexibility for Doer to choose different actions, empirical frequency of actions identify type.
- Full commitment impedes learning: for some types, the Planner may wish to fully commit.

$$\hat{M}(\theta) = \{ M \in \mathcal{M} : a_D(s, \theta, M) = \hat{a} \text{ for almost all } s \}$$

$$\hat{\Theta} = \{\theta \in \Theta : \pi^* \left(\theta\right) = \hat{\pi}\}\$$

### Full Commitment Distinguishability

### Definition

FCD is satisfied if for almost every  $\hat{\theta}$  in  $\hat{\Theta}$  and every  $\theta$  not in  $\hat{\Theta}$ ,

$$\hat{M}(\hat{\theta}) \nsubseteq \hat{M}(\theta)$$

UCSD S. Nageeb Ali

#### Theorem

If an environment satisfies FCD, then for all priors and discount factors, learning is globally adequate.

Intuition: If  $\hat{\theta}$  and  $\theta$  are in support, use commitment that distinguishes them. Repeat.

### Main Results Necessity

Suppose that  $\mathcal{M} = \mathcal{F}$ , or is the set of all feasible interval menus.

#### Theorem

If an environment fails for FCD, then for all discount factors, learning is inadequate for some open set of priors.

Intuition: A failure of FCD  $\Rightarrow$  costly experimentation.

UCSD S. Nageeb Ali

### Role of Patience

#### Theorem

Regardless of FCD, for every  $\mu_0$ ,

$$\lim_{\delta \to 1} V(\mu_0; \delta) = \int_{\Theta} \pi^* (\theta) d\mu_0$$

Force similar to Aghion, Bolton, Harris, and Jullien (1991), and Fudenberg and Levine (1993b).

- Approximate payoffs with a finite set of commitments.
- Choose each commitment a large number of times.
- Settle on commitment that appears optimal.

Difficult to distinguish patience from naivete through menu choice.

# Application to Savings

$$E\left[\sum_{t=0}^{\infty} \delta^t u_t U(c_t)\right]$$

- $u_t \in [\underline{u}, \overline{u}]$  with  $0 < \underline{u} < \overline{u}$  and E[u] = 1.
- $U(c_t)$  is a CRRA utility function with coefficient  $\sigma \geq 0$ .
- Planner begins with wealth  $y_0$ , and future wealth,  $y_t = R(y_{t-1} - c_{t-1}).$

S. Nageeb Ali

# Tempted to Overconsume

$$E\left[\sum_{t=0}^{\infty} \delta^t u_t U(c_t)\right]$$

- Planner's Solution:  $c_P(u) \times y$ .
- Doer's (ideal) consumption:  $c(u, \theta) \times y$ 
  - Strictly decreasing in  $\theta$ , where  $\theta \in [\theta, 1]$ .
  - Highest type has no bias:  $c(u,1) = c_P(u)$ .
  - Can capture present-bias where Doer has discount factor  $\theta\delta$ .

# Commitment: Illiquid Assets

- Illiquid assets are a natural commitment technology to consider.
- Planner purchases  $s_t \times y_t$  of illiquid wealth at the beginning of time t.
- Constrains Doer to choose from  $[0, (1-s_t)y_t]$  in period t.

If Planner could commit to singleton, set  $\hat{s}$  to be the optimal full commitment.

$$\hat{s} = \delta^{\frac{1}{\sigma}} R^{\frac{1-\sigma}{\sigma}} \tag{1}$$

### FCD in Savings Environment



Figure I: Consumption Caps

Dotted curves indicate the Doer's ideal consumption for each taste-shock, and solid lines indicate the Doer's actual consumption when the Planner selects commitment optimally.

#### Result

Theorem

Learning is globally adequate for all priors and discount factors.

Caveat: Learning is still costly and can make DM poorer.

UCSD S. Nageeb Ali

### Conclusion

- Paper offers condition for Bayesian learning to yield sophistication.
- Results highlight dynamic benefits of partial commitments.
- Methodologically, framework shows tractability of dual self models.

UCSD S. Nageeb Ali

### Conclusion

- Learning can fail when individuals aren't Bayesian, have bounded memories, and have self-serving beliefs.
- Also, learning about new environment and self-control is hard.
- Commitment may have other costs that are not modeled (and may require self-control).
- Empirical challenges in identifying self-awareness from choices, but much exciting work underway.