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Motivation

Temptation — Commitment.

But what does a DM know about his temptations?

e E.g. in quasi-hyperbolic discounting,

Ulug, ugy 1, ...) = By <Ut+ B Z 5tut+1> .

T=1

Usual practice fixes DM’s beliefs at /[?;
e Sophistication: B = f.
e Naivete: @: 1.

e Partial naivete: [% € (B,1).

e Beliefs influence commitment (and dynamic) choice.
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Conceptual Issues

e Partial sophistication: beliefs incompatible with experience.

e Difficult to understand when solution concept is appropriate.

“I think that behavioral economics would be well served by
concerted attempts to provide learning-theoretic (or any
other foundations) for its equilibrium concepts. At the least,
this process might provide a better understanding of when the
currently used concepts apply....” — Drew Fudenberg
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Conceptual Non-issues

Leaves open big questions:
e (When) Is Sophistication = Long-run limit of learning?
e How does the technology of commitment affect learning?
e What is the pathway from Naivete — Limit of learning?

e Who becomes sophisticated and who remains naive?
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Dual Selves

e Long-run Planner chooses a menu in each period.

e Myopic Doer picks from menu based on i.i.d. taste-shock and
persistent temptation.

e Planner does not know extent of Doer’s temptation, but learns
over time through Bayesian updating.
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Learning

e Commitment vs. flexibility — Experimentation.
e Flexibility necessary for learning.

e But is costly if Doer has strong temptations.
e Learning may be incomplete.

e Necessary and sufficient condition on commitment technology for
as-if sophistication.
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FCD

Full Commitment Distinguishability

= for every (0¢,035),

there exists a commitment technology such that
Planner can fully commit 05 and not 0.

Consumption-savings setting: FCD v/
Addiction: ¥F&B
Costly self-control / willpower: FCD v/ (sometimes)
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Main Result: Sufficiency

FCD
I

Globally adequate learning regardless of 6 and prior.

Globally adequate learning
= For every Doer type, Planner eventually attains same payoffs as fully informed Planner.
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Main Result: Necessity

—FCD
4

For every 8, learning is inadequate for some open set of priors.

Inadequate learning
= Strictly positive measure of types for which Planner fails to attains same payoffs as fully informed
Planner with strictly positive probability.
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Related Literature

Dual Selves: Thaler and Shefrin (1981), Bernheim and Rangel
(2004), Fudenberg and Levine (2006, 2010a,b).

Commitment vs. Flexibility: Gul and Pesendorfer (2001, 2005),
Amador, Werning, and Angeletos (2006).

Learning: Easley and Kiefer (1988), Aghion, Bolton, Harris, and
Julien (1991), Fudenberg and Levine (1993a,b).

Partial naivete: Many papers here; you’ve either read or written
them anyway.
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Example

For context, consider the “Gym Environment”:

e In each period, DM chooses to work out (a; = 1) or not
(at = —1)

e Firm charges lump-sum L in each period.
e DM rejects contract: payoff of 0 in that period.

e DM accepts contract:

e Pays lump-sum.
e Immediate cost ¢; uniform from [0, 1] .
e (Delayed) Benefit of b € [0, 1].
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Doer: Exercising Options

Doer chooses whether to exercise if contract is signed:
e No temptation: c¢; < b.
e Temptation: ¢; < 0b for 0 < 1.

e In either case, Doer is myopic.
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Planner: Choosing Contract / Menu

Planner pays for membership iff:

b 0b
Lob <b—2> + (1 —ppo) 00 <b—2> > L.

Standard Sophisticated about temptation
Uncertain about Doer’s Type
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Learning

If Planner signs a contract, he can learn from Doer’s exercise choices.
e Suppose Planner observes ag but not c¢p. (Will relax later).

e If Planner signed contract at ¢ = 0:

1o Ho o b 1—0
1—|,L1 1—},L0 0b 1—00b
S~ —

a=1 a=—1
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Dynamic Programming

V(1) = max { 0Today s Value + Discounted Expected Value }

Solution: Planner enrolls iff p > p*.

Beliefs are endogenous but converge a.s.
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Eventual Beliefs and Choices

Theorem

® If the Doer is tempted (0), Planner eventually stops enrolling a.s.

Pr ( lim py < u*|9) =1.
t—00

® If the Doer is not tempted, with positive probability, the Planner’s
always enrolls and with positive probability, stops enrolling.

Pr| lim p; € [0,u*) U{1}|Not tempted | = 1.
t—»00 ——

Ineffiency
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Partial Commitments

Suppose that Doer of either type can be nudged to exercise through
rewards.

e Exercise iff ¢; < 0b+ 2

Planner can sign a commitment contract in which

e Planner sets z= b — 0b.
e Pays upfront (1 —0) (00)°.

Contract: Zero expected transfers, and induces first-best when
Planner is confident that Doer’s type is 0.
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Globally Adequate Learning

Fact
Commitment contracts = Globally adequate learning.
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General Framework

Generalizes examples in several ways:

e Continuum of types.
e Partial commitments come in two forms: Nudges and Menus.

e Nudges influence payoffs of Doer, e.g., Antabuse, commitment
contracts, promises and peer-based shame mechanisms.

e Menus restrict choices of Doer, e.g., illiquid assets.
e Paper studies both; for talk, will focus on menus.

e Planner can observe signals of past taste-shocks.
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Setting

e Action a; € A = [a,d] is chosen in period t=0,1,2,....

e In each period, state s € 8§ = [s, 3] is drawn, iid with cdf F.
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Planner’s Payofts

Planner has payoffs u(a, s) that are
e Strictly quasi-concave in a for each state s,

e Satisfy strict single crossing in (a, s)

= ap(s) is single-valued and non-decreasing in s.

Assume unique @ that is ex ante optimal.
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Commitment

Planner chooses a menu, a closed and non-empty subset of actions, M.

e F is the set of all logically feasible menus.

M is the set of all economically feasible menus.

M is closed (in the Hausdorff metric topology).

M contains full flexibility (M = A) and full commitment
(M ={a}).
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Doer

Doer of type 0 solves
Mazx,epyWia, s,0)

where W is:
e Continuous, strictly quasi-concave

e Satisfies strict single-crossing property in (a, s) and (a,0).

= ap(s, 0, M) is non-decreasing in s and 0.
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Temptation

Assumption

The Doer is tempted to undertake lower actions than the Planner:
u(a, s) = Wla,s,0)

by the single-crossing condition for every 0.
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Full Information Benchmark

(6, M) = L w(ap(s,0, M), s) dF.
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Uncertainty, Learning, and Feedback

Planner begins with prior .

After each period, Planner obtains signal about prior state.

History h' denotes history of commitments, actions, and signals
in periods 0, ...,t— 1.

e L, is relevant posterior.
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Dynamic Programming

V(W 6) = max { (1-5) J@n(e,M) du+ SL(@) VIW';8)dQ (1, M) }

MeM
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Adequacy

Definition
Learning is adequate for a type O if the Planner’s payoffs when
uncertain eventually converge to the full information benchmark.

Pr( lim V(pg8) = (e)|e) ~ 1.
t—o00
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Role of Commitments in Learning

o If the Planner retains some flexibility for Doer to choose different
actions, empirical frequency of actions identify type.

e Full commitment impedes learning: for some types, the Planner
may wish to fully commit.

J/\\J(G) ={MeM:apl(s 06, M) =12 for almost all s}

O={0cO:7"(0) =)
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Full Commitment Distinguishability

Definition
FCD is satisfied if for almost every 8 in © and every 6 not in O,
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Main Results

Sufficiency

Theorem
If an environment satisfies FCD, then for all priors and discount
factors, learning is globally adequate.

Intuition: If © and 0 are in support, use commitment that
distinguishes them. Repeat.
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Main Results

Necessity

Suppose that M = &, or is the set of all feasible interval menus.

Theorem
If an environment fails for FCD, then for all discount factors,
learning is inadequate for some open set of priors.

Intuition: A failure of FCD = costly experimentation.
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Role of Patience

Theorem
Regardless of FCD, for every w,

lim V(no: ) =J 7 (8) duto
5—1 e)

Force similar to Aghion, Bolton, Harris, and Jullien (1991), and
Fudenberg and Levine (1993b).

e Approximate payoffs with a finite set of commitments.
e Choose each commitment a large number of times.

e Settle on commitment that appears optimal.

Difficult to distinguish patience from naivete through menu choice.
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Application to Savings

E

Z 5tut U(Ct)
t=0

o u; € [u,u with 0 <u<uand Flu] =1.
e U(c¢) is a CRRA utility function with coefficient o > 0.

e Planner begins with wealth y,, and future wealth,
y=R (yt—l - Ct—1)~
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Tempted to Overconsume

E

> 8w Uler)
t=0

e Planner’s Solution: cp(u) X .
e Doer’s (ideal) consumption: c(u,0) x y
o Strictly decreasing in 6, where 6 € [0, 1].
e Highest type has no bias: ¢(u,1) = cp(u).
e Can capture present-bias where Doer has discount factor 0.
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Commitment: Illiquid Assets

e Illiquid assets are a natural commitment technology to consider.

e Planner purchases s; x y, of illiquid wealth at the beginning of
time t.

e Constrains Doer to choose from [0, (1 — s;)y,] in period t.

If Planner could commit to singleton, set 8 to be the optimal full
commitment.

3=00R o (1)
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FCD in Savings Environment
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Figure I: Consumption Caps

Dotted curves indicate the Doer’s ideal consumption for each taste-shock, and solid lines
indicate the Doer’s actual consumption when the Planner selects commitment optimally.
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Result

Theorem
Learning is globally adequate for all priors and discount factors.

Caveat: Learning is still costly and can make DM poorer.
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Conclusion

e Paper offers condition for Bayesian learning to yield
sophistication.

e Results highlight dynamic benefits of partial commitments.

e Methodologically, framework shows tractability of dual self
models.
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Conclusion

e Learning can fail when individuals aren’t Bayesian, have
bounded memories, and have self-serving beliefs.

e Also, learning about new environment and self-control is hard.

e Commitment may have other costs that are not modeled (and
may require self-control).

e Empirical challenges in identifying self-awareness from choices,
but much exciting work underway.
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