Predictability and Power in Legislative Bargaining

S. Nageeb Ali, B. Douglas Bernheim, and Xiaochen Fan

March 1, 2016

the power to propose

Agenda-setting rights in negotiations:

- a player is recognized to make a proposal.
- others vote, and votes aggregated by a voting rule.
- if proposal is rejected, fraction of pie is destroyed.

But how is the proposer determined?

Practice:

- chair nominates proposers.
- rules specify that every player / party has its turn.
- an election process selects a proposer from a group of nominees.
- players perform (political) maneuvers to become a proposer.
- seniority rules specify who makes proposals.

Practice:

- chair nominates proposers.
- rules specify that every player / party has its turn.
- an election process selects a proposer from a group of nominees.
- players perform (political) maneuvers to become a proposer.
- seniority rules specify who makes proposals.

Theory: random recognition.
Baron-Ferejohn (1989): player i is recognized with probability p_{i} i.i.d.

Power at time t is as unpredictable in period $t-1$ as in period 0 .
But players may be able to predict bargaining power in practice:

- proposers may be pre-announced.
- constitution may exclude certain candidates.
- recognition may be history-dependent.
- chair or game with strategic maneuvering may be predictable.
our goal: understand implications of predictability for negotiations.

why study predictability?

Positive theory.

- Legislatures and organizations likely vary along this dimension.
- This dimension has not been studied in previous investigations.

Institutional design.

- Predictability is a design choice.
- Transparency about power transitions is intuitively appealing.

Theoretical curiosity.

- Compare information structures for a fixed recognition protocol.
- Are players better or worse off with the early resolution of uncertainty?

Outline

(1) Introduction
(2) Example
(3) Model
(4) Main Result
(5) Extensions
(6) Lessons

An example with 3 players

Players: $\{1,2,3\}$.

In each period, each is recognized with i.i.d. probability $\frac{1}{3}$.

Simple majority rule with sequential voting in a fixed order.

Each player's discount factor is $\delta<1$.

No predictability: period-t proposer revealed in period t .

2 periods: $\mathrm{t} \in\{0,1\}$

$t=1:$ Final proposer captures entire dollar.

2 periods: $\mathrm{t} \in\{0,1\}$

$t=1$: Final proposer captures entire dollar.
$t=0$: Each player's discounted continuation value is $\delta\left(\frac{1}{3}\right)$.
$\Rightarrow p^{0}$ forms minimal winning coalition buying 1 vote.
\Rightarrow first proposer captures $1-\frac{\delta}{3}$.

all horizons, number of players $=\mathrm{n}$

$$
\text { Proposer Rents }=1-\frac{(n-1)}{2}\left(\frac{\delta}{n}\right)
$$

Every finite horizon game has a sub-game perfect equilibrium in which $1^{\text {st }}$ proposer captures the above rents.

In infinite horizon game, this is the unique stationary sub-game perfect equilibrium outcome.
(stationary \equiv behavior is history-independent.)

all horizons, number of players $=\mathrm{n}$

$$
\text { Proposer Rents }=1-\frac{(n-1)}{2}\left(\frac{\delta}{n}\right) \longrightarrow \frac{1}{2}
$$

Every finite horizon game has a sub-game perfect equilibrium in which $1^{\text {st }}$ proposer captures the above rents.

In infinite horizon game, this is the unique stationary sub-game perfect equilibrium outcome.
(stationary \equiv behavior is history-independent.)

early resolution of uncertainty

Standard framework assumes all uncertainty about period-t proposer resolved in period t , and not before.

What if period-t proposer revealed before proposal in period $\mathrm{t}-1$?

two periods, $t \in\{0,1\}$

$t=1$: Final proposer captures entire dollar.
$\mathrm{t}=0$: Players commonly know identity of final proposer.

two periods, $t \in\{0,1\}$

$t=1$: Final proposer captures entire dollar.
$\mathrm{t}=0$: Players commonly know identity of final proposer.
$\Rightarrow 1^{\text {st }}$ proposer guarantees $1-(n-1) \epsilon$ by offering ϵ to each player.
$\Rightarrow 1^{\text {st }}$ proposer captures entire dollar in every SPE.

two periods, $t \in\{0,1\}$

$t=1$: Final proposer captures entire dollar.
$\mathrm{t}=0$: Players commonly know identity of final proposer.
$\Rightarrow 1^{\text {st }}$ proposer guarantees $1-(n-1) \epsilon$ by offering ϵ to each player.
$\Rightarrow 1^{\text {st }}$ proposer captures entire dollar in every SPE.

By induction, for every finite horizon T,
$1^{\text {st }}$ proposer captures entire dollar in every SPE.

another example

Ann, Bob, and Carol rotate in making offers.
Stationary environment in multilateral bargaining with unanimity:

$$
\text { Equilibrium Shares }=\left(\frac{1}{1+\delta+\delta^{2}}, \frac{\delta}{1+\delta+\delta^{2}}, \frac{\delta^{2}}{1+\delta+\delta^{2}}\right)
$$

another example

Ann, Bob, and Carol rotate in making offers.
Stationary environment in multilateral bargaining with unanimity:

$$
\text { Equilibrium Shares }=\left(\frac{1}{1+\delta+\delta^{2}}, \frac{\delta}{1+\delta+\delta^{2}}, \frac{\delta^{2}}{1+\delta+\delta^{2}}\right)
$$

Instead, if voting rule is simple majority-rule we find

Equilibrium Shares $=(1,0,0)$.

main result

Consider non-unanimous voting rule: at least $\mathrm{q}<\mathrm{n}$ votes needed.

Theorem. Suppose at every history, at least q players can be ruled out with probability 1 from being tomorrow's proposer.

Then, the $1^{\text {st }}$ proposer keeps the entire surplus in every SPE of finite horizon and every SSPE of infinite horizon.

main result

Consider non-unanimous voting rule: at least $\mathrm{q}<\mathrm{n}$ votes needed.

Theorem. Suppose at every history, at least q players can be ruled out with probability 1 from being tomorrow's proposer.

Then, the $1^{\text {st }}$ proposer keeps the entire surplus in every SPE of finite horizon and every SSPE of infinite horizon.

Strategic force:

- Information helps today's proposer target weaker coalition partners (tomorrow's non-proposers).
- Those non-proposers are weakened by tomorrow's proposer doing the same: tomorrow's proposer can't commit to being generous.

main result

Consider non-unanimous voting rule: at least $\mathrm{q}<\mathrm{n}$ votes needed.

Theorem. Suppose at every history, at least q players can be ruled out with probability 1 from being tomorrow's proposer.

Then, the $1^{\text {st }}$ proposer keeps the entire surplus in every SPE of finite horizon and every SSPE of infinite horizon.

Strategic force:

- Information helps today's proposer target weaker coalition partners (tomorrow's non-proposers).
- Those non-proposers are weakened by tomorrow's proposer doing the same: tomorrow's proposer can't commit to being generous.

equity and efficiency

predictability \Longrightarrow inequity.
predictability + risk-aversion \Longrightarrow inefficiency.
$u_{i}(x)=\sqrt{x_{i}}:$

$$
\begin{array}{rlrl}
\text { Without Predictability } & =\frac{1}{\sqrt{5}}, \quad(\approx 0.44) \\
\text { One-Period Predictability } & =\frac{1}{3} &
\end{array}
$$

Risk-averse players strictly prefer no early resolution of uncertainty.

Outline

(1) Introduction
(2) Example
(3) Model
(4) Main Result
(5) Extensions
(6) Lessons

environment

- A group of players: $\{1, \ldots, n\}$.
- Dividing a dollar: choosing x from $[0,1]^{n}$ such that $\sum_{i \in \mathcal{N}} x_{i}=1$.
- Infinite-horizon: $\mathrm{t}=0,1,2, \ldots$

stages in each round

1. Proposer p^{t} determined by a recognition rule.
2. Information about power at $t^{\prime}>t$ revealed.
3. Proposer p^{t} proposes a division of the dollar.
4. All vote on proposal:

- Voting is in a fixed sequential order.
- Proposal passes iff at least $\mathrm{q}<\mathrm{n}$ vote in favor.

uncertainty \& recognition

Nature moves in each period, and its choices are perfectly observed.
$S=$ a nice (complete $\&$ separable) state space.
$\left(\theta^{\mathfrak{t}}\right)_{\mathrm{t} \in \mathcal{T}}=$ a time-homogeneous Markov Process that takes values in S.
$\mu(\cdot \mid s)=$ Markov kernel that governs transitions between states.

The recognition rule is a mapping $P: S \rightarrow\{1, \ldots, n\}$.

how to forecast next proposer

Players may infer tomorrow's proposer based on current state:

$$
\operatorname{Pr}(\mathfrak{i} \text { is proposer tomorrow } \mid s)=\mu\left(\left\{s^{\prime}: P\left(s^{\prime}\right)=i\right\} \mid s\right) .
$$

History of proposers doesn't identify recognition probabilities: players may learn more than observing who has been proposer thus far.

fitting examples into paradigm

Baron-Ferejohn (1989): $\mathrm{S}=\{1, \ldots, \mathrm{n}\}, \mathrm{P}(\mathrm{s})=\mathrm{s}$, and $\mu\left(\mathrm{s}^{\prime} \mid \mathrm{s}\right)=\frac{1}{\mathrm{n}}$.

fitting examples into paradigm

Baron-Ferejohn (1989): $\mathrm{S}=\{1, \ldots, \mathrm{n}\}, \mathrm{P}(\mathrm{s})=\mathrm{s}$, and $\mu\left(s^{\prime} \mid \mathrm{s}\right)=\frac{1}{\mathrm{n}}$.
One period ahead revelation: $S=\{1, \ldots, n\}^{2}, P(s)=s_{1}$, and $\mu\left(s^{\prime} \mid s\right)=1 / n$ if $s_{1}^{\prime}=s_{2}$, and 0 otherwise.

payoffs and patience

$$
u_{i}(x, t)=\delta_{i}^{t} x_{i}
$$

Assumption: $\delta_{i}<1$ for every i.

Stationary Subgame Perfect Equilibrium

Behavior is identical across all "structurally identical" subgames.

- Payoff-relevant state is s^{t} : info about future power.
- Proposal strategy: $S \rightarrow \Delta X$.
- Voting strategy: $S \times X \rightarrow \Delta\{\mathbf{N}$ 色, $\mathbb{Z}\}$.

Behavior may condition: on time $\sqrt{ }$, history of proposers $\sqrt{ }$, and info about future proposers $\sqrt{ }$.
But NOT past proposals and voting decisions .
Analogue of (but slightly richer than) a MPE in this environment.

Outline

(1) Introduction
(2) Example
(3) Model
(4) Main Result
(5) Extensions
(6) Lessons

predictability

A player is a loser if she is known today to not be tomorrow's proposer:

$$
\mathrm{L}(\mathrm{~s})=\{i: \operatorname{Pr}(i=\text { Tomorrow's Proposer } \mid s)=0\}
$$

predictability

A player is a loser if she is known today to not be tomorrow's proposer:

$$
\mathrm{L}(\mathrm{~s})=\{\mathfrak{i}: \operatorname{Pr}(i=\text { Tomorrow's Proposer } \mid s)=0\}
$$

Definition. A recognition rule exhibits one-period predictability of degree d if $|L(s)| \geqslant d$ for all $s \in S$.

main result

q-voting rule

One-period predictability of degree q
\Downarrow
First proposer captures entire surplus in every SSPE.

outline of proof

Construct SSPE in which proposer captures the entire surplus.

Preliminary steps for uniqueness:

- (for now, suppose $\delta_{i}=\delta$ for every player i.)
- every SSPE involves immediate agreement.
- proposer never offers positive shares to more than minimal winning coalition.
- individual votes I? if share \geqslant discounted continuation value.

Proof by Contradiction

Suppose first proposer, Ann, offers >0.
Who does Ann offer the most to?
Larry gets $\mathrm{x}_{\mathrm{L}}=\bar{x}\left(s^{0}\right)$.
Why Larry and neither Harry nor Mary?
they must be more expensive.

$$
\min \left\{\delta \mathrm{V}_{\mathrm{H}}\left(s^{0}\right), \delta \mathrm{V}_{\mathrm{M}}\left(s^{0}\right)\right\} \geqslant \delta \mathrm{V}_{\mathrm{L}}\left(s^{0}\right)=\bar{x}\left(s^{0}\right)
$$

Claim: Either Larry or someone more expensive is a loser in s^{0}.

Order players: Ann first, and then by discounted continuation value.

Ann

Order players: Ann first, and then by discounted continuation value.

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .
Proof: Ann has q members in her minimal winning coalition.

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .
Proof: Ann has q members in her minimal winning coalition.

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .
Proof: Ann has q members in her minimal winning coalition.
\Longrightarrow Strictly to the left of L are only $q-1$ players.

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .
Proof: Ann has q members in her minimal winning coalition.
\Longrightarrow Strictly to the left of L are only $q-1$ players.
But there are q losers, so at least one must be weakly to the right of L.

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .
Proof: Ann has q members in her minimal winning coalition.
\Longrightarrow Strictly to the left of L are only $q-1$ players.
But there are q losers, so at least one must be weakly to the right of L.

Order players: Ann first, and then by discounted continuation value.

Claim: \exists at least one Loser weakly to the right of L .
Proof: Ann has q members in her minimal winning coalition.
\Longrightarrow Strictly to the left of L are only $q-1$ players.
But there are q losers, so at least one must be weakly to the right of L.
(1) Ed is at least as expensive as Larry.
(2) Ed is a loser.
$(1) \Longrightarrow$
$\delta \mathrm{V}_{\mathrm{E}}\left(s^{0}\right) \geqslant \delta \mathrm{V}_{\mathrm{L}}\left(s^{0}\right)$
$=\bar{x}\left(s^{0}\right)$
(1) Ed is at least as expensive as Larry.
(2) Ed is a loser. His continuation value comes only from offers made by the next proposer who is someone other than him.
$(1) \Longrightarrow$

$$
\delta \mathrm{V}_{\mathrm{E}}\left(s^{0}\right) \geqslant \delta \mathrm{V}_{\mathrm{L}}\left(s^{0}\right)
$$

$$
=\bar{x}\left(s^{0}\right)
$$

$(2) \Longrightarrow \quad \exists s^{1}$ where Ed is offered at least $V_{E}\left(s^{0}\right)$
(1) Ed is at least as expensive as Larry.
(2) Ed is a loser. His continuation value comes only from offers made by the next proposer who is someone other than him.
$(1) \Longrightarrow$

$$
\delta \mathrm{V}_{\mathrm{E}}\left(s^{0}\right) \geqslant \delta \mathrm{V}_{\mathrm{L}}\left(s^{0}\right)
$$

$$
=\bar{x}\left(s^{0}\right)
$$

$(2) \Longrightarrow \quad \exists s^{1}$ where Ed is offered at least $V_{E}\left(s^{0}\right)$
$\geqslant \frac{\bar{x}\left(s^{0}\right)}{\delta}$.
(1) Ed is at least as expensive as Larry.
(2) Ed is a loser. His continuation value comes only from offers made by the next proposer who is someone other than him.
$(1) \Longrightarrow$

$$
\delta \mathrm{V}_{\mathrm{E}}\left(s^{0}\right) \geqslant \delta \mathrm{V}_{\mathrm{L}}\left(s^{0}\right)
$$

$$
=\bar{x}\left(s^{0}\right)
$$

$(2) \Longrightarrow \quad \exists s^{1}$ where Ed is offered at least $V_{E}\left(s^{0}\right)$
$\geqslant \frac{\bar{x}\left(s^{0}\right)}{\delta}$.

The most offered in s^{1} to a non-proposer, $\bar{x}\left(s^{1}\right)$, satisfies

$$
\bar{x}\left(s^{1}\right) \geqslant \frac{\bar{x}\left(s^{0}\right)}{\delta} .
$$

Same pigeon-hole argument applies in period 1:
\Rightarrow in some state s^{2} in period 2 , a proposer offers at least

$$
\bar{x}\left(s^{2}\right) \geqslant \frac{\bar{x}\left(s^{1}\right)}{\delta}
$$

Same pigeon-hole argument applies in period 1:
\Rightarrow in some state s^{2} in period 2 , a proposer offers at least

$$
\bar{x}\left(s^{2}\right) \geqslant \frac{\bar{x}\left(s^{1}\right)}{\delta} \geqslant \frac{\bar{x}\left(s^{0}\right)}{\delta^{2}}
$$

Same pigeon-hole argument applies in period 1:
\Rightarrow in some state s^{2} in period 2 , a proposer offers at least

$$
\bar{x}\left(s^{2}\right) \geqslant \frac{\bar{x}\left(s^{1}\right)}{\delta} \geqslant \frac{\bar{x}\left(s^{0}\right)}{\delta^{2}} .
$$

\Rightarrow geometrically increasing sequence of offers by a proposer:

$$
\bar{x}\left(s^{\mathrm{t}}\right) \geqslant \frac{\bar{x}\left(s^{0}\right)}{\delta^{\mathrm{t}}}
$$

$\delta<1 \Rightarrow$ eventually, a proposer offers more than 1 . Contradiction.

Comments

If $\delta_{i} \neq \delta_{j}$: replace δ in proofs with highest δ_{i}.

Can consider general stage payoff function $u_{i}\left(x_{i}\right)$ where $u_{i}(0)=0, u_{i}(\cdot)$ is strictly increasing, continuous, and concave.

Neither relative patience nor risk-aversion influence bargaining shares.

Outline

(1) Introduction
(2) Example
(3) Model
(4) Main Result
(5) Extensions
(6) Lessons

robustness to perturbations

Two perturbations appear especially important:
a) Players may only be virtually ruled out at each time.
b) Players may not expect predictability to perfectly persist over time.

Investigate robustness to almost-persistent virtual predictability.

A player is an ϵ-loser if she isn't tomorrow's proposer with probability exceeding $\epsilon>0$.

$$
\mathrm{L}_{\epsilon}(\mathrm{s})=\{i: \operatorname{Pr}(i=\text { Tomorrow's Proposer } \mid s) \leqslant \epsilon\}
$$

A player is an e-loser if she isn't tomorrow's proposer with probability exceeding $\epsilon>0$.

$$
\mathrm{L}_{\epsilon}(\mathrm{s})=\{i: \operatorname{Pr}(i=\text { Tomorrow's Proposer } \mid s) \leqslant \epsilon\}
$$

States where there is virtual predictability of degree d :

$$
\mathcal{P}_{\mathrm{d}, \epsilon}=\left\{\mathrm{s}:\left|\mathrm{L}_{\epsilon}(\mathrm{s})\right| \geqslant \mathrm{d}\right\}
$$

Definition. The bargaining process exhibits $(1-\rho)$-persistent one-period ϵ-predictability of degree d if $s^{0} \in \mathcal{P}_{\mathrm{d}, \epsilon}$ and

$$
\operatorname{Pr}\left(s^{t} \in P_{d, \epsilon} \mid s^{t-1}\right) \geqslant 1-\rho \text { for all } s^{t-1} \in P_{d, \epsilon}
$$

robustness

Theorem
$(1-\rho)$-persistent one-period ϵ-predictability of degree q

First proposer never offers more than $\frac{\delta(\epsilon+\rho)}{1-\delta(1-\epsilon-\rho)}$ in any MPE.

comments on robustness result

First proposer never offers more than $\frac{\delta(\epsilon+\rho)}{1-\delta(1-\epsilon-\rho)}$ in any MPE.
a) Existence? Countable state space \rightarrow Duggan (2014).
b) Taking period length to 0 , bound on offer is $\frac{\epsilon+\rho}{\epsilon+\rho+r}$.
(patience $=e^{-r \Delta}$, virtualness $=e^{-\epsilon \Delta}$, almost-persistence $=e^{-\rho \Delta}$.)

varying degree of predictability

Baron-Ferejohn \leftrightarrow Perfect one-period predictability.
Ex ante recognition probability at time t is $\frac{1}{n}$.
At t, players learn about proposer power at $t+1$:

$$
p_{1} \leqslant p_{2} \leqslant \ldots \leqslant p_{n} \text { such that } \sum_{i=1}^{n} p_{i}=1
$$

- Baron-Ferejohn: $p_{1}=\ldots=p_{n}=1 / n$.
- Predictability of degree $d: p_{1}=\ldots=p_{d}=0$.

Result 1: If $\mathrm{q}<\mathrm{n}$, the share obtained by the first proposer is increasing in the degree of one-period predictability.

Result 2: In a large legislature,

$$
\alpha_{v}=\lim _{n \rightarrow \infty} \frac{q_{n}}{n}, \alpha_{p}=\lim _{n \rightarrow \infty} \frac{d_{n}}{n}
$$

Proposer's share is $1-$ constant $\times\left(\alpha_{v}-\alpha_{p}\right)$

- Gap between proportional predictability and voting rule matters.
- Proposer's share is convex in α_{p}.

other default options

Concern: Analysis exploits the $(0, \ldots, 0)$ disagreement outcome.

Reasons disagreement may not be so costly:

- policy reverts to previous agreement. (Baron 96, Kalandrakis 04)
- chair or caretaker govt choosing policy. (Austen-Smith \& Banks 88)

Disagreement \Rightarrow player i receives $\bar{x}_{i}>0$.
Perhaps $\sum_{i=1}^{n} \bar{x}_{i} \geqslant 1$.
No cost in waiting for the default option. $(\delta=1)$

Assumptions:
a) Generic: $\bar{x}_{i} \neq \bar{x}_{j}$ for distinct $\mathfrak{i}, \mathfrak{j}$.
b) Majority Improvements: $\sum_{i \in C} \bar{x}_{i}<1$ for all C with $\frac{n+1}{2}$ members.
c) Perfect One-Period Predictability.
d) Simple Majority Rule.

Theorem

In a finite horizon game with at least 3 periods and at least 7 players, the first proposer captures the entire surplus in every SPE.

Every other player receives 0 , despite a strictly positive default option.

Theorem

In a finite horizon game with at least 3 periods and at least 7 players, the first proposer captures the entire surplus in every SPE.

Every other player receives 0 , despite a strictly positive default option.

Results apply in the infinite horizon with a stochastic deadline if the deadline is one-period predictable.

A broader point: with an endogenous status quo, the number of bargaining periods in each session influences the outcome.

other extensions

a) Coalitional Bargaining
b) Political Maneuvers
c) Private Learning
d) Inequity Aversion (Fehr-Schmidt)
e) Optimism / overconfidence

Outline

(1) Introduction
(2) Example
(3) Model
(4) Main Result
(5) Extensions
(6) Lessons
one-period predictability + excludability \Rightarrow extreme power.

Neither feature so powerful in isolation.
Rubinstein (1982): alternating offer \Rightarrow perfect predictability. but unanimity rule \Rightarrow equal split as $\delta \rightarrow 1$.

Baron-Ferejohn (1989): excludability \Rightarrow minimal winning coalition. but no predictability \Rightarrow proposer keeps approximately half surplus.

Predictability of power robustly generates inequality.
Early resolution of uncertainty disadvantages those with future bargaining power, and can be ex ante inefficient.

May matter more than traditional determinants of power.
Key strategic force:

- future proposers cannot commit.
- information helps each proposer target weaker coalition partners.

Thank you!

Consider a virtual loser

$$
V_{i}\left(s^{0}\right) \leqslant \epsilon+\rho+(1-\epsilon-\rho) \bar{x}\left(s^{1}\right)
$$

Consider a virtual loser whose vote is expensive.

$$
\frac{\bar{x}\left(s^{0}\right)}{\delta} \leqslant V_{i}\left(s^{0}\right) \leqslant \epsilon+\rho+(1-\epsilon-\rho) \bar{x}\left(s^{1}\right)
$$

Consider a virtual loser whose vote is expensive.

$$
\begin{aligned}
& \frac{\bar{x}\left(s^{0}\right)}{\delta} \leqslant V_{i}\left(s^{0}\right) \leqslant \epsilon+\rho+(1-\epsilon-\rho) \bar{x}\left(s^{1}\right) \\
& \Rightarrow \bar{x}\left(s^{1}\right) \geqslant \frac{\bar{x}\left(s^{0}\right)-\delta(\epsilon+\rho)}{\delta(1-\epsilon-\rho)}=f\left(\bar{x}\left(s^{0}\right)\right)
\end{aligned}
$$

Logic of Result

$$
\text { (1) } 2 \text { (3) } 4 \text { (} 5
$$

Logic of Result

Proceed by backward induction from final period T.

Logic of Result

Proceed by backward induction from final period T.

Logic of Result

Proceed by backward induction from final period T.

Logic of Result

Toughest case: final proposer $\in\{1,2,3,4\}$.

Logic of Result

Toughest case: final proposer $\in\{1,2,3,4\}$.
T-1: Players 5, 6, and 7 expect 0 if disagreement today.

Logic of Result

Toughest case: final proposer $\in\{1,2,3,4\}$.
T-1: Players 5, 6, and 7 expect 0 if disagreement today.
\Rightarrow if $(\mathrm{T}-1)$-proposer $\in\{1,2,3,4\}$, she has 3 free votes.

Logic of Result

7

Toughest case: final proposer $\in\{1,2,3,4\}$.
T-1: Players 5, 6 , and 7 expect 0 if disagreement today.
\Rightarrow if $(T-1)$-proposer $\in\{1,2,3,4\}$, she has 3 free votes.
If $(T-1)$-proposer $=7$: she needs a single vote from $\{1,2,3\}$.

Logic of Result

Toughest case: final proposer $\in\{1,2,3,4\}$.
T-1: Players 5, 6 , and 7 expect 0 if disagreement today.
\Rightarrow if $(T-1)$-proposer $\in\{1,2,3,4\}$, she has 3 free votes.
If $(T-1)$-proposer $=7$: she needs a single vote from $\{1,2,3\}$.

Logic of Result

Toughest case: final proposer $\in\{1,2,3,4\}$.
T-1: Players 5, 6, and 7 expect 0 if disagreement today.
\Rightarrow if $(T-1)$-proposer $\in\{1,2,3,4\}$, she has 3 free votes.
If $(T-1)$-proposer $=7$: she needs a single vote from $\{1,2,3\}$.
T-2: Suppose 4 is proposer. Only players $1,2,7$ have positive continuation value.

Logic of Result

5

6

Toughest case: final proposer $\in\{1,2,3,4\}$.
T-1: Players 5, 6 , and 7 expect 0 if disagreement today.
\Rightarrow if $(T-1)$-proposer $\in\{1,2,3,4\}$, she has 3 free votes.
If $(T-1)$-proposer $=7$: she needs a single vote from $\{1,2,3\}$.
T-2: Suppose 4 is proposer. Only players $1,2,7$ have positive continuation value.
\Rightarrow player 4 captures entire surplus, all others 0 .

Logic of Result

Toughest case: final proposer $\in\{1,2,3,4\}$.
T-1: Players 5, 6 , and 7 expect 0 if disagreement today.
\Rightarrow if $(\mathrm{T}-1)$-proposer $\in\{1,2,3,4\}$, she has 3 free votes.
If $(T-1)$-proposer $=7$: she needs a single vote from $\{1,2,3\}$.
T-2: Suppose 4 is proposer. Only players $1,2,7$ have positive continuation value.
\Rightarrow player 4 captures entire surplus, all others 0 .
By induction, first proposer captures surplus.

