Reselling Information

S. Nageeb Ali, Ayal Chen-Zion, \& Erik Lillethun
Penn State, Amazon, \& Colgate

What is the impact of resale on the price of information?

Outline

(1) Example: The Problem
(2) Example: A Solution
(3) General Model

4 Discussion

This talk is mostly set in Exampleland. I am happy to remain there for as long as audiences like.

benchmark: vanilla world without resale

Seller has information (e.g., knowledge of ω).
Buyer's value for information $=1$; payoff of 0 until then.
Each link meets with probability $\lambda d t$ in period of length $d t$.
Each player discounts future at rate $r>0$.
Frequency of interaction per unit of effective time is λ / r.

Each buyer obtains info only from the seller.

Equilibrium $=$ Nash Bargaining + Rational Expectations.

So an equilibrium price p solves

Each buyer obtains info only from the seller.
Equilibrium $=$ Nash Bargaining + Rational Expectations.
So an equilibrium price p solves

Each buyer obtains info only from the seller.
Equilibrium $=$ Nash Bargaining + Rational Expectations.
So an equilibrium price p solves
$\underbrace{p-p \int_{0}^{\infty} e^{-r t} e^{-\lambda t} \lambda d t}_{\text {Seller's Gain from Selling Today }}=\underbrace{(1-p)-(1-p) \int_{0}^{\infty} e^{-r t} e^{-\lambda t} \lambda d t}_{\text {Buyer's Gain from Buying Today }}$.

Each buyer obtains info only from the seller.

Equilibrium $=$ Nash Bargaining + Rational Expectations.

So an equilibrium price p solves

$\Longrightarrow \mathrm{p}=\frac{1}{2}$.

Without resale, buyers and seller split the surplus.
Seller's payoff $\rightarrow \frac{1}{2} \times$ social surplus as $\lambda / r \rightarrow \infty$

pricing with resale

Once a buyer obtains info, he can sell it to the other buyer at the next trading opportunity.

Key idea: information is replicable \Rightarrow buyer can both consume and sell it.

pricing with resale

Sale of information is publicly observed.
Payoff-relevant state is the set of informed players:

$$
s \in\left\{\{S\},\left\{S, B_{1}\right\},\left\{S, B_{2}\right\},\left\{S, B_{1}, B_{2}\right\}\right\} .
$$

Equilibrium \equiv value functions $\mathrm{V}_{i}(\mathrm{~s})$ and prices $p_{i j}(s)$ where
(1) Value functions satisfy rational expectations given prices,

2 Prices satisfy symmetric Nash bargaining given value functions:

- Trade today iff trading today increases bilateral surplus.
- prices split the gains from trade equally.

pricing with resale

Sale of information is publicly observed.
Payoff-relevant state is the set of informed players:

$$
s \in\left\{\{S\},\left\{S, B_{1}\right\},\left\{S, B_{2}\right\},\left\{S, B_{1}, B_{2}\right\}\right\} .
$$

Equilibrium \equiv value functions $\mathrm{V}_{\mathrm{i}}(\mathrm{s})$ and prices $\mathrm{p}_{\mathrm{ij}}(\mathrm{s})$ where
(1) Value functions satisfy rational expectations given prices,
(2) Prices satisfy symmetric Nash bargaining given value functions:

- Trade today iff trading today increases bilateral surplus.
- prices split the gains from trade equally.

Study both immediate agreement and seller's optimal equilibria.

$$
s=\left(\mathrm{S}, \mathrm{~B}_{1}\right)
$$

Proceed by backward induction: suppose S and B_{1} have information.
B_{2} can buy information from either S or $B_{1}: 2$ trading partners.
Prices $p_{\mathrm{S} 2}(\mathrm{~s})=\mathrm{p}_{12}(\mathrm{~s})$ and solve
$\underbrace{p-p \int_{0}^{\infty} e^{-r t} e^{-2 \lambda t} \lambda d t}_{\text {Seller's Gain from Trading Today }}=\underbrace{(1-p)-(1-p) \int_{0}^{\infty} e^{-r t} e^{-2 \lambda t} 2 \lambda d t}_{\text {Buyer's Gain from Trading Today }}$.

$$
s=\left(\mathrm{S}, \mathrm{~B}_{1}\right)
$$

Proceed by backward induction: suppose S and B_{1} have information.
B_{2} can buy information from either S or $B_{1}: 2$ trading partners.
Prices $p_{\mathrm{S} 2}(\mathrm{~s})=\mathrm{p}_{12}(\mathrm{~s})$ and solve

which converges to 0 in a frictionless market $(\lambda / r \rightarrow \infty)$.

key idea

For buyer, gain from trading today is cost of delay ≈ 0.
For a seller, gain from trading today $\gg 0$ because she may lose buyer to other seller.

Equating these two gains implies prices must vanish.

key idea

For buyer, gain from trading today is cost of delay ≈ 0.
For a seller, gain from trading today $\gg 0$ because she may lose buyer to other seller.

Equating these two gains implies prices must vanish.
Is this intuitive?

- Yes: Bertrand outcome expected if B_{2} met S and B_{1} simultaneously.
- No: B_{2} meets only one at a time, faces costs from delay, and so Diamond Paradox may apply.

Slight bargaining power to the buyer averts the Diamond Paradox.

two uninformed buyers remain

Let $\gamma \equiv \int_{0}^{\infty} e^{-r t} e^{-2 \lambda t} \lambda d t$, which converges to $\frac{1}{2}$ as $\lambda / r \rightarrow \infty$.

two uninformed buyers remain

Let $\gamma \equiv \int_{0}^{\infty} e^{-r t} e^{-2 \lambda t} \lambda d t$, which converges to $\frac{1}{2}$ as $\lambda / r \rightarrow \infty$.
Suppose S meets a buyer.
Buyer's payoff:

- Trading today: $1-p(1)+\gamma p(2)$
- Waiting: $\gamma(1-p(1)+\gamma p(2))+\gamma(2 \gamma)(1-p(2))$

two uninformed buyers remain

Let $\gamma \equiv \int_{0}^{\infty} e^{-r t} e^{-2 \lambda t} \lambda d t$, which converges to $\frac{1}{2}$ as $\lambda / r \rightarrow \infty$.
Suppose S meets a buyer.
Buyer's payoff:

- Trading today: $1-p(1)+\gamma p(2) \rightarrow 1-p(1)$.
- Waiting: $\gamma(1-p(1)+\gamma p(2))+\gamma(2 \gamma)(1-p(2)) \rightarrow 1-\frac{p(1)}{2}$.

The payoff from waiting is higher if $p(1)>0$.
Therefore, $\mathrm{p}(1) \rightarrow 0$ as $\lambda / r \rightarrow \infty$.

discussion

The seller is a monopolist on information.

But neither he nor the first buyer cannot commit to selling information to the second buyer.
\Longrightarrow the second buyer gets information for virtually free.

Little incentive for the first buyer to pay a lot for info:

- Resale price is low.
- Waiting to be the second buyer involves minimal delay.

seller-optimal equilibrium

The seller-optimal equilibrium may involve delayed agreements.
Structure of equilibrium:

- Seller never sells info to B_{2} before she sells info to B_{1}.
- Once seller sells info to B_{1}, then both compete to sell it to B_{2}.

In this equilibrium, every meeting between S and B_{2} has no trade before B_{1} is informed.
$\Rightarrow B_{1}$ knows that he is always first buyer and so he pays $\frac{1}{2}$.

not-trading must be credible

Is it credible for S and B_{2} to not trade?

whenever $\lambda / r>5$.

summary

Seller-optimal equilibrium features delay.

Seller obtains bilateral bargaining price from at most 1 buyer in any eqm.

- Even if $n>2$, the seller does not obtain a non-trivial price from any buyer other than the first to whom she sells.
- Key idea: Once the seller sells information to any buyer, then in every equilibrium, prices $\rightarrow 0$ in the frequent-offer limit.

Clearly, seller can do better if she can prohibit resale. But are there non-contractual solutions?

Outline

(1) Example: The Problem

(2) Example: A Solution
(3) General Model
(4) Discussion

preview

One way to view previous results is that it identifies what happens in Markov Perfect Equilibria in which all trading decisions condition only on the payoff-relevant aspects of history.

Here, we are going to augment the game with "tokens" to encode a slight degree of history dependence.

To understand this, let us begin with an interlude.

Led Zeppelin, Past, Present and Future

what if information weren't replicable?

an interlude

Suppose the good were non-replicable:

- There is only a single copy of the good, of value 1 to each buyer.
- A buyer who possesses it can consume or re-sell it.

Once a buyer obtains the good, there is no reason to re-trade.
Equilibrium prices solve

Recall that $\gamma=\int_{0}^{\infty} e^{-r t} e^{-2 \lambda t} \lambda d t \rightarrow \frac{1}{2}$.
\Rightarrow seller obtains the entire social surplus.

By being on the short side of the market, seller captures all of the buyer's gains from trade.

selling tokens

interlude is over

We will exploit this idea.

Seller will sell a single token that is intrinsically worthless but will affect continuation play.

We will show that by doing so, she can capture the full intellectual property value of her information.

a prepay scheme

Seller first sells a single token to either buyer.
If buyer B_{i} buys token, then seller always sells info first to B_{j}.
Token $=$ Right to be the 2 nd buyer of info, who buys info at ≈ 0.

a prepay scheme

Seller first sells a single token to either buyer.
If buyer B_{i} buys token, then seller always sells info first to B_{j}.
Token $=$ Right to be the 2 nd buyer of info, who buys info at ≈ 0.

- Value of token $=p(1)-p(2) \approx 1 / 2$.

a prepay scheme

Seller first sells a single token to either buyer.
If buyer B_{i} buys token, then seller always sells info first to B_{j}.
Token $=$ Right to be the 2 nd buyer of info, who buys info at ≈ 0.

- Value of token $=p(1)-p(2) \approx 1 / 2$.
- Fewer tokens than buyers \Rightarrow Seller captures full value of token.
- Seller obtains $\approx 1 / 2$ for the token and $\approx 1 / 2$ for info!

Problem Solved!
maybe that was a bit fast. -
let's do some algebra to convince ourselves.

Buyer's value from purchasing token is V_{t} and price of token is p_{t}.

$$
V_{t}=-p_{t}+\frac{\lambda}{r+\lambda}(2 \gamma)(1-p(2))
$$

Buyer's value from purchasing token is V_{t} and price of token is p_{t}.

$$
\mathrm{V}_{\mathrm{t}}=-\mathrm{p}_{\mathrm{t}}+\frac{\lambda}{\mathrm{r}+\lambda}(2 \gamma)(1-\mathrm{p}(2)) \rightarrow 1-\mathrm{p}_{\mathrm{t}} \text { as } \lambda / \mathrm{r} \rightarrow \infty
$$

Buyer's value from purchasing token is V_{t} and price of token is p_{t}.

$$
\mathrm{V}_{\mathrm{t}}=-\mathrm{p}_{\mathrm{t}}+\frac{\lambda}{\mathrm{r}+\lambda}(2 \gamma)(1-\mathrm{p}(2)) \rightarrow 1-\mathrm{p}_{\mathrm{t}} \text { as } \lambda / \mathrm{r} \rightarrow \infty
$$

In symmetric Nash Bargaining,

Seller's Gain from Selling Token
Buyer's Gain from Buying Token

Buyer's value from purchasing token is V_{t} and price of token is p_{t}.

$$
\mathrm{V}_{\mathrm{t}}=-\mathrm{p}_{\mathrm{t}}+\frac{\lambda}{\mathrm{r}+\lambda}(2 \gamma)(1-\mathrm{p}(2)) \rightarrow 1-\mathrm{p}_{\mathrm{t}} \text { as } \lambda / \mathrm{r} \rightarrow \infty
$$

In symmetric Nash Bargaining,
$\underbrace{\frac{r}{r+\lambda}\left(p_{\mathrm{t}}+\frac{\lambda}{r+\lambda} p(1)+\gamma p(2)\right)}_{\text {Seller's Gain from Selling Token }}=$

Buyer's value from purchasing token is V_{t} and price of token is p_{t}.

$$
\mathrm{V}_{\mathrm{t}}=-\mathrm{p}_{\mathrm{t}}+\frac{\lambda}{\mathrm{r}+\lambda}(2 \gamma)(1-\mathrm{p}(2)) \rightarrow 1-\mathrm{p}_{\mathrm{t}} \text { as } \lambda / \mathrm{r} \rightarrow \infty
$$

In symmetric Nash Bargaining,
$\underbrace{\frac{r}{r+\lambda}\left(p_{t}+\frac{\lambda}{r+\lambda} p(1)+\gamma p(2)\right)}_{\text {Seller's Gain from Selling Token }}=\underbrace{V_{t}-\gamma V_{t}-\frac{\gamma \lambda}{r+\lambda}(1-p(1)+\gamma p(2))}_{\text {Buyer's Gain from Buying Token }}$

Buyer's value from purchasing token is V_{t} and price of token is p_{t}.

$$
\mathrm{V}_{\mathrm{t}}=-\mathrm{p}_{\mathrm{t}}+\frac{\lambda}{\mathrm{r}+\lambda}(2 \gamma)(1-\mathrm{p}(2)) \rightarrow 1-\mathrm{p}_{\mathrm{t}} \text { as } \lambda / \mathrm{r} \rightarrow \infty
$$

In symmetric Nash Bargaining,

$$
\underbrace{\frac{r}{r+\lambda}\left(p_{t}+\frac{\lambda}{r+\lambda} p(1)+\gamma p(2)\right)}_{\text {Seller's Gain from Selling Token }}=\underbrace{V_{t}-\gamma V_{t}-\frac{\gamma \lambda}{r+\lambda}(1-p(1)+\gamma p(2))}_{\text {Buyer's Gain from Buying Token }}
$$

As $\lambda / r \rightarrow \infty: \quad 0=\frac{1-p_{t}}{2}-\frac{1-p(1)}{2}$

Buyer's value from purchasing token is V_{t} and price of token is p_{t}.

$$
\mathrm{V}_{\mathrm{t}}=-\mathrm{p}_{\mathrm{t}}+\frac{\lambda}{\mathrm{r}+\lambda}(2 \gamma)(1-\mathrm{p}(2)) \rightarrow 1-\mathrm{p}_{\mathrm{t}} \text { as } \lambda / \mathrm{r} \rightarrow \infty
$$

In symmetric Nash Bargaining,

$$
\underbrace{\frac{r}{r+\lambda}\left(p_{t}+\frac{\lambda}{r+\lambda} p(1)+\gamma p(2)\right)}_{\text {Seller's Gain from Selling Token }}=\underbrace{V_{t}-\gamma V_{t}-\frac{\gamma \lambda}{r+\lambda}(1-p(1)+\gamma p(2))}_{\text {Buyer's Gain from Buying Token }}
$$

As $\lambda / r \rightarrow \infty: \quad 0=\frac{1-p_{\mathrm{t}}}{2}-\frac{1-\mathrm{p}(1)}{2} \Longrightarrow \mathrm{p}_{\mathrm{t}} \rightarrow \mathrm{p}(1)=1 / 2$

prepay scheme

Tokens play the role of encoding a minimal degree of history dependence:

- Tokens need not be "physical."
- Info Resale: Value of token $=$ Value of buying info for ≈ 0 later.
- With n buyers, seller sells $n-1$ tokens.
- Competition: Scarce tokens \rightarrow S captures buyer's value for token.
- Scheme exploits competition + resale.

Could also implement solution by slicing / encrypting information into different bits, and selling each bit separately.

Solution solves the commitment problem by exploiting it.

Outline

(1) Example: The Problem
(2) Example: A Solution
(3) General Model

4 Discussion

environment without tokens

- A set of buyers $\mathcal{B} \equiv\left\{b_{1}, \ldots, b_{n}\right\}$; value of info for each player is v.
- A set of sellers $\mathcal{S} \equiv\left\{s_{1}, \ldots, s_{m}\right\}$, all with identical info.
- The set of agents is $\mathcal{A} \equiv \mathcal{B} \cup \mathcal{S}$.
- Each pair of agents have a "trading relationship."
- All players have discount rate r.

discrete-time

Trading opportunities occur at time periods $0, \Delta, 2 \Delta, \ldots$.

In each period, a "link" is recognized.

Each link is recognized with uniform probability.

Results consider limiting behavior as $\Delta \rightarrow 0$.

solution concept

Set of informed players is payoff-relevant state space.

The set of feasible states is \mathcal{M} defined as $\{M \subseteq \mathcal{A}: M \supseteq \mathcal{S}\}$

solution concept

Set of informed players is payoff-relevant state space.

The set of feasible states is \mathcal{M} defined as $\{M \subseteq \mathcal{A}: M \supseteq \mathcal{S}\}$

Value function satisfies rational expectations: $\mathrm{V}_{i}: \mathcal{M} \rightarrow \mathfrak{R}$.

Trading functions satisfy Nash Bargaining:

- $\alpha_{i j}: \mathcal{M} \rightarrow\{\mathbf{N}, \mathbf{l}$ 组 $\}$,
- $p_{i j}: \mathcal{M} \rightarrow \mathfrak{R}$.

nash bargaining

Trading functions satisfies Nash Bargaining if for all $M \in \mathcal{M}, i \in M$, and $j \in \mathcal{A} \backslash M$,
$\left.\alpha_{i j}(M)=\mathbf{I}\right\} \Leftrightarrow \underbrace{V_{i}(M \cup\{j\})+v+V_{\mathfrak{j}}(M \cup\{j\})}_{\text {Joint Surplus with Trade }} \geqslant \underbrace{V_{i}(M)+V_{\mathfrak{j}}(M)}_{\text {Joint Surplus with No Trade }}$

nash bargaining

Trading functions satisfies Nash Bargaining if for all $M \in \mathcal{M}, i \in M$, and $j \in \mathcal{A} \backslash M$,

$$
\alpha_{i j}(M)=\mathbf{L}^{\Omega} \Leftrightarrow \underbrace{V_{i}(M \cup\{j\})+v+V_{j}(M \cup\{j\})}_{\text {Joint Surplus with Trade }} \geqslant \underbrace{V_{i}(M)+V_{j}(M)}_{\text {Joint Surplus with No Trade }}
$$

and $p_{i j}(M)$ is set to divide the change in surplus equally:

$$
\begin{aligned}
& (1-w) \times(\underbrace{p_{i j}(M)+V_{i}(M \cup\{j\})-V_{i}(M)}_{\text {Change in Seller's Surplus }}) \\
& =w \times(\underbrace{v-p_{i j}(M)+V_{j}(M \cup\{j\})-V_{j}(M)}_{\text {Change in Buyer's Surplus }}) .
\end{aligned}
$$

equilibrium

An equilibrium is a triple ($\mathrm{V}, \alpha, \mathrm{p}$) such that V satisfies rational expectations given (α, p), and (α, p) satisfy Nash Bargaining given V.

Proposition

For every $\Delta>0$, an equilibrium exists.

a statement about all equilibria

Proposition. If $|M| \geqslant 2$, then across all equilibria, $p_{i j}(M) \rightarrow 0$.

a statement about all equilibria

Proposition. If $|M| \geqslant 2$, then across all equilibria, $p_{i j}(M) \rightarrow 0$.

The proof proceeds by induction on $|\mathrm{M}|$.
Base Step: Suppose $|M|=|\mathcal{A}|-1$.
Then we know that every equilibrium involves immediate agreement and prices converging to 0 .

induction hypothesis

Suppose result is true when $|M|=k+1$. We consider $|M|=k$.

- If there are at least two active buyers, a buyer i 's disagreement value must converge to v since she can always wait.

induction hypothesis

Suppose result is true when $|M|=k+1$. We consider $|M|=k$.

- If there are at least two active buyers, a buyer i 's disagreement value must converge to v since she can always wait.
- If there is only one active buyer and multiple active sellers, price converges to 0 , as in $k=1$.

induction hypothesis

Suppose result is true when $|M|=k+1$. We consider $|M|=k$.

- If there are at least two active buyers, a buyer i 's disagreement value must converge to v since she can always wait.
- If there is only one active buyer and multiple active sellers, price converges to 0 , as in $k=1$.
- If there is only one active buyer-seller pair, and limiting price is $p>0$, then trade cannot happen when buyer i meets any other seller.

induction hypothesis

Suppose result is true when $|M|=k+1$. We consider $|M|=k$.

- If there are at least two active buyers, a buyer i 's disagreement value must converge to v since she can always wait.
- If there is only one active buyer and multiple active sellers, price converges to 0 , as in $k=1$.
- If there is only one active buyer-seller pair, and limiting price is $p>0$, then trade cannot happen when buyer i meets any other seller.
- But joint surplus from disagreement is $v-p$.
- Joint surplus from agreement is v.
- \Rightarrow contradiction.

seller-optimal equilibria

Proposition. In the seller-optimal equilibrium, with a single seller, she obtains a price of $\approx w v$ from first buyer, and ≈ 0 from any other buyer.

Prior result establishes that prices converge to 0 once there are two sellers, so only opportunity to gain is by holding up the first buyer.

results with tokens

Suppose there is a single seller initially and n buyers.

We allow the seller to sell $n-1$ tokens as "prepayment".

Proposition. $\exists \bar{\Delta}$ such that if $\Delta<\bar{\Delta}$, a prepay equilibrium exists. As $\Delta \rightarrow 0$, the price paid for each token and the first sale of the information good all converge to $w v$.

Outline

(1) Example: The Problem
(2) Example: A Solution
(3) General Model
(4) Discussion

Potentially relevant for thinking about trading for information, incentives to acquire expertise, etc.

Classical narrative attributes underinvestment in information b / c info is a public good (non-rivalrous + non-excludable).

But in our setting, a market for info can exclude buyers.

Our analysis focuses on different channel:

$$
\text { Commitment problems } \rightarrow \text { Low seller payoffs. }
$$

But commitment problem can be exploited to solve the resale problem.

related literature

Hinting at problem: Arrow (1962).

Appropriability Problem: Anton \& Yao (1994); Beccara \& Razin (2007); Horner \& Skrzypacz (2014).

Resale problem: Polanski $(2007,2019)$, Manea (2020).

Intermediation / bargaining: Condorelli, Galeotti, \& Renou (2016), Manea (2018), Elliot \& Talamas (2019).

Thank you.

