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What is the impact of resale on the price of information?
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Outline

1 Example: The Problem

2 Example: A Solution

3 General Model

4 Discussion

This talk is mostly set in Exampleland.
I am happy to remain there for as long as audiences like.
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benchmark: vanilla world without resale

S

B1 B2

Seller has information (e.g., knowledge of ω).

Buyer’s value for information = 1; payoff of 0 until then.

Each link meets with probability λdt in period of length dt.

Each player discounts future at rate r > 0.

Frequency of interaction per unit of effective time is λ/r.

4 / 38



Each buyer obtains info only from the seller.

Equilibrium = Nash Bargaining + Rational Expectations.

So an equilibrium price p solves

p− p

󰁝∞

0
e−rte−λtλdt

󰁿 󰁾󰁽 󰂀
Seller’s Gain from Selling Today

=

(1− p)− (1− p)

󰁝∞

0
e−rte−λtλdt

󰁿 󰁾󰁽 󰂀
Buyer’s Gain from Buying Today

.

=⇒ p = 1
2 .

Without resale, buyers and seller split the surplus.

Seller’s payoff → 1
2× social surplus as λ/r → ∞
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pricing with resale

S

B1 B2

Once a buyer obtains info, he can sell it to the other buyer at the next
trading opportunity.

Key idea: information is replicable ⇒ buyer can both consume and sell it.
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pricing with resale

Sale of information is publicly observed.

Payoff-relevant state is the set of informed players:

s ∈
󰁱
{S}, {S,B1}, {S,B2}, {S,B1,B2}

󰁲
.

Equilibrium ≡ value functions Vi(s) and prices pij(s) where

1 Value functions satisfy rational expectations given prices,

2 Prices satisfy symmetric Nash bargaining given value functions:

• Trade today iff trading today increases bilateral surplus.

• prices split the gains from trade equally.

Study both immediate agreement and seller’s optimal equilibria.
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s = (S,B1)

Proceed by backward induction: suppose S and B1 have information.

B2 can buy information from either S or B1: 2 trading partners.

Prices pS2(s) = p12(s) and solve

p− p

󰁝∞

0
e−rte−2λtλdt

󰁿 󰁾󰁽 󰂀
Seller’s Gain from Trading Today

= (1− p)− (1− p)

󰁝∞

0
e−rte−2λt2λdt

󰁿 󰁾󰁽 󰂀
Buyer’s Gain from Trading Today

.

=⇒ p(2) =
r

2r+ λ
,

which converges to 0 in a frictionless market (λ/r → ∞).
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key idea

For buyer, gain from trading today is cost of delay ≈ 0.

For a seller, gain from trading today >> 0 because she may lose buyer to
other seller.

Equating these two gains implies prices must vanish.

Is this intuitive?

• Yes: Bertrand outcome expected if B2 met S and B1 simultaneously.

• No: B2 meets only one at a time, faces costs from delay, and so
Diamond Paradox may apply.

Slight bargaining power to the buyer averts the Diamond Paradox.
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two uninformed buyers remain

Let γ ≡
󰁕∞
0 e−rte−2λtλdt, which converges to 1

2 as λ/r → ∞.

Suppose S meets a buyer.

Buyer’s payoff:

• Trading today: 1− p(1) + γp(2)

→ 1− p(1)

.

• Waiting: γ(1− p(1) + γp(2)) + γ(2γ)(1− p(2))

→ 1− p(1)
2

.

The payoff from waiting is higher if p(1) > 0.

Therefore, p(1) → 0 as λ/r → ∞.
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discussion

The seller is a monopolist on information.

But neither he nor the first buyer cannot commit to selling information
to the second buyer.

=⇒ the second buyer gets information for virtually free.

Little incentive for the first buyer to pay a lot for info:

• Resale price is low.

• Waiting to be the second buyer involves minimal delay.
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seller-optimal equilibrium

The seller-optimal equilibrium may involve delayed agreements.

Structure of equilibrium:

• Seller never sells info to B2 before she sells info to B1.

• Once seller sells info to B1, then both compete to sell it to B2.

In this equilibrium, every meeting between S and B2 has no trade before
B1 is informed.

⇒ B1 knows that he is always first buyer and so he pays 1
2 .
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not-trading must be credible

Is it credible for S and B2 to not trade?

λ

r+ λ

󰀕
1

2
+ γp(2)

󰀖

󰁿 󰁾󰁽 󰂀
Seller’s cont value

+
λ

r+ λ
(2γ(1− p(2)))

󰁿 󰁾󰁽 󰂀
Buyer’s cont value

> 1+ 2γp(2)󰁿 󰁾󰁽 󰂀
Joint Surplus with Trade

.

whenever λ/r > 5.
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summary

Seller-optimal equilibrium features delay.

Seller obtains bilateral bargaining price from at most 1 buyer in any eqm.

• Even if n > 2, the seller does not obtain a non-trivial price from any
buyer other than the first to whom she sells.

• Key idea: Once the seller sells information to any buyer, then in
every equilibrium, prices → 0 in the frequent-offer limit.

Clearly, seller can do better if she can prohibit resale. But are there
non-contractual solutions?

14 / 38



Outline

1 Example: The Problem

2 Example: A Solution

3 General Model

4 Discussion
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preview

One way to view previous results is that it identifies what happens in
Markov Perfect Equilibria in which all trading decisions condition only on
the payoff-relevant aspects of history.

Here, we are going to augment the game with “tokens” to encode a
slight degree of history dependence.

To understand this, let us begin with an interlude.
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what if information weren’t replicable?
an interlude

S

B1 B2

Suppose the good were non-replicable:

• There is only a single copy of the good, of value 1 to each buyer.

• A buyer who possesses it can consume or re-sell it.
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Once a buyer obtains the good, there is no reason to re-trade.

Equilibrium prices solve

p(1− 2γ)󰁿 󰁾󰁽 󰂀
Seller’s Gain from Trading Today

= (1− p)γ󰁿 󰁾󰁽 󰂀
Buyer’s Gain from Trading Today

.

Recall that γ =
󰁕∞
0 e−rte−2λtλdt → 1

2 .

⇒ seller obtains the entire social surplus.

By being on the short side of the market, seller captures all of the buyer’s
gains from trade.
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selling tokens
interlude is over

We will exploit this idea.

Seller will sell a single token that is intrinsically worthless but will affect
continuation play.

We will show that by doing so, she can capture the full intellectual
property value of her information.

20 / 38



a prepay scheme

Seller first sells a single token to either buyer.

If buyer Bi buys token, then seller always sells info first to Bj.

Token = Right to be the 2nd buyer of info, who buys info at ≈ 0.

• Value of token = p(1)− p(2) ≈ 1/2.

• Fewer tokens than buyers ⇒ Seller captures full value of token.

• Seller obtains ≈ 1/2 for the token and ≈ 1/2 for info!

Problem Solved!

21 / 38



a prepay scheme

Seller first sells a single token to either buyer.

If buyer Bi buys token, then seller always sells info first to Bj.

Token = Right to be the 2nd buyer of info, who buys info at ≈ 0.

• Value of token = p(1)− p(2) ≈ 1/2.

• Fewer tokens than buyers ⇒ Seller captures full value of token.

• Seller obtains ≈ 1/2 for the token and ≈ 1/2 for info!

Problem Solved!

21 / 38



a prepay scheme

Seller first sells a single token to either buyer.

If buyer Bi buys token, then seller always sells info first to Bj.

Token = Right to be the 2nd buyer of info, who buys info at ≈ 0.

• Value of token = p(1)− p(2) ≈ 1/2.

• Fewer tokens than buyers ⇒ Seller captures full value of token.

• Seller obtains ≈ 1/2 for the token and ≈ 1/2 for info!

Problem Solved!

21 / 38



maybe that was a bit fast.

let’s do some algebra to convince ourselves.
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Buyer’s value from purchasing token is Vt and price of token is pt.

Vt = −pt +
λ

r+ λ
(2γ)(1− p(2))

→ 1− pt as λ/r → ∞.

In symmetric Nash Bargaining,

r

r+ λ

󰀕
pt +

λ

r+ λ
p(1) + γp(2)

󰀖

󰁿 󰁾󰁽 󰂀
Seller’s Gain from Selling Token

=

Vt − γVt −
γλ

r+ λ
(1− p(1) + γp(2))

󰁿 󰁾󰁽 󰂀
Buyer’s Gain from Buying Token

As λ/r → ∞: 0 =
1− pt

2
−

1− p(1)

2

=⇒ pt → p(1) = 1/2
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prepay scheme

Tokens play the role of encoding a minimal degree of history dependence:

• Tokens need not be “physical.”

• Info Resale: Value of token = Value of buying info for ≈ 0 later.

• With n buyers, seller sells n− 1 tokens.

• Competition: Scarce tokens → S captures buyer’s value for token.

• Scheme exploits competition + resale.

Could also implement solution by slicing / encrypting information into
different bits, and selling each bit separately.

Solution solves the commitment problem by exploiting it.
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Outline

1 Example: The Problem

2 Example: A Solution

3 General Model

4 Discussion
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environment without tokens

• A set of buyers B ≡ {b1, . . . ,bn}; value of info for each player is v.

• A set of sellers S ≡ {s1, . . . , sm}, all with identical info.

• The set of agents is A ≡ B ∪ S.

• Each pair of agents have a “trading relationship.”

• All players have discount rate r.
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discrete-time

Trading opportunities occur at time periods 0,∆, 2∆, . . ..

In each period, a “link” is recognized.

Each link is recognized with uniform probability.

Results consider limiting behavior as ∆ → 0.
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solution concept

Set of informed players is payoff-relevant state space.

The set of feasible states is M defined as {M ⊆ A : M ⊇ S}

Value function satisfies rational expectations: Vi : M → ℜ.

Trading functions satisfy Nash Bargaining:

• αij : M →
󰀋

,
󰀌
,

• pij : M → ℜ.
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nash bargaining
Trading functions satisfies Nash Bargaining if for all M ∈ M, i ∈ M,
and j ∈ A\M,

αij(M) = ⇔ Vi(M ∪ {j}) + v+ Vj(M ∪ {j})󰁿 󰁾󰁽 󰂀
Joint Surplus with Trade

󰃍 Vi(M) + Vj(M)󰁿 󰁾󰁽 󰂀
Joint Surplus with No Trade

and pij(M) is set to divide the change in surplus equally:

(1−w)×

󰀳

󰁅󰁃pij(M) + Vi(M ∪ {j})− Vi(M)󰁿 󰁾󰁽 󰂀
Change in Seller’s Surplus

󰀴

󰁆󰁄

= w×

󰀳

󰁅󰁃v− pij(M) + Vj(M ∪ {j})− Vj(M)󰁿 󰁾󰁽 󰂀
Change in Buyer’s Surplus

󰀴

󰁆󰁄 .
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equilibrium

An equilibrium is a triple (V,α,p) such that V satisfies rational
expectations given (α,p), and (α,p) satisfy Nash Bargaining given V.

Proposition

For every ∆ > 0, an equilibrium exists.
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a statement about all equilibria

Proposition. If |M| 󰃍 2, then across all equilibria, pij(M) → 0.

The proof proceeds by induction on |M|.

Base Step: Suppose |M| = |A|− 1.

Then we know that every equilibrium involves immediate agreement and
prices converging to 0.
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induction hypothesis

Suppose result is true when |M| = k+ 1. We consider |M| = k.

• If there are at least two active buyers, a buyer i’s disagreement value
must converge to v since she can always wait.

• If there is only one active buyer and multiple active sellers, price
converges to 0, as in k = 1.

• If there is only one active buyer-seller pair, and limiting price is
p > 0, then trade cannot happen when buyer i meets any other
seller.

• But joint surplus from disagreement is v− p.
• Joint surplus from agreement is v.
• ⇒ contradiction.
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seller-optimal equilibria

Proposition. In the seller-optimal equilibrium, with a single seller, she
obtains a price of ≈ wv from first buyer, and ≈ 0 from any other buyer.

Prior result establishes that prices converge to 0 once there are two
sellers, so only opportunity to gain is by holding up the first buyer.
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results with tokens

Suppose there is a single seller initially and n buyers.

We allow the seller to sell n− 1 tokens as “prepayment”.

Proposition. ∃∆ such that if ∆ < ∆, a prepay equilibrium exists.
As ∆ → 0, the price paid for each token and the first sale of the
information good all converge to wv.
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Potentially relevant for thinking about trading for information, incentives
to acquire expertise, etc.

Classical narrative attributes underinvestment in information b/c info is a
public good (non-rivalrous + non-excludable).

But in our setting, a market for info can exclude buyers.

Our analysis focuses on different channel:

Commitment problems → Low seller payoffs.

But commitment problem can be exploited to solve the resale problem.
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Thank you.
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