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Who Controls the Agenda Controls the Legislature†
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We model legislative decision-making with an agenda setter who 
can propose policies sequentially, tailoring each proposal to the sta-
tus quo that prevails after prior votes. Voters are sophisticated, and 
the agenda setter cannot commit to future proposals. Nevertheless, 
the agenda setter obtains her favorite outcome in every equilibrium 
regardless of the initial default policy. Central to our results is a 
new condition on preferences, manipulability, that holds in rich pol-
icy spaces, including spatial settings and distribution problems. Our 
findings therefore establish that, despite the sophistication of voters 
and the absence of commitment power, the agenda setter is effec-
tively a dictator. (JEL D71, D72, D78)

A central goal of democratic institutions is to balance competing interests by 
distributing political power evenly among society’s members. A recurring concern 
is that power is often highly concentrated in the hands of a select few leaders, who 
steer policy in their favor by manipulating institutional procedures. Our objective is 
to understand how seemingly prodemocratic institutions can yield this concentration 
of power.

Legislative institutions merit particular attention in this regard because of the cen-
tral role they typically play in determining policy. Although legislative procedures 
vary, they often involve (i) a single agenda setter (e.g., committee chair or party 
leader), who acts as a gatekeeper for proposals, and (ii) a group of legislators who 
vote to approve or reject proposals. While the agenda setter controls which policies 
come up for a vote, she cannot unilaterally dictate policy because passage of her 
proposals requires majority support. Even so, the degree to which voting constrains 
the agenda setter is unclear.
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An important literature in political economy seeks to understand the power that 
flows from agenda control. In a seminal contribution, McKelvey (1976) observes 
that, in rich policy settings, the agenda setter can exploit cycles in the majority 
relation to obtain any desired outcome by appropriately sequencing proposals and 
is therefore unconstrained by the majority’s will. However, this striking conclu-
sion assumes legislators are nonstrategic and vote myopically, without accounting 
for subsequent modifications of the policy. Sophisticated legislators, who have 
learned from experience, anticipate the paths of proposals and votes, and accept or 
reject proposals based on the final outcomes to which those paths lead. Subsequent 
research concludes that the requirement of majority approval constrains the agenda 
setter’s power when voters are sophisticated. Specifically, Shepsle and Weingast 
(1984) show that the agenda setter can only achieve policies that are not covered by 
the initial default option.1 In rich policy settings, this constraint is often stringent 
(McKelvey 1986).

The prior literature generally assumes the agenda setter must commit to a 
sequence of proposals, which is set in stone regardless of which proposals pass. And 
yet, in many settings, nothing prevents the agenda setter from bringing different 
proposals to the floor depending on how previous votes turned out. The impact of 
the fixed-agenda assumption is complex. On the one hand, it attenuates the power 
of agenda setters because it precludes them from tailoring their proposals to the 
prevailing circumstances. On the other hand, it magnifies their power because it 
endows them with the ability to commit to proposals they might not want to make 
when the time arrives. Relative to this benchmark, it is unclear how the benefits that 
real-world agenda setters accrue from being able to flexibly tailor proposals stack 
up against the costs they incur from being unable to commit. This is the question 
we address.

We study a novel model of real-time agenda control. A single agenda setter and 
a group of voters choose a policy using the following procedure: for each of finitely 
many rounds, (i) the agenda setter can propose an alternative to the contemporane-
ous default policy (where the first-round default policy is given exogenously), and 
(ii) a vote is taken to determine whether the current proposal or the contemporane-
ous default policy will serve as the default policy in the next round. The policy that 
prevails in the final vote (for the terminal round) is implemented and determines 
payoffs. We investigate the subgame perfect equilibria of this game, assuming nei-
ther voters nor the agenda setter can commit to their future decisions.2

Real-time agenda control has stark implications for collective choice problems 
that satisfy the following property: a collective choice problem is manipulable if, for 

1 A policy ​x​ covers ​y​ if a majority of voters strictly prefer ​x​ to ​y​, and every policy that is majority-preferred to ​x​ 
is also majority-preferred to ​y​. 

2 One possible interpretation of this amendment process is that legislatures can revisit any bill specifying the 
policy for some future date after passing it, before that date arrives. Such reconsideration regularly occurs in prac-
tice. It is perhaps most visible in the context of sunset provisions, which specify a policy change as of a sunset date. 
Prior to the arrival of that date, the provisions are often extended. For example, sunset provisions for the Bush tax 
cuts of 2001 and 2003 effectively specified that tax rates would increase in 2010. Before 2010 arrived, those cuts 
were extended to 2012, effectively reducing the rates for 2010. Senator Diane Feinstein remarked that the sunset 
provisions in the original bill were “critical to my decision to support this legislation” because they “will allow us 
to revisit the components of this bill in the future.” See Fahrenthold (2012). More generally, whenever Congress 
passes a “permanent” policy in year ​T​, it implicitly specifies a policy for year ​​T ′ ​  >  T​. Any further modification of 
the policy between years ​T​ and ​​T ′ ​​ then amounts to reconsideration of the year-​​T ′ ​​ policy.
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every policy ​x​ other than the agenda setter’s favorite, there is an alternative policy ​y​ 
that both she and a majority of voters strictly prefer to ​x​. We show that canonical for-
mulations of spatial and distributive politics satisfy manipulability. More precisely, 
the standard spatial model almost surely satisfies manipulability if the policy space 
has three or more dimensions. We also define a broad class of “distribution prob-
lems” that satisfy manipulability. This class includes divide-the-dollar problems as 
well as problems that mix non-zero-sum policies with transfers. Indeed, augmenting 
any collective choice problem with pork or transfers makes that problem manipu-
lable. Our favored interpretation of manipulability, and its prevalence, is that the 
discordance of the majority’s will in multidimensional problems inevitably creates 
opportunities for the agenda setter.

We establish the potency of real-time agenda control when the environment is 
manipulable. Our main finding, stated informally, is as follows:

Main Result: If there are sufficiently many rounds, the agenda setter obtains her 
favorite policy in every equilibrium regardless of the initial default policy if and only 
if the collective choice problem is manipulable.

Thus, for a wide range of collective choice problems, the agenda setter effectively 
dictates policy, despite voters’ sophistication and her lack of commitment power. 
Manipulability is necessary and sufficient for this conclusion; absent manipulabil-
ity, we show that equilibrium outcomes sometimes remain bounded away from the 
agenda setter’s favorite.

Theorems 1–3 formalize our main conclusion under a range of technical con-
ditions, including for finite and continuous policy spaces, and clarify how many 
rounds are “sufficient.” The core argument involves a simple observation concerning 
“one-step” improvements: if the default option going into the terminal round is not 
the agenda setter’s favorite, she will propose her favorite policy among those that 
both she and a majority of voters prefer to the default. Manipulability guarantees 
that such an improvement exists. Applying this logic iteratively implies that, if she 
can make proposals for ​t​ rounds, she can obtain the outcome generated by the ​t​-fold 
iteration of this “favorite improvement” operator. At each stage, voters pass propos-
als that lead to this outcome because a majority prefer it to the outcome that would 
emerge otherwise. When ​t​ is sufficiently large, this iterative process yields a policy 
arbitrarily close to (if not exactly the same as) the agenda setter’s favorite.

Though simple, this logic is extremely general. It applies for voting rules other 
than simple majority, so long as the analog of manipulability holds. The same 
conclusion also holds for other widely studied legislative procedures, such as the 
closed-rule or successive procedure as well as open-rule bargaining. More broadly, 
we obtain a protocol-equivalence result for the class of “generalized amendment” 
protocols: fixing a preference profile and voting rule, all of these protocols (and oth-
ers) yield the same equilibrium outcome under real-time agenda control.

Our findings thereby illuminate the forces that contribute to the concentration of 
political power, and explain why voter sophistication may not be an effective safe-
guard against agenda control. Recent empirical findings highlight similar themes: 
Berry and Fowler (2016, 2018) observe that chairs of congressional committees 
have disproportionate influence on policymaking, and Fouirnaies (2018) finds that 
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special interest groups make greater campaign contributions to legislators endowed 
with procedural authority.

Our analysis has the additional implication that agenda setters benefit from bun-
dling policy choices with transfers and pork. Augmenting any collective choice 
problem with transfers renders it manipulable not only for simple majority rule but 
also for any voting rule that does not provide any voter with veto power. Our main 
results then imply that such bundling allows the agenda setter to obtain her favor-
ite policy for any “veto-proof” voting rule.3 Moreover, we show that in these set-
tings, the dictatorship result holds even when the process involves a relatively small 
number of rounds: for simple majority rule, three rounds suffice, and for general 
“veto-proof” voting rules, the number of rounds need not exceed the number of 
voters. Analogously, we find that the agenda setter may benefit from linking policy 
issues in order to make bargaining more multidimensional. Specifically, our analysis 
of spatial politics shows that the collective choice problem is generically manipula-
ble if and only if the policy space has three or more dimensions. Thus, if the current 
legislative debate concerns a one- or two-dimensional policy decision, the agenda 
setter may benefit from bundling that decision with other policy issues—even “set-
tled” ones for which the default option already coincides with her favorite policy—
because the overall problem thereby becomes manipulable.

To isolate the role of sequential rationality constraints in real-time agenda con-
trol, we compare our model to the commitment benchmark in which the agenda 
setter can commit to any strategy in the dynamic game. Therein, we find that the 
agenda setter can obtain her favorite policy among those that are reachable from 
the initial default option through a finite chain of majority improvements, mirror-
ing Miller’s (1977) classic characterization of outcomes achievable through general 
binary voting trees.4 Relative to this benchmark, our main results show that manipu-
lability enables the agenda setter to attain her commitment payoff without having to 
commit. Absent manipulability, sequential rationality typically precludes her from 
achieving the commitment benchmark. In such cases, even a commitment to a fixed 
agenda, as in Shepsle and Weingast (1984), may leave her better-off.

As in the prior literature, we assume the agenda process involves a finite number 
of rounds. This assumption is appropriate when the purpose of negotiation is to 
solve a time-indexed collective choice problem, i.e., to select the policy that prevails 
at a given point in time. Problems of this form are ubiquitous. For example, when a 
legislature negotiates over the budget for a given fiscal year, it cannot continue those 
negotiations into the subsequent fiscal year. In such cases, there is both a deadline 
for meaningful deliberations (e.g., 11:59 pm on December 31) and an inherent con-
straint on the speed at which the legislature can consider new proposals. In combi-
nation, these considerations imply that the number of rounds is necessarily bounded. 

3 Previous studies have highlighted the detrimental effects of pork on legislative and democratic politics (e.g., 
Lizzeri and Persico 2001; Battaglini and Coate 2008; Maskin and Tirole 2019). Our analysis shows that the mere 
ability to use pork or transfers yields dictatorial power; in equilibrium, the agenda setter does not actually transfer 
benefits to any party.

4 It follows from Miller (1977) that the commitment outcome is the agenda setter’s favorite policy whenever 
the latter is reachable from the initial default option through some majority chain. Combined with McKelvey’s 
(1976, 1979) results on global intransitivities, this observation implies that, for rich policy settings, voter sophisti-
cation does not constrain the power of an agenda setter who can commit to a plan specifying a proposal for every 
contingency.
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We assume, for the sake of tractability, that this number is known in advance, but 
our results plainly extend to settings in which an initially unknown termination point 
becomes evident during the course of negotiations.

While we think it is reasonable to assume the existence of a deadline—inso-
far as negotiations over time-indexed actions are widespread—one could alterna-
tively consider processes that allow negotiations to continue indefinitely. Diermeier 
and Fong (2011) and Anesi and Seidmann (2014) adopt that approach, analyzing 
infinite-horizon counterparts of our baseline model. They show that the limitless 
potential for reconsideration severely constrains agenda power. Read in the context 
of that work, our findings establish the critical importance of deadlines. We show, 
in effect, that a simple commitment to termination at a fixed point in time allows an 
agenda setter to achieve her favorite outcome (in manipulable environments). More 
broadly, we find that an agenda setter’s preference over the length of negotiations is 
nonmonotonic: she prefers a moderate number of proposal rounds both to a single 
round and to an open-ended process with no limit on duration. Thus, our analysis 
implies that even if there is no natural deadline, a strategic agenda setter benefits 
from inventing excuses to establish one.

We are not the first to show that certain collective choice processes can produce 
dictatorial outcomes. Kalandrakis (2004) finds that bargaining with an endogenous 
status quo and changing proposers yields such results in a divide-the-dollar setting. 
Bernheim, Rangel, and Rayo (2006) analyze a model of pork barrel politics with 
changing proposers and show that the final proposer is effectively the dictator. The 
endogenous evolution of the default option is an essential feature of those frame-
works. A few papers conclude that dictatorial power prevails under the opposite 
assumption of closed-rule negotiations, where accepting an offer results in its imme-
diate implementation. Ali, Bernheim, and Fan (2019) find that a modest form of 
predictability about future bargaining power results in the first proposer obtaining 
the entire surplus in a closed-rule divide-the-dollar setting; Duggan and Ma (2023) 
consider settings in which a single agent makes all proposals and show that she has 
approximate dictatorial power.

These studies obtain results for specific policy spaces and legislative procedures, 
building primarily on the legislative bargaining literature. Our work differs in sev-
eral important respects. It is instead rooted in the classical literature on agenda set-
ting, to which we contribute by investigating the implications of real-time agenda 
control without commitment. Instead of focusing on a particular policy space, we 
identify manipulability—a property that any given space may or may not satisfy—
as the necessary and sufficient condition for dictatorial power, and we also show that 
canonical models of spatial and distributive politics satisfy this property. Moreover, 
we demonstrate that the strategic logic behind our main result is robust, in that it 
applies to a wide range of legislative procedures, allowing for either evolving or 
fixed default options.

Section I illustrates the core logic of our results through a simple example. Section 
II describes the general model, and Section III contains our main results. Section 
IV explains why manipulability holds in spatial and distributive politics. Section 
V describes the commitment benchmark, investigates the implications of real-time 
agenda control for other legislative procedures, and elaborates on the role of deadlines. 
Section VI concludes. Omitted proofs are in the Appendix and online Appendix.
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I.  An Example

A legislature, comprised of an agenda setter and ​n​ voters (where ​n​ is odd), 
chooses a policy from ​​{w, x, y, z}​​. The agenda setter has a strict preference relation 
that coincides with the listed order. Each voter has a complete and transitive prefer-
ence relation that is also strict, but the profile of voter preferences results in a strict 
majority relation ​​≻​M​​​ that cycles. We depict the agenda setter’s preferences and the 
majority relation in Figure 1.5 

The legislature selects a policy through what is known in the literature as the 
amendment procedure, which operates as follows:

	 (i)	 There is an initial default option;

	 (ii)	 In each of finitely many rounds, the agenda setter proposes a new policy (the 
proposal), which is put to a vote against the prevailing default;

	 (iii)	 In each nonterminal round, the policy that obtains a majority of the votes 
becomes the default for the subsequent round;

	 (iv)	 The policy that obtains a majority of the votes in the final round is implemented.

The amendment procedure features prominently in practice and is the focus of 
considerable prior work. In much of the literature, the agenda setter lays out the 
sequence of proposals in advance, prior to any voting. We call this procedure a fixed 
agenda protocol because it does not permit the agenda setter to vary her proposals 
based on the concurrent default or prior votes. Our analysis contrasts this protocol 
with real-time agenda control, which allows the agenda setter to tailor proposals to 
the circumstances that arise but does not endow her with any commitment power. 
We use this example to illustrate the distinct implications of fixed agenda protocols 
and real-time agenda control.

Suppose the initial default is ​z​, the agenda setter’s least favorite policy. McKelvey 
(1976) points out that if voters are myopic, the agenda setter can obtain her favorite 
policy ​w​ by exploiting the cycles in the majority relation: she uses a fixed agenda 
where ​y​ is the first proposal, ​x​ is the second proposal, and ​w​ is the third and final 
proposal. Because voters are myopic, in each instance they anticipate no further 
revisions, so each proposal passes, and the process selects ​w​. Shepsle and Weingast 
(1984) show that this conclusion does not hold if voters are sophisticated. Instead, 
the agenda setter can obtain only those policies that are not covered by the initial 
default option (as defined in footnote 1). In our example, the agenda setter’s favorite 
uncovered policy is ​x​, which she can obtain with the following fixed agenda: pro-
pose ​x​ in the first round and ​y​ in the second.6 Voter sophistication would therefore 
appear to limit the power of agenda control.

5 This majority relation can arise whenever ​n  ≥  3​. For the three-voter case, suppose ​z  ​≻​1​​  w  ​≻​1​​  x  ​≻​1​​  y​, ​x  ​≻​2​​ 
y  ​≻​2​​  z  ​≻​2​​  w​, and ​y  ​≻​3​​  z  ​≻​3​​  w  ​≻​3​​  x​.

6 Although a majority of voters prefer ​z​ to ​x​, sophisticated voters anticipate that rejection of ​x​ in the first round 
would lead to a final outcome of ​y​, as ​y​ is majority-preferred to ​z​.
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Our central insight is that giving the agenda setter the flexibility to make propos-
als in real time, so that she can tailor each proposal to the prevailing default option, 
unleashes the full power of agenda control and allows her to obtain her favorite policy 
even if voters are sophisticated. While it is intuitive that the agenda setter benefits from 
greater flexibility, note that we simultaneously remove her ability to commit, which 
could in principle limit her power by introducing sequential rationality constraints.

To illustrate how the agenda setter can exploit real-time agenda control, we con-
struct an equilibrium for a three-round game that selects policy ​w​. Consider the 
following strategy for the agenda setter: if the default option in any round is policy ​
p​, she proposes her favorite improvement to ​p​—in other words, her favorite pol-
icy among those the majority prefers to ​p​. We use ​ϕ​(p)​​ to denote this policy. On 
the equilibrium path (starting from an initial default of ​z​), this strategy prescribes 
proposing ​y​ first, then ​x​, and then ​w​. Notice that this sequence coincides with the 
optimal agenda for myopic voters. But in this instance, voters approve each policy 
not out of myopia but rather because they (correctly) anticipate future play. We can 
verify this claim through backward induction.

t  =  3: If the default option is ​p​, the agenda setter proposes ​ϕ​(p)​​, which, by con-
struction, results in ​ϕ​(p)​​.

t  =  2: If the default option is ​p​, the agenda setter proposes ​ϕ​(p)​​. Anticipating 
the behavior at ​t  =  3​, voters understand that approving this policy today ultimately 
results in ​​ϕ​​ 2​​(p)​​—the twofold iteration of the ​ϕ​ operator—whereas rejecting this 
policy results in ​ϕ​(p)​​. Since a majority of voters prefer ​​ϕ​​ 2​​(p)​​ to ​ϕ​(p)​​, the proposal 
passes.

t  =  1: Analogously, in the first period, the agenda setter proposes ​y  =  ϕ​(z)​​. 
Voters anticipate that approving this proposal ultimately results in ​w  = 
​ϕ​​ 2​​(y)​​, whereas rejecting it ultimately results in ​x  = ​ ϕ​​ 2​​(z)​​. Since a majority favor ​w​ 
over ​x​, the proposal passes.

Thus, a majority of voters always finds it sequentially rational at each stage to 
approve the proposal that this strategy prescribes.

Figure 1

Notes: Panel A shows the agenda setter’s preferences. Panel B shows the majority relation. In each case, an arrow 
from policy ​p​ to ​p′​ denotes ​p′  ≻  p​.

w x y z

w

x

y

z

Panel A Panel B



3097ALI ET AL.: WHO CONTROLS THE AGENDA CONTROLS THE LEGISLATUREVOL. 113 NO. 11

Because the agenda setter cannot make commitments, her behavior must also 
be sequentially rational. Indeed, in the final round, she proposes her favorite option 
among those that will pass. Given the equilibrium for the final round, her second-round 
proposal always achieves her favorite outcome among the feasible alternatives (see 
above). Likewise, given the equilibrium for the last two rounds, she cannot improve 
on her prescribed first-round proposal. Therefore, no deviation can make her strictly 
better-off.

Thus, there is a subgame perfect equilibrium in which the agenda setter obtains ​w​.  
Our main result (Theorem 1) reaches a stronger conclusion: even though there are 
multiple equilibria, ​w​ is the unique subgame perfect equilibrium outcome regardless 
of the initial default so long as there are three or more rounds.7 Real-time agenda con-
trol therefore guarantees that the group will select the agenda setter’s favorite policy.

In this example, the agenda setter’s preferences and the majority relation jointly 
satisfy a condition we call manipulability: for every policy ​p​ other than the agenda 
setter’s favorite, there is a policy ​p′​ that both she and a majority of voters strictly 
prefer to ​p​. Our main results show that the agenda setter exercises dictatorial power 
if and only if this condition is satisfied: when it fails, then for some initial default 
options, the agenda setter cannot obtain her favorite policy in any equilibrium.

To understand why manipulability is necessary, consider the majority relation in 
Figure 2. The solid black arrows are the same as before, but the red dashed arrows 
are different. Policy ​x​ is now unimprovable: there is no other policy that the agenda 
setter and a majority of voters all prefer to ​x​. As ​x​ is not the agenda setter’s favorite 
option, manipulability fails. Our characterization result (Lemma 1) implies that if 
the initial default option is ​z​, the agenda setter necessarily obtains ​x​ in every equi-
librium regardless of the horizon. Intuitively, voters anticipate that if ​z​ remains the 
default option in the terminal round, sequential rationality will compel the agenda 
setter to propose ​x​ because ​x​ is her favorite policy among the options that will pass. 
But then ​x​ must also be the outcome of a two-stage game starting with a default of ​z​: 
rejecting the first proposal leads to ​x​, and ​x​ is unimprovable, so the majority will not 
support any proposal leading to an option the agenda setter would prefer. The same 
argument applies, recursively, to games of any length.

In this example, the agenda setter is stymied by her inability to commit: were she 
able to lock in a fixed agenda, as in Shepsle and Weingast (1984), she could achieve ​
w​ by proposing ​w​ in the first round and ​y​ in the second. A majority of voters would 
then approve ​w​ in the first round because rejection would yield ​y​. In our setting, the 
agenda setter cannot achieve this outcome because proposing ​y​ in the second round 
is not sequentially rational: if ​z​ remains the default option in the second round, she 
would instead propose ​x​, and anticipating that behavior, voters would be unwilling 
to approve ​w​ in the first round.

These examples illustrate the role of manipulability in empowering the agenda 
setter to obtain her favorite policy without the need for commitment. Although 
manipulability may appear restrictive, we show in Section IV that it is satisfied in 
standard models of spatial and distributive politics.

7 We impose the standard refinement that voters vote as if they are pivotal. 
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II.  Model

Our model consists of two components: (i) a (static) collective choice problem 
comprising the set of feasible policies and agents’ preferences over them and (ii) a 
dynamic procedure for selecting a policy. We describe each in turn.

Collective Choice Problem.—A group ​N  ≔ ​ {1, …, n}​​ of voters (where ​n  >  1​ 
is odd) and a single nonvoting agenda setter (​A​) choose a policy from policy space ​
X​. This space is compact and metrizable; in most of our examples, it is either finite 
or a subset of a finite-dimensional Euclidean space. For each ​i  ∈ ​ {1, …, n, A}​​, ​​≽​i​​​ 
denotes player ​i​’s preference relation over policies. Each relation is continuous and 
has a continuous utility representation ​​u​i​​ : X  →  ℝ​. If a majority of voters weakly 
(respectively, strictly) prefers ​x​ to ​y​, we say that ​x  ​≽​M​​  y​ (respectively, ​x ​ ≻​M​​  y​). 
We use ​​X​ A​  ∗ ​  ≔ ​ arg max​ x∈X​​ ​u​A​​​(x)​​ to denote the set of the agenda setter’s favorite pol-
icies. Together, the policy space and preference profile constitute a collective choice 
problem, ​  ≔ ​ (X, ​​{​≽​i​​}​​i=1,…, n,  A​​)​​.

Legislative Procedure.—Our baseline analysis focuses on what the literature calls 
the amendment procedure. Voting takes place in rounds ​t  ∈ ​ {1, …, T}​​, where ​T​ is 
finite. Activity prior to round ​t​ determines a default policy ​​x​​ t−1​​. The initial default, ​​
x​​ 0​​, is exogenous. In each round ​t​, the agenda setter proposes a policy (the proposal) 
denoted ​​a​​ t​  ∈  X​, which can coincide with the existing default policy. The proposal ​​
a​​ t​​ is then put to a vote against the default ​​x​​ t−1​​. If a majority of voters vote in favor 
of the proposal (i.e., it “passes”), then it becomes the new default for the subsequent 
round: ​​x​​ t​  = ​ a​​ t​​. If the proposal does not pass, the default remains unchanged: ​​x​​ t​  = ​
x​​ t−1​​. The policy ​​x​​ T​​ that prevails (after voting) in round ​T​ determines payoffs.8

8 Formally, in the pertinent literature (e.g., Shepsle and Weingast 1984), this bargaining framework is known as 
a “forward agenda” amendment procedure. The literature also considers “backward agenda” procedures wherein, 
after all amendments have been incorporated, the amended bill is put to a final up-or-down vote against the original 
default. Our analysis also applies to settings in which the legislature can consider a sequence of bills, each amend-
able through a backward agenda procedure, prior to the deadline (i.e., the date at which the policy that the bills 
concern is to take effect). Under this interpretation, each “round” of the procedure we study in this paper pertains 
to a distinct bill that, if passed, will be implemented unless it is subsequently supplanted by passage of another bill.

Figure 2

Notes: Panel A shows the agenda setter’s preferences. Panel B shows the majority relation, with red dashed arrows 
denoting differences from that in Figure 1.
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Solution Concept.—All players can condition their actions, both proposals and 
votes, on the history of prior actions. This assumption captures the idea that peo-
ple take actions—and, in particular, set the agenda—in real time. A history ​​h​​ t​​ as 
of the beginning of round ​t​ records the initial default policy ​​x​​ 0​​, the sequence of 
proposals ​​(​a​​ 1​, …, ​a​​ t−1​)​​, and the sequence of voting profiles ​​(​v​​ 1​, …, ​v​​ t−1​)​​ in all 
prior rounds. It therefore identifies the default ​​x​​ t−1​​ prevailing at the beginning of 
round ​t​. ​​​​ t​​ denotes the space of all round-​t​ histories. A strategy for the agenda 
setter is a mapping ​​σ​A​​ : ​⋃​ t=1​ T  ​ ​​​ t​  →  Δ​(X)​​ specifying, for each history ​​h​​ t​​, a dis-
tribution ​​σ​A​​​(​h​​ t​)​  ∈  Δ​(X)​​ over proposals ​​a​​ t​​. A strategy for voter ​i​ is a mapping  
​​σ​i​​ : ​⋃​ t=1​ T  ​ ​​​ t​ × X  →  Δ​(​{y, n}​)​​ specifying, for each history ​​h​​ t​​, a distribution over 
yes or no votes for each potential proposal ​​a​​ t​​.

We study subgame perfect equilibria of this game. We also assume “as-if pivotal” 
voting: if passage (respectively, rejection) of the current proposal ultimately leads 
to continuation outcome ​x​ (respectively, ​y​), then anyone who has a strict prefer-
ence for ​x​ votes for the option that leads to ​x​, and similarly for ​y​.9 This standard 
assumption rules out unreasonable equilibria in which nonpivotal voters, who are 
technically indifferent because they cannot affect the outcome, vote contrary to 
their preferences.10 Henceforth, we use the term equilibrium to denote this solution 
concept.

III.  The Power of Real-Time Agenda Control

We now turn to our main results concerning the agenda setter’s power. Section 
IIIA defines what it means for a collective choice problem to be manipulable. 
Section IIIB and Section IIIC consider finite and general policy spaces, respectively.

A. Improvability and Manipulability

We begin by describing policies that the agenda setter can improve upon with a 
single proposal round.

DEFINITION 1: Policy ​x​ is Improvable if there exists a policy ​y​ such that ​y ​ ≻​A​​  x​ 
and ​y ​ ≻​M​​  x​; if no such policy exists, then policy ​x​ is Unimprovable.

One can view the set of unimprovable policies as the core of a suitably defined 
cooperative game in which all decisive coalitions contain both the agenda setter and 
at least a simple majority of voters.

9 There is no restriction on the behavior of voters who are indifferent between ​x​ and ​y​. This definition applies 
only at histories where continuation outcomes do not depend on the composition of the current vote, conditional on 
which policy prevails. As will become apparent, our analysis either assumes strict preferences (Theorems 1 and 2), 
thereby ensuring that such equilibria exist, or allows for indifference while imposing a mild refinement (Theorem 
3), which ensures that continuation outcomes depend only on the prevailing policy.

10 When voters have strict preferences and the policy space is finite, subgame perfection with “as-if pivotal” 
(simultaneous) voting is outcome-equivalent to both (i) iterated deletion of weakly dominated strategies under 
simultaneous voting and (ii) mere subgame perfection when voting in each round occurs via “roll call” in a fixed 
sequential order (see Chapter 4 of Austen-Smith and Banks 2005 and references therein).
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The set of unimprovable policies must include all of the agenda setter’s favor-
ites, ​​X​ A​  ∗ ​​. For an important class of collective choice problems, everything else is 
improvable.

DEFINITION 2: Collective choice problem ​​ is Manipulable if every ​x  ∉ ​ X​ A​  ∗ ​​ is 
improvable.

Manipulability is connected to intransitivity of the majority relation. If that rela-
tion is transitive, a Condorcet winner exists, and the choice problem is manipulable 
if and only if that policy is the agenda setter’s favorite. Intransitivities make it easier 
for the agenda setter to find improvements that the majority will accept.11

In the rest of this section, we identify the implications of real-time agenda control 
for manipulable and nonmanipulable collective choice problems. In Section IV, we 
demonstrate that collective choice problems belonging to some familiar and import-
ant classes are manipulable.

B. Dictatorial Power with Finite Alternatives

To convey the logic of agenda-setting power most transparently, we start by con-
sidering a finite policy space under the “generic” assumption that all players have 
strict preferences.12

DEFINITION 3: Collective choice problem ​​ satisfies Generic Finite Alternatives if ​
X​ is finite, and each ​​≽​i​​​ and ​​≽​A​​​ are antisymmetric.

For such settings, we obtain the following result:

THEOREM 1: Suppose the collective choice problem ​​ satisfies Generic Finite 
Alternatives. For any game with at least ​​|X |​ − 1​ rounds, the agenda setter obtains 
her favorite policy in every equilibrium regardless of the initial default if and only 
if ​​ is Manipulable.

Theorem 1 articulates the power of real-time agenda control: with a manipula-
ble policy space, the agenda setter always obtains her favorite policy. On its own, 
manipulability merely ensures that the agenda setter can find some improvement 
palatable to a majority. Indeed, when agendas are fixed in advance as in Shepsle and 
Weingast (1984) (so that proposals are not conditional on prior votes), the agenda 
setter can do no better than her favorite policy among those uncovered by the initial 
default option, even if the policy space is manipulable. It is therefore the combina-
tion of manipulability and real-time agenda control that yields dictatorial power.

11 Manipulability is, however, distinct from the notion of global intransitivity in the majority relation (or 
“chaos”) studied by the classical literature (e.g., McKelvey 1976). Global intransitivity stipulates that for any 
two policies ​x​ and ​y​, there is a majority chain ​​​{​a​​ k​}​​ k=0​ 

k=K​​ such that ​x  =  ​a​​ 0​​, ​y  =  ​a​​ K​​, and ​​a​​ k​  ​≻​M​​  ​a​​ k−1​​ for all 
​k  ∈  ​{1, …, K}​​. Manipulability plainly does not require global intransitivity and, unlike manipulability, global 
intransitivity does not depend on the agenda setter’s preferences. 

12 For any finite policy space ​X​, the set of utility profiles ​​(​u​1​​, …, ​u​n​​, ​u​A​​)​​ representing strict preference profiles is 
both open-dense and of full measure in ​​ℝ​​ ​|X |​×​(n+1)​​​. 
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The argument for Theorem 1 is elementary. Denote the set of policies that are 
majority-preferred to ​x​ by ​M​(x)​  ≔ ​ {y  ∈  X : y ​ ≻​M​​  x or y  =  x}​​. We define the 
agenda setter’s favorite improvement mapping ​ϕ : X  →  X​ by

(1)	​ ​{ϕ​(x)​}​  ≔ ​ arg max​ 
y∈M​(x)​

​ ​ ​ u​A​​​(y)​.​

Given that the agenda setter has strict preferences, ​ϕ​( · )​​ is well defined. We denote 
the fixed points of this mapping by ​E  ≔ ​ {x  ∈  X : x  =  ϕ​(x)​}​​. Note that a pol-
icy ​x​ is unimprovable if and only if ​x  ∈  E​. We write the ​t​-fold iteration of ​ϕ​ for 
any initial default option ​​x​​ 0​​ as ​​ϕ​​ t​​(​x​​ 0​)​​. By definition of ​ϕ​, for every default ​​x​​ 0​​,  
(i) ​​ϕ​​ t+1​​(​x​​ 0​)​ ​ ≽​A​​ ​ ϕ​​ t​​(​x​​ 0​)​​, and (ii) if ​T  ≥ ​ |X |​ − 1​, ​​ϕ​​ T​​(​x​​ 0​)​​ is an element of ​E​ (i.e., 
unimprovable).

We prove Theorem 1 by showing that equilibrium outcomes are characterized 
by iterations of the ​ϕ​ mapping, regardless of whether manipulability holds. Define 
the equilibrium outcome correspondence for a ​T​-round game as ​​f​ T​​ : X  ⇉  X​, 
where ​​f​ T ​​​(​x​​ 0​)​​ is the set of policies chosen with positive probability in any equilib-
rium given an initial default of ​​x​​ 0​​.

LEMMA 1: Suppose the collective choice problem ​​ satisfies Generic Finite 
Alternatives. For any game with ​T​ rounds and initial default policy ​​x​​ 0​​, the equilib-
rium outcome correspondence satisfies ​​f​ T ​​​(​x​​ 0​)​  = ​ {​ϕ​​ T​​(​x​​ 0​)​}​​. Moreover,

	 (a)	 There exists a pure-strategy equilibrium in which (i) the agenda setter always 
proposes ​ϕ​(x)​​ when the current default is ​x​ and (ii) each voter ​i​ votes to 
approve proposal ​y​ in round ​t​ if and only if ​​ϕ​​ T−t​​(y)​ ​ ≽​i​​ ​ ϕ​​ T−t​​(​x​​ t−1​)​​.

	 (b)	 For an initial default ​​x​​ 0​​, ​​f​ T ​​​(​x​​ 0​)​  = ​ {​x​​ 0​}​​ if and only if ​​x​​ 0​  ∈  E​.

	 (c)	 If ​T  ≥ ​ |X |​ − 1​, then ​​⋃ ​x​​ 0​∈X​​   ​f​ T ​​​(​x​​ 0​)​​  =  E​.

Lemma 1 states that the equilibrium outcome correspondence with ​T​ rounds coin-
cides with the ​T​-fold iteration of the agenda setter’s favorite improvement mapping, 
implying that all equilibria are outcome-equivalent. It also asserts the existence of 
a simple equilibrium in which the agenda setter follows a “greedy” strategy, always 
acting as if the current round is the last one.13 Finally, it records some useful impli-
cations: (b) the fixed points of the equilibrium outcome correspondence are the 
unimprovable policies, and (c) given sufficiently many rounds, every equilibrium 
outcome is unimprovable.

Perhaps surprisingly, the agenda setter’s strategy in the simple equilibrium above 
would implement the same outcome if voters were myopic as in McKelvey (1976)—
that is, if they ignored the possibility of further amendments. But in our setting, 
voters approve each proposal precisely because they anticipate future revisions and 

13 In this equilibrium, voters break ties in favor of the agenda setter’s proposals. Under Generic Finite 
Alternatives, voters are indifferent between accepting and rejecting a proposal if and only if both choices lead to 
the same continuation outcome.
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prefer the continuation path associated with the proposal. More specifically, the 
group of voters who approve each proposal along the equilibrium path are those 
who favor ​​ϕ​​ T​​(​x​​ 0​)​​ to ​​ϕ​​ T−1​​(​x​​ 0​)​​. Because the continuation outcomes for acceptance 
and rejection of the current proposal do not vary along the equilibrium path, the 
same coalition of voters supports each on-path proposal.

Theorem 1 is an immediate corollary of Lemma 1(c): the set of unimprovable 
policies ​E​ coincides with ​​X​ A​  ∗ ​​ if and only if ​​ is Manipulable. We therefore sketch the 
proof of Lemma 1 here (the full proof is in the Appendix):

	 (i)	 With a single round, an equilibrium policy is an element of ​ϕ​(X)​​, where ​ϕ​(X)​​ 
is the image of ​X​ under ​ϕ​: if the default option ​​x​​ 0​​ is improvable, then in equi-
librium, the agenda setter proposes her favorite improvement ​ϕ​(​x​​ 0​)​​, which 
passes.

	 (ii)	 With two rounds, an equilibrium policy is an element of ​​ϕ​​ 2​​(X)​​. If the ini-
tial default option ​​x​​ 0​​ prevails at the end of the first round, then by (i), the 
resulting policy is ​ϕ​(​x​​ 0​)​​. If the latter policy is improvable, then there exist 
policies ​y​ such that ​ϕ​(y)​ ​ ≻​M​​  ϕ​(​x​​ 0​)​​ (for example, ​y  =  ϕ​(​x​​ 0​)​​). Crucially, in 
equilibrium, the agenda setter is guaranteed passage of any such proposal 
in the first round because voters anticipate, by step (i) above, that accepting ​
y​ would lead to final outcome ​ϕ​(y)​​, while rejecting it would lead to ​ϕ​(​x​​ 0​)​​. 
By definition, the agenda setter’s favorite improvement over ​ϕ​(​x​​ 0​)​​ is 
​​ϕ​​ 2​​(​x​​ 0​)​​, so proposing any policy ​y​ for which ​ϕ​(y)​  = ​ ϕ​​ 2​​(​x​​ 0​)​​ is optimal for 
her. As described in Lemma 1(a), one such first-round proposal is ​y  = 
ϕ​(​x​​ 0​)​​.

	 (iii)	 By induction, with ​T​ rounds, an equilibrium policy is an element of ​​ϕ​​ T​​(X)​​. As 
noted before, ​​ϕ​​ T​​(X)​​ must coincide with ​E​ if ​T  ≥ ​ |X |​ − 1​.

While the default evolves gradually in the simple equilibrium of Lemma 1(a), 
there are other equilibria with sudden transitions. Specifically, if ​​ϕ​​ T​​(​x​​ 0​)​​ is unim-
provable, there are equilibria where the agenda setter proposes it in the first round 
and it passes.14 Thus, if the policy space is manipulable and ​T  ≥ ​ |X |​ − 1​, the group 
may adopt the agenda setter’s favorite policy immediately even if a majority does 
not prefer it to the initial default.

14 However, if ​​ϕ​​ T​​(​x​​ 0​)​​ is improvable, then subgame perfection requires gradualism: were voters to accept  
​​ϕ​​ T​​(​x​​ 0​)​​ in the first round, they would expect the agenda setter to further amend the policy to obtain additional gains 
for herself, contrary to the majority’s interests.
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Note that our explanation for Lemma 1 did not invoke any properties of major-
ity rule. Consequently, with appropriate adjustments to the notions of favorite 
improvement and manipulability, these results generalize to arbitrary voting rules. 
In Section VB, we obtain similar results for legislative procedures that feature 
adjournment clauses that terminate deliberation, such as the successive procedure/
closed-rule bargaining and open-rule bargaining. Therefore, the simple recursive 
logic applies to a broad range of legislative institutions.

Two caveats are in order. First, although manipulability is generic in rich multidi-
mensional collective choice problems (see Section IV), the same statement does not 
hold under Generic Finite Alternatives: for any finite policy space ​X​, the set of utility 
profiles ​​(​u​1​​, …, ​u​n​​, ​u​A​​)​​ for which manipulability holds has strictly positive, but not 
full, Lebesgue measure in ​​ℝ​​ ​|X |​×​(n+1)​​​. Second, as the cardinality of ​X​ increases, the 
above results require the number of rounds to increase without bound. We address 
both issues below.

C. Near-Dictatorial Power with Continuous Policy Spaces

Next, we extend our analysis to settings with continuous policy spaces using 
two distinct approaches. For the first, we take the view that the typical real-world 
collective choice problem offers an extremely large but finite number of alternatives 
and that the assumption of continuity is usually a convenient analytic approximation 
(e.g., for budgets, pennies are indivisible). Instead of studying the continuous case 
that approximates the settings of interest, we study the discrete settings that the 
continuous case approximates (i.e., those with large numbers of alternatives). For 
the second approach, we study continuous policy spaces directly but impose a mild 
equilibrium refinement. Both approaches yield the same conclusion: regardless of 
the initial default option, with sufficiently many rounds, the agenda setter’s payoff is 
arbitrarily close to its maximum.

Discretized Settings.—Consider a collective choice problem ​ ≔ ​(X, ​​{​≽​i​​}​​i=1,…, n,  A​​)​​  
that need not satisfy Generic Finite Alternatives. Let ​d​(x, y)​​ denote a metric on ​X​; 
for a subset ​Y  ⊆  X​, ​d​(x, Y)​  ≔ ​ inf​ y∈Y​​  d​(x, y)​​ denotes the distance of ​x​ from ​Y​. A 
generic ​ϵ​-grid is a finite subset ​​X​ϵ​​  ⊆  X​ for which (i) ​​max​ x∈X​​  d​(x, ​X​ϵ​​)​  <  ϵ​ and 
(ii) the preferences of voters and the agenda setter are antisymmetric within ​​X​ϵ​​​. 
We study “ambient” collective choice problems that admit generic ​ϵ​-grids for every ​
ϵ  >  0​. As we establish in the Appendix (Lemma 3), such problems are character-
ized by the condition that all players have “thin” indifference curves. Formally, let 
​​I​i​​​(x)​  ≔ ​ {y  ∈  X : y ​ ∼​i​​  x}​​ denote player ​i​’s indifference curve through 
policy ​x​.

DEFINITION 4: Collective choice problem ​​ satisfies Thin Individual Indifference 
if ​​I​i​​​(x)​\​{x}​​ has empty interior for every player ​i​ and ​x  ∈  X​.

Thin Individual Indifference holds in most applications with continuous poli-
cies, including divide-the-dollar problems and any setting with strictly convex 
preferences. The assumption also features in McKelvey (1979) and Shepsle and 
Weingast (1984), who further assume that the policy space has no isolated points. 
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Our definition generalizes their condition and for finite policy spaces is equivalent 
to Generic Finite Alternatives.15

Loosely, we show that, under this assumption, in games with large numbers of 
rounds and options, the agenda setter “nearly” exercises dictatorial power in all 
equilibria if and only if the ambient collective choice problem is manipulable. 
Formally, defining ​​u​ A​ ∗ ​  ≔ ​ max​ x∈X​​  ​u​A​​​(x)​​ for any (continuous) utility representation ​​
u​A​​​ of ​​≽​A​​​, we have16

THEOREM 2: Suppose the collective choice problem ​​ satisfies Thin Individual 
Indifference. The following holds if and only if ​​ is Manipulable:

For every ​δ  >  0​, there exist ​​ϵ​δ​​  >  0​ and ​​T​δ​​  ∈  ℕ​ such that, if the policy space 
is restricted to any generic ​ϵ​-grid ​​X​ϵ​​​ where ​ϵ  <  ​ϵ​δ​​​ and the game has at least ​​T​δ​​​ 
rounds, then given any initial default in ​​X​ϵ​​​, the agenda setter’s payoff is no lower 
than ​​u​ A​ ∗ ​ − δ​ in any equilibrium.

We note three features of this result. First, it does not require the discretized 
collective choice problems, ​​​ϵ​​  ≔ ​ (​X​ϵ​​, ​​{​≽​i​​}​​i=1,…, n,  A​​)​​, to be manipulable. Second, 
the agenda setter achieves a payoff within ​δ  >  0​ of her maximum among all poli-
cies in the ambient policy space ​X​, not merely those in the grid ​​X​ϵ​​​. Third, the min-
imal horizon length ​​T​δ​​​ and maximal discretization size ​​ϵ​δ​​​ depend on the payoff 
approximation ​δ​ but are uniform across both the choice of the particular grid ​​X​ϵ​​​ 
and the initial default within that grid. These features distinguish Theorem 2 from 
Theorem 1: even if ​​​ϵ​​​ were manipulable, Theorem 1 would only establish that 
the agenda setter achieves her favorite option if the number of rounds is at least  
​​|​X​ϵ​​|​ − 1​, which explodes as ​ϵ  →  0​. In contrast, Theorem 2 shows that, with ​​T​δ​​​ 
rounds, the agenda setter obtains a payoff within ​δ​ of her maximum for all suffi-
ciently fine grids.

The following is a sketch of the proof. First, we show that, if the ambient col-
lective choice problem ​​ is manipulable, then policies that are unimprovable within 
the grid ​​X​ϵ​​​ lie in a neighborhood of ​​X​ A​  ∗ ​​ that shrinks to ​​X​ A​  ∗ ​​ as ​ϵ  →  0​. Thus, even if 
the agenda setter cannot obtain her favorite policy in ​​X​ϵ​​​ (let alone in ​X​), she can 
make sequences of successful proposals that bring the policy arbitrarily close to 
her favorite. The second step shows that, as long as the grid is sufficiently fine, she 
can achieve these gains within a fixed number of rounds that does not depend on the 
particular grid. The essence of the argument is that, for any ​δ  >  0​, there exists a 
minimal payoff improvement ​​η​δ​​  >  0​ such that, whenever the agenda setter’s payoff 
differs from that of her favorite policy by more than ​δ​, she can find another policy 
that improves both her payoff and the payoffs of a majority of voters by at least ​​η​δ​​​. 

15 Generic Finite Alternatives implies that every ​x  ∈  X​ is isolated and ​​I​i​​​(x)​\​{x}​  =  ∅​.
16 The statement of Theorem 2 uses a cardinal measure of near-dictatorial power, but we can restate it in ordinal 

terms: if and only if ​​ is manipulable, the final policy itself must be close to the agenda setter’s favorite policies,  
​​X​ A​  ∗ ​​. That is, for every ​δ  >  0​, there exist ​​ϵ​δ​​  >  0​ and ​​T​δ​​  ∈  ℕ​ such that, for any sufficiently fine grid and long hori-
zon, and for any initial default, all equilibrium outcomes ​y​ are close to the agenda setter’s favorite policies, in the 
sense that ​d​(y, ​X​ A​  ∗ ​)​  <  δ​.
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Using this observation, it is easy to determine a bound on the number of rounds that 
necessarily brings her payoff within ​δ​ of her maximum.17

An Equilibrium Refinement for Continuous Settings.—When considering settings 
with continuous policy spaces, we cannot assume away indifference. This inconve-
nient fact raises two issues. First, how do voters break ties when indifferent between 
two continuation paths? Second, how do we define “as-if pivotal” voting when future 
tie-breaking for other players, and hence continuation paths, may differ depending 
on the composition of the majority in the current round? A standard approach in the 
literature is to resolve both issues by restricting attention to pure strategy Markov 
perfect equilibria in which voters always break indifference in favor of the proposal 
(e.g., Baron and Ferejohn 1989; Diermeier and Fong 2011). While convenient, this 
tie-breaking convention potentially stacks the deck in the agenda setter’s favor. We 
therefore consider a weaker refinement: we allow voters to break ties against the 
agenda setter’s proposals, as long as they always resolve the same tie (between ulti-
mate outcomes) the same way. Formally,

DEFINITION 5: An equilibrium is non-capricious if it has the following properties:

	 (a)	 The induced mapping from histories to continuation outcomes is determin-
istic and Markovian (it conditions on the history only through the prevailing 
default and number of remaining rounds).

	 (b)	 For each voter ​i​ and pair of distinct policies ​x​ and ​y​ such that ​x ​ ∼​i​​  y​, at 
every history-proposal pair for which ​x​ is the continuation outcome if the 
proposal is accepted and ​y​ is the continuation outcome if the proposal is 
rejected, voter ​i​ either (i) always votes for the proposal or (ii) always votes 
against the proposal.

Part (a) slightly weakens the standard definition of Markov perfect equilibrium 
by allowing strategies, but not the continuation outcomes they induce, to depend on 
payoff-irrelevant features of the history. Part (b) is more important because it disci-
plines tie-breaking across histories. Suppose voter ​i​ is indifferent between policies ​
x​ and ​y​ and that at history ​h​ (respectively, ​h′​), accepting a proposal ​a​ (respectively, ​
a′​) leads to policy ​x​, while rejecting it leads to ​y​. Then if ​i​ votes for (respectively, 
against) proposal ​a​ at history ​h​, she must also vote for (respectively, against) pro-
posal ​a′​ at history ​h′​. In other words, the manner in which a voter breaks ties only 
depends on the resulting continuation outcomes. The logic of this restriction is that 
the particular history is “water under the bridge” and consequently should not affect 
the voter’s deliberations, even in cases of indifference.18

17 The desired conclusion follows when the number of rounds exceeds ​​[​u​ A​ ∗ ​ − ​min​ x∈X​​  ​u​A​​​(x)​]​/​η​δ​​​, which allows 
the agenda setter to migrate the policy from her least favorite to one that achieves a payoff within ​δ​ of ​​u​ A​ ∗ ​​.

18 In settings with generic finite alternatives, non-capriciousness is always satisfied because (i) all equilibria are 
outcome-equivalent to the specific pure strategy Markov perfect equilibrium from Lemma 1(a) and (ii) voters are 
never indifferent between distinct continuation outcomes (which means the tie-breaking restriction in Definition 
5(b) has no bite). Thus, Theorem 3 is a proper generalization of Theorem 1.
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We prove that a non-capricious equilibrium exists and that in all such equilibria, 
the agenda setter has near-dictatorial power whenever the collective choice problem 
is manipulable.

THEOREM 3: For any collective choice problem ​​:

	 (a)	 There exists a non-capricious equilibrium.

	 (b)	 The following holds if and only if ​​ is Manipulable: For every ​δ  >  0​, there 
exists some ​​T​δ​​  ∈  ℕ​ such that if the game has ​T  ≥ ​ T​δ​​​ rounds, then given any 
initial default, the agenda setter’s equilibrium payoff is no lower than ​​u​ A​ ∗ ​ − δ​ 
in any non-capricious equilibrium.19

The general logic of our earlier results continues to govern the proof: once there 
are sufficiently many rounds, every non-capricious equilibrium outcome must be 
nearly unimprovable. Manipulability of the collective choice problem and conti-
nuity of the agenda setter’s preferences then imply that the agenda setter’s payoff 
is nearly maximized. The complete proof, which involves considerable technical 
detail, appears in the online Appendix. We illustrate its structure through a full anal-
ysis of the standard divide-the-dollar problem in the Appendix. That analysis high-
lights two additional features. First, even with a small number of rounds (in this case, 
three), the agenda setter may obtain her favorite policy.20 Second, the main conclu-
sion of Theorem 3 requires non-capricious tie-breaking: for the divide-the-dollar 
game, there is a Markovian equilibrium with capricious tie-breaking in which the 
agenda setter’s power is more limited.

IV.  Manipulable Collective Choice Problems

In this section, we demonstrate that the property driving our main results, manip-
ulability, is (generically) satisfied in canonical models of spatial and distributive 
politics.

A. Spatial Politics

In the canonical spatial model, a policy consists of ​d​ continuous components. 
Formally, the policy space is ​X  = ​ ℝ​​ d​​, each player ​i​ has an ideal point ​​x​ i​ ∗​​, and  
​​u​i​​​(x)​  =  −​(1/2)​​​‖x − ​x​ i​ ∗​‖​​​ 2​​; i.e., players evaluate a policy based on its Euclidean 
distance from their ideal points.21 Given this specification of utilities, the profile 
of ideal points, ​​​(​x​ i​ ∗​)​​i=1,…, n,  A​​  ∈ ​ ℝ​​ d​(n+1)​​​, completely characterizes the preference 
profile.

19 This result can be equivalently stated in ordinal terms: if and only if ​​ is manipulable, the final policy in any 
non-capricious equilibrium must itself be close to the agenda setter’s favorite policies, ​​X​ A​  ∗ ​​.

20 Theorem 6 generalizes this result to a broad class of distribution problems.
21 Although we have assumed in Section II that the policy space is compact, it is convenient here to treat it as 

unbounded to simplify the statement of Theorem 4. However, the proof of that result (also sketched below) estab-
lishes the improvability of all policies aside from ​​x​ A​ ∗ ​​ in the interior of a compact and convex policy space ​X  ⊊  ​ℝ​​ d​​. 
Policies on the boundary of such ​X​ are also improvable provided that all ideal points are interior, which is plausible 
when boundary policies represent extreme alternatives.
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Our analysis invokes a property we call non-coplanarity. For a vector ​x  ∈ ​ ℝ​​ d​​ 
where ​d  ≥  3​, let ​​​[x]​​abc​​  ≔ ​ (​x​a​​, ​x​b​​, ​x​c​​)​  ∈ ​ ℝ​​ 3​​ be the projection of ​x​ into the subspace 
spanned by any three of the dimensions ​a, b, c​. Non-coplanarity entails the following 
property:

DEFINITION 6: For ​d  ≥  3​, the profile of ideal points ​​​(​x​ i​ ∗​)​​i=1,…, n,  A​​​ satis-
fies non-coplanarity if for every ​a, b, c​, no four players’ projected ideal points, 
​​​[​x​ 1​ ∗​]​​abc​​, …, ​​[​x​ n​ ∗​]​​abc​​, ​​[​x​ A​ ∗ ​]​​abc​​  ∈ ​ 핉​​ 3​​, are coplanar.

When there are only three policy dimensions (​d  =  3​), Definition 6 simply states 
that no four ideal points lie in the same plane. If there are more than three dimen-
sions, it requires the same to be true for all ​three​-dimensional projections—that is, 
when we only consider dimensions ​a, b, c​ and ignore the rest.

Our main result shows that spatial collective choice problems are manipula-
ble whenever non-coplanarity is satisfied and, moreover, that this condition holds 
generically.

THEOREM 4: Consider a collective choice problem ​​ with policy space ​X  = ​ 핉​​ d​​, 
where ​d ≥  3​ and players have Euclidean preferences with ideal points ​​​(​x​ i​ ∗​)​​i=1,…, n,  A​​​.

	 (a)	 If the profile ​​​(​x​ i​ ∗​)​​i=1,…, n,  A​​​ satisfies non-coplanarity, then the collective choice 
problem  is Manipulable.

	 (b)	 The set of profiles for which non-coplanarity holds has full Lebesgue mea-
sure and is open-dense in ​​ℝ​​ d​(n+1)​​​.

Theorem 4 demonstrates that, when there are at least three policy dimensions, 
the spatial model generically satisfies manipulability; i.e., all policies other than the 
agenda setter’s ideal point, ​​x​ A​ ∗ ​​, are improvable. Equivalently, for a cooperative game 
in which the decisive coalitions are those containing the agenda setter and some 
majority of voters, Theorem 4 states that, with three or more dimensions, the core 
of the spatial model generically contains the agenda setter’s ideal point and nothing 
else. Given the importance of the spatial model and the elementary geometric argu-
ment used to prove Theorem 4, this result may be of independent interest.22

Together with our prior results (Theorems 1–3), Theorem 4 establishes that the 
agenda setter can exploit real-time agenda control to obtain her ideal point (exactly 
or approximately) whenever there are three or more policy dimensions. This conclu-
sion holds even if voters’ preferences are largely congruent. Suppose voters’ ideal 
points are (relatively) close to each other and the agenda setter’s ideal point lies far 
outside their convex hull. As long as non-coplanarity holds, the agenda setter inevi-
tably obtains her ideal point, even if the initial default option lies within that convex 
hull. In contrast, for fixed agenda models, McKelvey (1986) shows that an agenda 
setter can only achieve policies near the initial default, and the distance between the 

22 Duggan and Ma (2023) offer a related result for “constrained core points,” which are similar to unimprovable 
policies. They show that with four or more dimensions, for the class of ​​C​​ 2​​-smooth and strictly concave utility func-
tions, there are no interior constrained core points for a topologically generic class of utility functions.
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initial and final policies shrinks to zero as voters’ ideal points converge to a single 
point.

The existence of three policy dimensions is critical for Theorem 4. In the unidimen-
sional case, all policies between ​​x​ A​ ∗ ​​ and the ideal point of the median voter are unim-
provable (a consequence of the Median Voter Theorem). For the two-dimensional 
case, manipulability necessarily fails whenever the agenda setter’s ideal point is out-
side the convex hull of voters’ ideal points.23 We illustrate this failure and elaborate 
further in the online Appendix.

These facts have implications for policy bundling. If the legislature faces a deci-
sion involving only one or two dimensions, the agenda setter benefits from introduc-
ing a third dimension—even if the associated default is already her ideal—because 
the collective choice problem thereby becomes manipulable, enabling her to achieve 
her optima in all three dimensions.

Next, we sketch the geometric argument for Theorem 4(a) in the three-dimen-
sional case. The full proof appears in the online Appendix.

PROOF SKETCH FOR ​d  =  3​:
Consider a policy ​x​ that is not the agenda setter’s favorite, ​​x​ A​ ∗ ​​. We show that ​

x​ is improvable using a two-step argument. First, we find a policy ​y​ near ​x​ such 
that a majority of voters strictly prefer ​y​ to ​x​, and moving from ​x​ to ​y​ generates a 
second-order loss for the agenda setter. Second, we perturb ​y​ to some ​z​ such that 
the same majority of voters strictly prefer ​z​ to ​x​, but moving from ​y​ to ​z​ generates a 
first-order gain for the agenda setter, so that the agenda setter also strictly prefers ​z​ 
to ​x​. This argument then establishes that ​x​ is improvable.

Step 1: Constructing ​y​. Let ​S  ⊂ ​ ℝ​​ 3​​ denote the plane that is tangent to the agenda 
setter’s indifference surface at the point ​x​. As depicted in Figure 3 (left panel), ​S​ is 
orthogonal to the gradient ​∇​u​A​​​(x)​  = ​ x​ A​ ∗ ​ − x​. Denote the agenda setter’s favorite 
point in ​S​—henceforth, her constrained ideal point—by ​​y​ A​ ∗ ​​, and observe that, by 
construction, ​​y​ A​ ∗ ​​ coincides with ​x​. Similarly, let ​​y​ i​ ∗​  ∈  S​ denote each voter ​i​’s con-
strained ideal point and note that the gradient ​∇​u​i​​​(​y​ i​ ∗​)​  = ​ x​ i​ ∗​ − ​y​ i​ ∗​​ is orthogonal to ​S​.

We claim the following:

(2)	​ Under non-coplanarity,  ∃ y  ∈  S  such that  y ​ ≻​M​​ ​ y​ A​ ∗ ​.​

To prove (2), we make two preliminary observations: (i) for any line in ​S​ containing ​​
y​ A​ ∗ ​​, there are at most two voters ​i  ≠  j​ such that ​​y​ i​ ∗​​ and ​​y​ j​ ∗​​ also lie on that line, and 
(ii) there can be at most one voter ​i​ for whom ​​y​ i​ ∗​  = ​ y​ A​ ∗ ​​. Figure 3 (right panel) illus-
trates the argument for (i): if there were a third voter ​k  ∉ ​ {i, j}​​ for whom ​​y​ k​ ∗​​ were 
collinear with ​​{​y​ A​ ∗ ​, ​y​ i​ ∗​, ​y​ j​ ∗​}​​, then, because all players’ gradients at their constrained 
ideal points are orthogonal to the same plane ​S​, the four unconstrained ideal points ​​
{​x​ A​ ∗ ​, ​x​ i​ ∗​, ​x​ j​ ∗​, ​x​ k​ ∗​}​​ would be coplanar, contradicting the assumption of non-coplanarity. 
The argument for (ii) is similar: if there were two voters ​i  ≠  j​ such that ​​y​ i​ ∗​  = ​ y​ j​ ∗​  = ​

23 This result contrasts with McKelvey’s (1976) “chaos theorem,” which shows that having two dimensions is 
sufficient for the majority relation to be globally intransitive (for generic ideal point configurations).
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y​ A​ ∗ ​​, then the unconstrained ideal points ​​{​x​ A​ ∗ ​, ​x​ i​ ∗​, ​x​ j​ ∗​}​​ would be collinear and hence 
coplanar with the ideal point of any other voter.

We now use these observations to deduce (2). Figure 4 (left panel) shows a 
head-on view of the plane ​S​. By (i), for any line ​L  ⊂  S​ through ​​y​ A​ ∗ ​​, there are at most 
two voters ​i  ≠  j​ whose constrained ideal points lie on ​L​. Therefore, at least ​n − 2​ 
voters’ constrained ideal points lie off of ​L​. The pigeonhole principle implies that of 
these ​n − 2​ constrained ideal points, a strict majority must lie “above” or “below” 
the line ​L​; our figure shows ​​(n − 1)​/2​ points above the line. We can then shift ​​y​ A​ ∗ ​​ to 
some new policy ​y​ slightly “above” ​L​ so that all of those ​​(n − 1)​/2​ voters strictly 
prefer ​​y​ A​ ∗ ​​ to ​y​. Moreover, by fact (ii) above, we can pick the direction ​y − ​y​ A​ ∗ ​​ so 
that at least one of voters ​i​ and ​j​ also strictly prefers ​y​ to ​​y​ A​ ∗ ​​; in Figure 4 (left panel), 
this is voter ​j​. Thus, a majority strictly prefers ​y​ to ​​y​ A​ ∗ ​  =  x​. Furthermore, we can 
choose ​y​ arbitrarily close to ​​y​ A​ ∗ ​​, so the agenda setter only incurs a second-order loss 
(because ​​y​ A​ ∗ ​​ is the agenda setter’s ideal policy in ​S​).

Step 2: Constructing ​z​. We construct ​z​ by perturbing ​y​ off of the plane ​S​ in the 
direction ​∇​u​A​​​(x)​  = ​ x​ A​ ∗ ​ − x​; see the right panel of Figure 4. Moving from ​y​ to ​z​ 
generates a first-order gain for the agenda setter, ensuring that ​z ​ ≻​A​​  x​ (because the 
original move from ​x​ to ​y​ generates only a second-order loss). Moreover, we can 
choose the point ​z​ close enough to ​y​ to ensure that those voters who strictly prefer ​y​ 
to ​x​ (a majority) also strictly prefer ​z​ to ​x​. ∎

B. Distributive Politics

This section shows that collective choice problems involving “distributive poli-
tics” are generally manipulable and consequently that all problems become manip-
ulable with the addition of pork or transfers. Moreover, settings with distributive 
politics satisfy a strong version of manipulability that encompasses all voting rules 
for which no voter has veto power.

Figure 3. Construction of Plane ​S​ (Left) and Non-Collinearity of Constrained Ideal Points (Right)
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We begin with a definition:

DEFINITION 7: Collective choice problem ​  = ​ (X, ​​{​≽​i​​}​​i=1,…, n,  A​​)​​ is a distribution 
problem if it satisfies the following two properties for every policy ​x  ∈  X​ and player ​
i  ∈  N ∪ ​{A}​​ (where we let ​​u​i​​​ represent ​​≽​i​​​):

	 (a)	 Scarcity: If ​​u​i​​​(x)​  < ​ max​ z∈X​​  ​u​i​​​(z)​​, then there exists either some player ​j  ≠  i​ 
such that ​​u​j​​​(x)​  > ​ min​ z∈X​​  ​u​j​​​(z)​​ or some policy ​y​ such that ​​u​k​​​(y)​  > ​ u​k​​​(x)​​ for 
all players ​k​.

	 (b)	 Transferability: If ​​u​i​​​(x)​  > ​ min​ z∈X​​  ​u​i​​​(z)​​, then there exists some policy ​y​ such 
that ​​u​j​​​(y)​  > ​ u​j​​​(x)​​ for all players ​j  ≠  i​.

Scarcity captures the notion that utility flows from a limited resource: if the 
resource is not being used to maximize player ​i​’s payoff, then either it is being used 
to give some other player more than her minimal utility or there is waste, in which 
case some other allocation could make all players strictly better-off. Transferability 
captures the notion that the underlying resource is at least somewhat fungible: if 
player ​i​ enjoys surplus, we can redistribute some of that surplus to everyone else.24 
Notably, this definition does not require utility to be fully transferable.

As we show next, the class of distribution problems encompasses a wide range of 
possibilities, including two canonical cases: any collective choice problem augmented 
with transfers (including divide-the-dollar) and settings with pork-barrel politics.

EXAMPLE 1 (Divide-the-Dollar/Collective Choices with Transfers): Consider any 
collective choice problem with policy space ​X​ and utility profile ​​​(​u​i​​)​​i=1,…, n,  A​​​. We 

24 Banks and Duggan (2006) call this notion “limited transferability.”

Figure 4. Perturbations ​x →  y  ∈  S​ (Left) and ​y →  z  ∉  S​ (Right)
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augment this problem with monetary transfers. Assuming utility is quasi-linear in 
money and that each player has an outside option yielding a payoff of zero, the pol-
icy space for the resulting transferable-utility collective choice problem is

	​   = ​ {y  ∈ ​ ℝ​ +​ n+1​ : ∃ x  ∈  X such that ​  ∑ 
i=1,…, n,  A

​​​ ​y​i​​  = ​   ∑ 
i=1,…, n,  A

​​​ ​u​i​​​(x)​}​​,

and the utility functions are ​​v​i​​​(y)​  = ​ y​i​​​. This formulation encompasses both the 
standard divide-the-dollar problem (e.g., Baron and Ferejohn 1989) as well as set-
tings involving both production decisions and transfers.25

EXAMPLE 2 (Pork Barrel Politics): Suppose there are finitely many public proj-
ects ​k  ∈  ​, each of which generates an aggregate benefit ​​B​​ k​  >  0​ and aggregate 
cost ​​C​​   k​  >  0​. Some projects may be inefficient (​​C​​   k​  > ​ B​​ k​​). A policy ​x​ specifies (i) 
the projects the group will implement (a subset ​  ⊆  ​) and (ii) for each of those 
projects, the distribution of benefits and costs among the players (i.e., ​​b​​ k​, ​c​​ k​  ∈ ​ 핉​ +​ n+1​​ 
such that ​​∑ i=1,…, n,  A​ 

  ​​ ​ b​ i​ k​  = ​ B​​ k​​ and ​​∑ i=1,…, n,  A​ 
  ​​ ​ c​ i​ k​  = ​ C​​   k​​). Player ​i​’s preferences 

correspond to ​​u​i​​​(x)​  = ​ ∑ k∈​   ​​ ​ (​b​ i​ k​ − ​c​ i​ k​)​​. Thus, costs and benefits are both perfectly 
transferable.26

In addition to being ubiquitous, distribution problems are manipulable. The 
proof is simple: if a policy ​x​ is not one of the agenda setter’s favorites (i.e., not in  
​​X​ A​  ∗ ​​), scarcity implies that either (i) some other policy ​y​ strongly Pareto dominates  
​x​ or (ii) some voter ​i​ obtains more than her minimal utility from policy ​x​, in which 
case transferability implies that there is a policy ​y​ such that both the agenda setter 
and all voters other than ​i​ strictly prefer ​y​ to ​x​. In either case, ​x​ is obviously improv-
able; indeed, all players (with the possible exception of ​i​) strictly prefer ​y​ to ​x​.

As the preceding argument makes clear, distribution problems satisfy a strong 
version of manipulability that encompasses any voting rule for which no voter has 
veto power (rather than just majority rule). We formalize this point as follows. A gen-
eral voting rule is a collection ​  ⊆ ​ 2​​ N​​ of all winning coalitions ​D  ⊆  N​, by which 
we mean that a proposal passes if and only if there exists some ​D  ∈  ​ for which 
all voters ​i  ∈  D​ vote in favor of the proposal.27 This class of voting rules includes 
quota rules, for which there is a quota ​q​ such that ​  = ​ {D  ⊆  N : ​|D|​  ≥  q}​​, as 
well as rules that treat voters asymmetrically. A voting rule ​​ is veto-proof if for 
every voter ​i  ∈  N​, there exists a winning coalition ​D  ∈  ​ such that ​D  ⊆  N \​{i}​​; 
in other words, voter ​i​’s support is not necessary for a proposal to pass. We say that 
a collective choice problem is ​​-Manipulable if for every ​x  ∉ ​ X​ A​ ∗ ​​, there exists a 
policy ​y​ and a coalition ​D  ∈  ​ such that ​y ​ ≻​A​​  x​ and ​y ​ ≻​i​​  x​ for every ​i  ∈  D​.

25 For simplicity, in this example, utility is fully transferable. As noted above, one can weaken this assumption.
26 This example blends the model of Baron (1991), who considers a single project with perfectly transferable 

benefits but a fixed distribution of costs, with that of Ferejohn, Fiorina, and McKelvey (1987); Bernheim, Rangel, 
and Rayo (2006); and others, who consider multiple projects with fixed distributions of both benefits and costs.

27 That is, the proposal passes with support from all voters in some ​D  ∈  ​ regardless of how voters in ​N \ D​ 
vote. This definition of winning coalitions has two implications. First, our voting rules are necessarily monotone, 
namely, ​D  ∈  ​ implies that ​D′  ∈  ​ for all supersets ​D′  ⊇  D​. Second, it is not problematic if both ​D  ∈  ​ and 
its complement ​N \ D  ∈  ​. For such rules, if all voters in ​D​ (respectively, ​N \ D​) support the proposal and all voters 
in ​N \ D​ (respectively, ​D​) oppose it, our definition implies that the proposal passes. 
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The following result formalizes our observation that distribution problems are 
manipulable for a broad class of voting rules.

THEOREM 5: Every distribution problem is ​​-Manipulable for every veto-proof 
voting rule ​​.

We omit a formal proof, as the argument is identical to the one given above for 
simple-majority rule. Theorem 5, coupled with our prior results, highlights the broad 
power of agenda control: for any distribution problem and veto-proof voting rule, 
the agenda setter obtains a near-favorite policy in every (non-capricious) equilib-
rium, regardless of the initial default, provided there are sufficiently many rounds.28

In fact, for distribution problems, we obtain an even starker result: the agenda 
setter can obtain her favorite policy (not merely an approximation) even if the game 
is short, where the required number of rounds depends on the voting rule. Recalling 
that ​​u​ A​ ∗ ​  ≔ ​ max​ x∈X​​  ​u​A​​​(x)​​, we have,

THEOREM 6: Suppose ​​ is a distribution problem satisfying Thin Individual 
Indifference. Then,

	 (a)	 If the voting rule is a quota rule with ​q  <  n​, the agenda setter obtains payoff ​​
u​ A​ ∗ ​​ in every non-capricious equilibrium regardless of the initial default for 
any game with at least ​​⌈n/​(n − q)​⌉​​ rounds.

	 (b)	 If the voting rule is veto-proof, the agenda setter obtains payoff ​​u​ A​ ∗ ​​ in every 
non-capricious equilibrium regardless of the initial default for any game with 
at least ​n​ rounds.

Theorem 6(a) implies that three rounds suffice for the agenda setter to obtain her 
favorite policy under any quota rule requiring no more than two-thirds majority. 
For more demanding quotas, more rounds are required. Theorem 6(b) tells us that ​n​ 
rounds suffice for all veto-proof voting rules (because the agenda setter can appro-
priate the surplus of at least one voter in each round).29

Theorems 5 and 6 have two broad implications for legislative bargaining. First, 
because any collective choice problem becomes a distribution problem when bun-
dled with transfers (as in Example 1), our analysis highlights how the introduction 
of distributional policy instruments can augment an agenda setter’s power. Second, 
equilibrium outcomes need not maximize total surplus. In Example 2, the agenda 
setter secures a policy that includes all projects, which maximizes total benefits, 
along with transfers that off-load all costs onto the voters. Plainly, such policies 
typically involve excess spending relative to the utilitarian optimum.

28 As we asserted in Section IIIB, Theorems 1–3 extend, with obvious (minor) adjustments, to general voting 
rules ​​ and collective choice problems that are ​​-manipulable.

29 Notably, the number of rounds required in Theorem 6(a) coincides with the Nakamura number for the given 
quota rule (Austen-Smith and Banks 2002, pp. 74–82). This coincidence invites the conjecture that, more generally, 
for distribution problems with arbitrary veto-proof voting rules, the Nakamura number for the given rule equals the 
number of rounds required for the agenda setter to obtain her favorite policy from all initial defaults. If this conjec-
ture is correct, then it should be possible to tighten the ​n​-round bound in Theorem 6(b).
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V.  Commitment, Procedures, and Deadlines

This section  presents results that either clarify or extend our main findings. 
Section VA explains how commitments to agendas change the attainable outcomes. 
Section VB considers other legislative protocols and voting rules. Section VC clari-
fies the role of a finite horizon and highlights the resulting deadline effect.

A. The Commitment Benchmark

We have studied agenda control without commitment. If the agenda setter could 
commit to a strategy in the dynamic game, she would do weakly better. Theorems 
1–3 imply that if the collective choice problem is manipulable, the agenda setter 
gains little or nothing from commitment. In this section, we make the same compar-
ison without imposing manipulability. This exercise shows how sequential rational-
ity constrains the agenda setter in nonmanipulable problems, and also connects our 
work to prior research that assumes she can make commitments.

For simplicity, we restrict attention to Generic Finite Alternatives and assume 
that ​T  ≥ ​ |X |​ − 1​. For any positive integer ​K​ and policies ​x​ and ​y​, we say that ​y​ is ​
K​-reachable from ​x​ if there is a sequence of policies ​​​{​a​​ k​}​​ k=0​ 

K ​ ​ such that (i) ​y  = ​ a​​ K​​ 
and ​x  = ​ a​​ 0​​ and (ii) ​​a​​ k​ ​ ≽​M​​ ​ a​​ k−1​​ for all ​k  ∈ ​ {1, …, K}​​. We say that ​y​ is reachable 
from ​x​ if it is ​K​-reachable from ​x​ for some ​K​. With commitment, the agenda setter 
can achieve all such policies.

Fact 1: If the agenda setter can commit to any strategy, then she can obtain her 
favorite policy among those that are reachable from ​​x​​ 0​​.

The logic is as follows. Suppose that from an initial default option ​​x​​ 0​​, the agenda 
setter’s favorite reachable policy is ​y​ and that ​​​{​a​​ k​}​​ k=0​ 

K ​ ​ is the proposal sequence 
that reaches it. The agenda setter obtains ​y​ by committing to any ​K​-round strategy 
with the following property: if the default option in some round is ​​a​​ k​​, she proposes ​​
a​​ min​{K,k+1}​​​. Clearly, voters necessarily approve the final proposal; approval of every 
prior proposal follows recursively.

Fact 1 is familiar from the literature on binary voting trees—in other words, 
multistage voting games in which voters decide (through majority voting) to move 
“left” or “right” in each round, where the resulting path determines the final poli-
cy.30 This connection is not coincidental, as the frameworks are closely related.31

30 See Austen-Smith and Banks (2005, chap. 4) for a formal definition, as well as a survey of the classic litera-
ture (e.g., Black 1958; Farquharson 1969; Miller 1977).

31 To appreciate the connection, consider a setting in which ​​x​​ 0​​ is the default. First, note that we can induce any 
binary voting tree for which ​​x​​ 0​​ is a feasible outcome by choosing an appropriate agenda-setter strategy. Formally, 
we relabel the branches of the voting tree so that the “all left” path leads to ​​x​​ 0​​. We then construct the desired 
strategy by identifying ​​x​​ 0​​ with the initial default and rightward (respectively, leftward) moves in the tree with 
acceptances (respectively, rejections) of proposals, where the proposals are inferred from the policies associated 
with the tree’s terminal nodes. By construction, the resulting strategy is pure and conditions only on the history of 
past proposals and defaults but not on voting profiles beyond the chosen defaults. Conversely, it is easy to see that 
any agenda-setter strategy with these properties induces a binary voting tree for which ​​x​​ 0​​ is a feasible outcome. In 
light of this equivalence, Fact 1 follows indirectly from the well-known theorem stating that a policy ​y  ∈  Y  ⊆  X​ 
is implementable by a binary voting tree with outcomes in ​Y​ if and only if ​y​ is in the majority-preference “top cycle 
set” for ​Y​ (e.g., Austen-Smith and Banks 2005, Theorem 4.3). To see why, note that any ​y​ reachable from ​​x​​ 0​​ is in 
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Next, we consider commitments to fixed agendas as in Shepsle and Weingast 
(1984). Such agendas are equivalent to default-independent strategies that prescribe 
the same proposal for a given round regardless of how the game unfolds. We restate 
their main result as follows.

Fact 2: If the agenda setter can commit but is restricted to default-independent 
strategies, she obtains her favorite policy among those that are 2-reachable from ​​x​​ 0​​.

A comparison of Facts 1 and 2 reveals how this restriction on possible commit-
ments limits the agenda setter’s power. The notion of 2-reachability is equivalent 
to Shepsle and Weingast’s concept of being uncovered by the initial default, and 
consequently, the logic of Fact 2 is familiar.32

We now compare real-time agenda control to these benchmarks. We say that ​y​ is 
credibly reachable from ​x​ if there is a sequence ​​​{​a​​ k​}​​ k=0​ 

K ​ ​ running from ​x​ to ​y​ such 
that ​​a​​ k​  =  ϕ​(​a​​ k−1​)​​, where ​ϕ​ is the agenda setter’s favorite improvement (defined in 
equation (1)). In other words, each proposal in the chain that reaches ​y​ from ​x​ is the 
agenda setter’s favorite among policies that are majority-preferred to the preceding 
proposal. Lemma 1(a) implies the following fact. 

Fact 3: If the agenda setter cannot commit, then she obtains her favorite policy 
among those that are credibly reachable from ​​x​​ 0​​.

Theorem 1 establishes that commitment has no value if the collective choice 
problem is manipulable. In that case, the agenda setter’s favorite policy is not only 
reachable but also credibly reachable, from all ​​x​​ 0​​.33 However, if the collective 
choice problem is not manipulable, the agenda setter may do strictly better with 
commitment, even to a default-independent strategy, as seen in the second example 
of Section I. Facts 1–3 imply only that commitment to general strategies weakly 
outperforms both alternative protocols. All weak or strict rankings over these 
three modes of commitment are feasible as long as they are compatible with this 
implication.

the top cycle for some ​Y  ⊆  X​ containing both ​​x​​ 0​​ and ​y​ (e.g., let ​Y​ collect the elements of the majority preference 
chain connecting ​​x​​ 0​​ to ​y​); because there is a binary tree for ​Y​ that delivers ​y​, the equivalence implies that there is a 
strategy with default ​​x​​ 0​​ that delivers ​y​ as well. The theorem also implies that, if the agenda setter can commit only 
to pure strategies that do not condition on voting profiles beyond the chosen defaults, she can obtain only policies 
that are reachable from ​​x​​ 0​​. We conjecture that the same conclusion holds even if the agenda setter can commit to 
any strategy. If this conjecture is true, then with commitment to any strategy, the agenda setter obtains precisely her 
favorite reachable policy.

32 Suppose ​y​ is 2-reachable from ​​x​​ 0​​ via a sequence ​​​{​a​​ k​}​​ k=0​ 
2 ​​ . Then the agenda setter can achieve ​y​ by commit-

ting to propose ​y​ in the first round and ​​a​​ 1​​ in every subsequent round. Now suppose the fixed agenda ​​(​a​​ 1​, …, ​a​​ T​)​​  
achieves ​y​. We claim that ​y​ is 2-reachable. Let ​​f ​​   t​​ be the equilibrium continuation outcome if ​​a​​ t​​ passes in round ​t​.  
Because ​y​ is the eventual outcome, we must have ​y  =  ​f ​​   τ​​ for some ​τ​, and for all ​​f ​​   t​  ≠  y​, ​y  ​≻​M​​  ​f ​​   t​​. Were ​y​ not  
2-reachable from ​​x​​ 0​​, then it would have to be the case that ​​x​​ 0​  ​≻​M​​  y​ (otherwise, the sequence ​​{​x​ 0​​, y, y}​​ would reach ​
y​) and for all ​​f ​​   t​  ≠  ​x​​ 0​​, ​​x​​ 0​  ​≻​M​​  ​f ​​   t​​ (otherwise, the sequence ​​{​x​ 0​​, ​f ​​   ​t   ′ ​​, y}​​ would reach ​y​ for some ​​f ​​   ​t   ′ ​​  ​≻​M​​  ​x​​ 0​​). But then 
none of the proposals would pass, a contradiction.

33 Manipulability allows the agenda setter to obtain her favorite policy only if the number of rounds is suffi-
ciently large. With a small number of rounds, the agenda setter could potentially benefit from commitment because 
it allows her to exploit a larger class of majority-preference chains.
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B. General Legislative Procedures

Legislatures sometimes use alternatives to the amendment procedure studied 
in previous sections. The best-known alternative is the successive procedure (also 
closed-rule bargaining): all proposals include adjournment provisions specifying 
that their acceptance ends deliberation. Another is open-rule bargaining: in any 
round, the agenda setter can “move” the prevailing default; if the motion passes, 
the legislature adjourns.34 Legislatures also differ with respect to voting rules (e.g., 
majority versus supermajority requirements).

This section analyzes the implications of real-time agenda control for these alter-
native procedures. We develop a general framework that allows for an arbitrary vot-
ing rule and a general adjournment protocol, including as special cases our baseline 
framework and both alternatives mentioned above. We obtain the following result: 
for every preference profile and voting rule, (essentially) all adjournment proto-
cols result in the same equilibrium outcome. In other words, real-time agenda con-
trol nullifies the effect of adjournment provisions, rendering moot the distinction 
between these various protocols.

We extend the framework of Section II as follows. The definition of a collective 
choice problem ​​ is unchanged, except we allow for an even number of voters, ​n​. 
For simplicity, we focus on settings with Generic Finite Alternatives. Policy selection 
takes place over finitely many rounds ​t =  1, …, T​. The agenda setter (respectively, 
voters) has exclusive proposal (respectively, approval) power. Here, we allow for a 
wider class of voting rules and adjournment protocols, which we call generalized 
amendment procedures:

	 (a)	 The voting rule is defined (as in Section IVB) by a collection ​  ⊆ ​ 2​​ N​​ of 
winning coalitions. A proposal passes if and only if all voters in some coali-
tion ​D  ∈  ​ approve it. We impose no structure on ​​ (cf. footnote 27).

	 (b)	 The adjournment protocol is defined as follows. In round ​t​, the agenda setter 
can propose an alternative ​​​a ˆ ​​​ t​  = ​ (​a​​ t​, i)​  ∈  X × ​{0, 1}​​, where ​​a​​ t​​ denotes the 
policy to supersede the prevailing default ​​x​​ t−1​​ and ​i​ denotes the presence 
or absence of an adjournment provision. If ​i  =  0​, passage makes policy ​​a​​ t​​ 
the default in round ​t + 1​, as in our baseline model. If ​i  =  1​, passage ends 
deliberation and results in the implementation of ​​a​​ t​​. In either case, rejection 
means that ​​x​​ t−1​​ remains the default in round ​t + 1​. We allow for the possi-
bility that deliberation changes the set of feasible proposals: for a generic 
history ​h​, the agenda setter can propose an element of ​X​(h)​  ⊆  X × ​{0, 1}​​.

A generalized amendment procedure is rich if, at every history ​h​, either  
​X​(h)​  ⊆  X × ​{0}​​ or ​X​(h)​  ⊆  X × ​{1}​​ (or both). In other words, richness rules out 
protocols where some policy ​x​ is available only without an adjournment provision, 

34 The literature on legislative bargaining has focused on the closed- and open-rule procedures since Baron 
and Ferejohn (1989), while the literature on agenda setting with fixed agendas has largely focused on the amend-
ment (or Anglo-Saxon) and successive (or Euro-Latin) procedures since Black (1958); Farquharson (1969); and 
Miller (1977). While the literature models the closed-rule and successive procedures differently, they are essentially 
equivalent in that, under both procedures, the first accepted proposal is implemented.
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while some other policy ​y​ is only available with one. Our baseline model and the 
other procedures mentioned above are rich generalized amendment procedures.35

We show that, for any fixed preference profile, all rich generalized amendment 
procedures with the same voting rule yield equivalent equilibrium outcomes. To 
state the formal result, we extend our notion of improvability and favorite improve-
ments to arbitrary voting rules. First, given any policy ​x​, we define the set of policies 
that some winning coalition prefers to ​x​:

	​ ​M​​​​(x)​  ≔ ​ {y  ∈  X : y  =  x or ∃ D  ∈   such that for every i  ∈  D,  y ​ ≻​i​​  x}​.​

A policy ​x​ is ​​-improvable if there exists a policy ​y  ∈ ​ M​​​​(x)​​ such that ​y ​ ≻​A​​  x​; 
otherwise, policy ​x​ is ​​-unimprovable. Let ​​ϕ​​​ : X  →  X​ denote the agenda setter’s 
favorite ​​-improvement:

	​ ​{​ϕ​​​​(x)​}​  ≔ ​ arg max​ 
y∈​M​​​​(x)​

​ ​ ​u​A​​​(y)​.​

The set of ​​-unimprovable policies is ​​E​​​  ≔ ​ {x  ∈  X : x  = ​ ϕ​​​​(x)​}​​. Using this 
notation, we state our protocol-equivalence result:

THEOREM 7: Suppose the collective choice problem ​​ satisfies Generic Finite 
Alternatives and the generalized amendment procedure is rich. For any game with ​
T​ rounds and initial default policy ​​x​​ 0​​, the unique equilibrium outcome is ​​ϕ​ ​ T ​​(​x​​ 0​)​​. 
Consequently, for ​T  ≥ ​ |X |​ − 1​, a policy is an equilibrium outcome if and only if it 
is an element of ​​E​​​​.

Thus, with real-time agenda control, equilibrium outcomes do not depend on 
the adjournment protocol. This result has two noteworthy implications. First, as 
long as the collective choice problem is ​​-manipulable (as defined in Section IVB), 
the agenda setter is effectively a dictator regardless of the adjournment protocol. 
Formally, Theorem 7 implies

COROLLARY 1: Suppose the collective choice problem ​​ satisfies Generic Finite 
Alternatives and the generalized amendment procedure is rich. For any game with 
at least ​​|X |​ − 1​ rounds, the agenda setter obtains her favorite policy in every equi-
librium regardless of the initial default if and only if ​​ is ​​-Manipulable.

Second, Theorem 7 contrasts with known results on fixed agendas. In that con-
text, the agenda setter’s power depends on the adjournment protocol.36 Specifically, 
commitment to a fixed successive (or closed-rule) agenda allows her to obtain her 

35 For the amendment procedure, ​X​( · )​  =  X × ​{0}​​. For the successive/closed-rule procedure, ​X​( · )​  =  X × ​{1}​​.  
For the open-rule procedure, ​X​(h)​  =  ​[X × ​{0}​]​ ∪ ​[​{x​(h)​}​ × ​{1}​]​​, where ​x​(h)​​ denotes the prevailing default at 
history ​h​. Note that the open-rule procedure involves history-dependent feasible sets.

36 This theme emerges in Farquharson (1969); Miller (1977); and McKelvey and Niemi (1978); see Chapter 4 
of Austen-Smith and Banks (2005) for a survey. More recent work includes Apesteguia, Ballester, and Masatlioglu 
(2014) and Barberà and Gerber (2017).
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favorite policy among those reachable from the initial default (Miller 1977),37 
whereas commitment to a fixed amendment agenda only allows her to obtain her 
favorite 2-reachable policy (Shepsle and Weingast 1984). Theorem 7 shows that this 
distinction disappears when the agenda setter selects proposals in real time without 
commitment.

To prove Theorem 7, we adjust the argument for Lemma 1 to account for adjourn-
ment provisions; we omit a formal proof but describe the adjustment. Richness of 
the generalized amendment procedure guarantees that, at every round-​t​ history, if 
the default option is ​​x​​ t−1​​, the agenda setter can propose at least one of the fol-
lowing: (i) her favorite ​​-improvement ​​ϕ​​​​(​x​​ t−1​)​​ without an adjournment provision 
or (ii) the “eventual outcome” ​​ϕ​ ​ T−t+1​​(​x​​ t−1​)​​ with an adjournment provision. These 
options yield the same outcome in any one-round subgame (​t  =  T​ ). Therefore, 
by the backward-induction logic of Lemma 1, both proposals lead to the outcome ​​
ϕ​ ​ T−t+1​​(​x​​ t−1​)​​ regardless of how many rounds remain. Theorem 7 then follows from 
our observation that ​​⋃ ​x​​ 0​∈X​​  ​ϕ​ ​ T ​​(​x​​ 0​)​​  = ​ E​​​​ for ​T  ≥ ​ |X |​ − 1​.38

C. The Role of Deadlines

We think of our framework as representing negotiations, starting at date 0, over 
the policy that will prevail at date ​τ​.39 Negotiations obviously cannot continue past 
the implementation date. Given the inherent frictions arising either from institu-
tional constraints or simply from speed-of-light latency considerations, we treat 
each round of bargaining as requiring at least ​Δ  >  0​ units of time. Consequently, 
there can be at most ​T  = ​ ⌊τ/Δ⌋​​ rounds of deliberation. Hence, we follow the prior 
literature on agenda setting by modeling finite-round processes.40 The finite dead-
line effectively provides the agenda setter with a bit of commitment power: the 
process ends with a take-it-or-leave-it offer. In this section, we investigate the role 
of this deadline.

In contrast to our analysis, Diermeier and Fong (2011) and Anesi and Seidmann 
(2014) model agenda control with an infinite horizon. For concreteness, we focus 
on the latter analysis, which differs from ours in one key respect: there is no exog-
enous terminal round ​T​. Instead, bargaining endogenously terminates only when 
the agenda setter either (a) proposes the prevailing default option or (b) makes a 
proposal that is rejected. Payoffs are undiscounted and determined by the policy 
implemented at termination; a nonterminating path is the worst outcome for all 

37 This observation essentially restates Fact 1 for binary voting trees. The logic is as follows: if policy ​y​ is reach-
able from default ​x​ through the sequence ​​​{​a​​ k​}​​ k=0​ 

K ​ ​, the agenda setter can obtain ​y​ in ​T  =  K​ rounds through the fixed 
agenda where the first proposal is ​​a​​ K​​, the second is ​​a​​ K−1​​, and so on, and each proposal includes an adjournment 
provision.

38 The following example further illustrates the role that richness plays in the proof of Theorem 7. Suppose the 
options are ​​{w, x, y, z}​​ and that preferences are as depicted in Figure 1. With our baseline amendment procedure, the 
agenda setter obtains her favorite policy ​w​ in every equilibrium provided there are at least three rounds, regardless 
of the initial default. Now consider the nonrich generalized amendment procedure with simple majority rule for 
which, at every history, the agenda setter can propose policies ​w, y, z​ only with adjournment provisions and policy ​x​ 
only without one. As the reader may verify, starting from initial default ​​x​​ 0​  =  z​, regardless of the number of rounds, ​​
(y, 1)​​ is the outcome (the agenda setter proposes it and it passes), contrary to Theorem 7. The logic of the proof fails 
because ​y  =  ϕ​(z)​​ is not available without adjournment and ​x  =  ​ϕ​​ 2​​(z)​​ is not available with adjournment.

39 The legislature presumably undertakes many such negotiations (one for each future date) in parallel.
40 The classical literature on agenda setting discussed in Section VA studies fixed agendas with a finite sequence 

of proposals or binary voting trees of finite depth.
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players.41 The solution concept is pure strategy Markov perfect equilibrium with 
as-if pivotal voting (henceforth, MPE), meaning in this context that strategies are 
stationary and condition only on the prevailing default.

To illustrate the implications of this protocol, we revisit our introductory example 
from Section I (see Figure 1). We showed in that section that, assuming a finite hori-
zon, the agenda setter obtains her favorite policy (​w​) starting from any initial default 
if there are three or more rounds. In contrast, with the infinite-horizon protocol (and 
its termination rule), the agenda setter can do no better than ​y​ when starting from 
an initial default of ​z​ or ​y​. We sketch the logic by considering each default option.

•	 Default Option of ​w​: In every MPE, ​w​ is implemented. The agenda setter can 
guarantee ​w​ by proposing it, and any other outcome (a different policy or a 
nonterminating cycle) is worse for the agenda setter.

•	 Default Option of ​x​: In every MPE, the agenda setter proposes ​w​ and it passes. 
Voters predict that passing ​w​ enacts it (by the preceding logic). Because ​w ​ ≻​M​​ 
x​, a majority of voters approve the proposal.

•	 Default Option of ​y​: In every MPE, ​y​ is implemented. A majority of voters will 
not approve either ​w​ or ​x​: by the preceding logic, they predict that passage of 
either will result in the implementation of ​w​, and ​y ​ ≻​M​​  w​.

•	 Default Option of ​z​: In every MPE, the agenda setter proposes ​y​ and it passes. 
Voters predict that passing ​y​ leads to its enactment, and ​y ​ ≻​M​​  z​, so a majority 
of voters approve the proposal. As with a default of ​y​, a majority of voters will 
not approve either ​w​ or ​x​.

When ​T​ is finite, the agenda setter can propose ​x​ in the terminal round with a de 
facto commitment not to amend it further in the future, even though ​x​ is improv-
able. In contrast, with an infinite horizon, the preceding discussion reveals that the 
agenda setter can never make a similar commitment. The freedom to reconsider pol-
icies indefinitely generates additional sequential rationality constraints, significantly 
weakening the agenda setter’s power.

Diermeier and Fong (2011) and Anesi and Seidmann (2014) show generally that, 
in infinite-horizon settings with Generic Finite Alternatives, (a) the set of MPE out-
comes corresponds to the von Neumann-Morgenstern stable set, ​V​, and (b) in every 
MPE with initial default ​​x​​ 0​​, the agenda setter obtains her favorite policy ​y​ among 
those in ​V​ satisfying ​y  ​≽​M​​ ​ x​​ 0​​.42 The stable set necessarily includes all unimprov-
able policies (i.e., ​E  ⊆  V​) but is typically larger. Consequently, (a) more policies 
can arise in equilibrium with an infinite horizon than with a long finite horizon, and 
(b) the agenda setter is weakly worse off with an infinite horizon than with a single 
proposal round.

41 Instead of adopting this termination rule, Diermeier and  Fong (2011) study the patient limit of an 
infinite-horizon model in which players maximize the discounted payoff from the infinite sequence of equilibrium 
default policies. We group them and Anesi and Seidmann (2014) together, as their models have identical equilib-
rium outcomes in settings with Generic Finite Alternatives .

42 A policy ​x​ is dominated by a policy ​y​ if ​y  ​≻​A​​  x​ and ​y  ​≻​M​​  x​. A set ​V  ⊆  X​ is stable if no ​x  ∈  V​ is dominated 
by another ​y  ∈  V​ (“internal stability”), while every ​x  ∉  V​ is dominated by some ​y  ∈  V​ (“external stability”). 
Diermeier and Fong (2012) show that there exists a unique stable set in the present context.
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We view the finite- and infinite-horizon models as having different domains of 
applicability. A leading interpretation of the infinite-horizon model is that it rep-
resents legislative decision-making with an uncertain deadline: deliberations end 
in round ​t​ with probability ​​(1 − β)​​, the realization occurring after that round’s 
proposal and votes; analysis focuses on the limiting case of ​β  →  1​.43 For such 
settings, the deadline is both uncertain and unbounded. As articulated earlier, our 
perspective is that there often is a known upper bound on the number of rounds, 
particularly for negotiations over time-indexed policies. Even when the deadline 
is uncertain ex ante, our results apply if it becomes known during deliberations. 
Theorem 3 implies that revelation of the deadline ​​T​δ​​​ rounds in advance allows the 
agenda setter to obtain a payoff within ​δ​ of her maximum. More starkly, Theorem 6 
implies that in (essentially) any distribution problem, three rounds of advance notice 
concerning the deadline allows the agenda setter to obtain her favorite policy. Both 
of these conditions strike us as modest, particularly when negotiations are relatively 
frictionless: if players learn the deadline ​ϵ  >  0​ units of time in advance, then with 
sufficiently short proposal rounds, there will be at least three rounds left and poten-
tially many more.

Setting aside the question of applicability, our analysis allows us to characterize 
the effect of the number of proposal rounds on the agenda setter’s power. To that 
end, let ​​U​T ​​​(​x​​ 0​)​​ denote the agenda setter’s equilibrium payoff in the finite-horizon 
game with ​T​ rounds and initial default ​​x​​ 0​​, and let ​​U​∞​​​(​x​​ 0​)​​ denote that payoff in 
the infinite-horizon game.44 We obtain the following characterization by analyzing 
properties of the unimprovable and stable sets.

THEOREM 8: Suppose the collective choice problem ​​ satisfies Generic Finite 
Alternatives. For every ​​x​​ 0​  ∈  X​ and ​​T ′ ​  >  T  ≥  1​, we have

	​​ U​​T ′ ​​​​(​x​​ 0​)​  ≥ ​ U​T ​​​(​x​​ 0​)​  ≥ ​ U​∞​​​(​x​​ 0​)​.​

Moreover, exactly one of the following two statements holds:

	 (a)	 There exists some ​​x​​ 0​  ∈  X​ such that ​​U​T ​​​(​x​​ 0​)​  > ​ U​1​​​(​x​​ 0​)​  > ​ U​∞​​​(​x​​ 0​)​​ for all ​
T  ≥  2​.

43 An alternative interpretation is that the infinite-horizon model with discounting and no termination, as in 
Diermeier and Fong (2011), captures settings in which the legislature chooses policies for a sequence of calendar 
dates ​t  ∈  ​{1, 2, …}​​. Specifically, the winning option for round ​t​, ​​x​​ t​​, becomes the policy for that period and serves 
as the default for ​t + 1​. Accordingly, policies do not vary over time (i.e., ​​x​​ τ​  =  ​x​​ t​​ for all ​τ  ≥  t + 1​) unless there 
are further amendments. Under this interpretation, the “legislative session” at each calendar date ​t​ consists of a 
single proposal round. In contrast, our view is that legislatures can negotiate over policy trajectories specifying 
continuation paths ​​(​x​​ t​, ​x​​ t+1​, …)​​ of time-indexed policies for all future dates. Examples include phase-in and sunset 
provisions. In other words, default trajectories are not necessarily constant as the preceding perspective assumes. 
We also take the view that each time-indexed session should consist of multiple proposal rounds rather than one. 
Modeling dynamic collective choice in this manner effectively makes the problem separable across periods, in 
which case our separate solutions for all of the time-indexed-policy selection problems collectively provide a solu-
tion to the full dynamic collective choice problem. See Section 6 of Bernheim, Rangel, and Rayo (2006) for an 
elaboration of this perspective. 

44 Formally, Lemma 1 implies that ​​U​T ​​​(​x​​ 0​)​  =  ​u​A​​​(​ϕ​​ T​​(​x​​ 0​)​)​​, and the results of Diermeier and Fong (2011, 2012) 
and Anesi and Seidmann (2014) imply that ​​U​∞​​​(​x​​ 0​)​  =  ​u​A​​​(ψ​(​x​​ 0​; V)​)​​, where ​ψ​(​x​​ 0​; V)​​ is the agenda setter’s favorite 

improvement on ​​x​​ 0​​ among policies in the stable set, ​V​.
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	 (b)	 For all ​​x​​ 0​  ∈  X​ and ​T  ≥  2​, ​​U​T ​​​(​x​​ 0​)​  = ​ U​1​​​(​x​​ 0​)​  = ​ U​∞​​​(​x​​ 0​)​​.

Theorem 8 shows that the agenda setter either (a) benefits most from having multi-
ple (but finite) rounds and least from having infinite rounds or (b) is indifferent about 
the number of rounds. Thus, her payoff is nonmonotone in the number of rounds, 
except when she cannot benefit from an ability to revisit any one-round proposal. 
This nonmonotonicity suggests that an agenda setter may benefit from creating a 
deadline even if one does not arise naturally. She might accomplish this objective by 
creating a “crisis” to instill urgency or by bundling the policy issue of interest with a 
separate time-indexed matter (e.g., a deadline for raising the debt ceiling).

VI.  Conclusion

We have shown that agenda setters have dictatorial power in collective choice 
problems with two features. The first is that the agenda setter proposes policies 
in real time without commitment, tailoring her current proposal to the prevailing 
default option. The second is a widely satisfied manipulability condition that ensures 
the existence of one-step improvements.

Our analysis contributes to a literature that seeks to understand why legislative 
institutions concentrate political power in the hands of agenda setters and why 
majority rule may not be an effective safeguard. To this end, our results also high-
light how the agenda setter benefits from bundling policies with transfers and pork 
or by linking unrelated policy issues. Finally, we have shown that when the agenda 
setter makes proposals in real time, many bargaining protocols have equivalent 
implications for equilibrium outcomes.

While our analysis addresses several important questions, it leaves others unan-
swered. Inasmuch as real-time agenda control often confers dictatorial power both 
when voters are myopic and when they are sophisticated, one might expect the same 
conclusion to follow if voters are partially sophisticated. We suspect that the valid-
ity of this conjecture depends on the form of partial sophistication being modeled 
and whether it is heterogeneous across voters. Separately, it would be worthwhile 
to investigate settings in which a committee controls the agenda and to explore the 
implications of the committee’s rules for the ultimate legislative outcome. Finally, 
voters may form voting blocs so that an agenda setter cannot play them off against 
each other; it would be useful to determine the degree to which such blocs attenuate 
the agenda setter’s power. We hope to address these and other questions in future 
work.

Appendix A

A1. Proof of Lemma 1

We prove that ​​f​ T ​​​(​x​​ 0​)​  = ​ {​ϕ​​ T​​(​x​​ 0​)​}​​ by induction.

Base Step: If ​T  =  1​, then ​​f​ T ​​​(​x​​ 0​)​  = ​ {ϕ​(​x​​ 0​)​}​​ for all ​​x​​ 0​  ∈  X​.
Rejection of any proposal results in ​​x​​ 0​​ being chosen. Therefore, in every 

equilibrium, any proposal ​y ​ ≻​M​​ ​ x​​ 0​​ passes with probability 1. Thus, if ​​x​​ 0​​ is 
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improvable, proposing ​ϕ​(​x​​ 0​)​​ with probability 1 is uniquely optimal for the agenda 
setter and hence must occur in every equilibrium. If ​​x​​ 0​​ is unimprovable, then any 
proposal that the agenda setter makes in equilibrium results in ​​x​​ 0​​ being chosen. In 
both cases, the result follows.

Inductive Step: Given any ​T  ∈  핅​ and ​​x​​ 0​  ∈  X​, if ​​f​ T−1​​​(x)​  = ​ {​ϕ​​ T−1​​(x)​}​​ for all ​
x  ∈  X​, then ​​f​ T ​​​(​x​​ 0​)​  = ​ {​ϕ​​ T​​(​x​​ 0​)​}​​.

Consider the procedure with ​T​ rounds and initial default ​​x​​ 0​​. By subgame perfec-
tion, ​​f​ T−1​​​(x)​​ is the set of outcomes arising with positive probability in any equilib-
rium in any subgame with ​T − 1​ rounds in which ​x​ is the prevailing default after the 
first round. Therefore, by the inductive hypothesis, passage of proposal ​y​ in the first 
round results in outcome ​​ϕ​​ T−1​​(y)​​ and rejection of that proposal results in outcome ​​
ϕ​​ T−1​​(​x​​ 0​)​​. Thus, in every equilibrium, any proposal ​y​ where ​​ϕ​​ T−1​​(y)​ ​ ≻​M​​ ​ ϕ​​ T−1​​(​x​​ 0​)​​ 
will pass with probability 1. Therefore,

•	 if ​​ϕ​​ T−1​​(​x​​ 0​)​​ is improvable, then in every equilibrium, the agenda setter proposes 
some ​y​ whose continuation outcome ​​ϕ​​ T−1​​(y)​​ coincides with ​ϕ​(​ϕ​​ T−1​​(​x​​ 0​)​)​​, 
which is ​​ϕ​​ T​​(​x​​ 0​)​​. Note that ​ϕ​(​x​​ 0​)​​ is one such proposal because ​ϕ​ and ​​ϕ​​ T−1​​ com-
mute. If multiple such proposals exist, then she may randomize among them.

•	 if ​​ϕ​​ T−1​​(​x​​ 0​)​​ is unimprovable, then it is an element of ​E​ and therefore, ​​ϕ​​ T−1​​(​x​​ 0​)​  
= ​ ϕ​​ T​​(​x​​ 0​)​​. Thus, any proposal that the agenda setter makes in equilibrium 
results in ​​ϕ​​ T−1​​(​x​​ 0​)​​ being chosen; again, there may be multiple such proposals.

In either case, ​​f​ T ​​​(​x​​ 0​)​  = ​ {​ϕ​​ T​​(​x​​ 0​)​}​​.
Lemma 1(a) follows immediately from the above; (b) follows immediately from 

the above and the definition of ​E​. For (c), observe that the inclusion ​​⋃ ​x​​ 0​∈X​​   ​f​ T ​​​(​x​​ 0​)​​  ⊇  E​ 
follows immediately from (b), while the opposite inclusion ​​⋃ ​x​​ 0​∈X​​   ​f​ T ​​​(​x​​ 0​)​​  ⊆  E​ fol-
lows from the above, together with the fact that ​​ϕ​​ T​​(​x​​ 0​)​  ∈  E​ for ​T  ≥ ​ |X |​ − 1​. ∎

A2. Details and Proofs for Theorem 2

Our argument proceeds in three steps. First, we present a uniform improvement 
lemma that plays a critical role in showing that the agenda setter can obtain a payoff 
within ​δ​ of her highest payoff, ​​u​ A​ ∗ ​​, with a uniform bound on the number of rounds. 
The second step formalizes the assertion that Thin Individual Indifference character-
izes collective choice problems that admit arbitrarily fine generic ​ϵ​-grids. With these 
steps in place, we then prove Theorem 2.

A Uniform Improvement Lemma.—For each ​δ  >  0​, define ​​Γ​δ​​  ≔ ​ {x  ∈  
X ∣ ​u​ A​ ∗ ​  ≥ ​ u​A​​​(x)​ + δ}​​. We say that policies in ​​Γ​δ​​​ are ​δ​-suboptimal for the agenda 
setter and policies in ​X \  ​Γ​δ​​​ are ​δ​-optimal for her. For each ​x  ∈  X​ and ​η  >  0​, define

	​ Q​(x, η)​  ≔ ​ {y  ∈  X ∣ ​u​A​​​(y)​  ≥ ​ u​A​​​(x)​ + η and ∃ majority S  ⊆  N

	 such that ​u​i​​​(y)​  ≥ ​ u​i​​​(x)​ + η ∀ i  ∈  S}​​
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to be the set of policies that lead to a utility improvement of at least ​η​ for some win-
ning coalition. If ​Q​(x, η)​  ≠  ∅​, then we say that ​x​ is ​η​-improvable.

LEMMA 2: Suppose the collective choice problem ​​ is Manipulable. Then for every ​
δ  >  0​, there exists ​​η​δ​​  >  0​ such that ​Q​(x, ​η​δ​​)​  ≠  ∅​ for all ​x  ∈  ​Γ​δ​​​.

Manipulability implies that any policy that is ​δ​-suboptimal for the agenda setter 
must be improvable, but does not specify how much the agenda setter and a win-
ning coalition of voters gain from that improvement. Lemma 2 asserts that for each ​
δ  >  0​, there is a uniform threshold ​​η​δ​​​ such that any policy that is ​δ​-suboptimal for 
the agenda setter must also be ​​η​δ​​​-improvable. This uniformity will be important for 
establishing the uniform bounds on the number of rounds needed for the agenda 
setter to achieve ​δ​-optimality in Theorem 2.

PROOF OF LEMMA 2:
Let ​δ  >  0​ be given. Suppose that ​​Γ​δ​​  ≠  ∅​, for otherwise the lemma is vacuously 

true. Define the map ​​η​​ ∗​ : ​Γ​δ​​  → ​ ℝ​+​​​ by

(A1)	​ ​η​​ ∗​​(x)​  ≔ ​  sup​ 
η∈​ℝ​+​​

​​ η  s.t.  Q​(x, η)​  ≠  ∅.​

The supremum in (A1) is attained because the correspondence ​​(x, η)​  →  Q​(x, η)​​ is 
upper hemicontinuous and compact-valued, and ​x  ∈  Q​(x, 0)​​. Moreover, because ​​ 
is Manipulable, for each ​x  ∈  ​Γ​δ​​​, there exists some ​​η​x​​  >  0​ such that ​Q​(x, ​η​x​​)​  ≠  ∅​. 
It follows that ​​η​​ ∗​​(​Γ​δ​​)​  ⊆ ​ (0, ∞)​​.

We claim that ​​η​​ ∗​​ is lower semicontinuous. Let ​​x​​ ∗​  ∈  ​Γ​δ​​​ be given and take any 
sequence ​​{​x​n​​}​  ⊂  ​Γ​δ​​​ satisfying ​​x​n​​  → ​ x​​ ∗​​. Because preferences are continuous, for 
every ​ϵ  >  0​, there exists some ​​N​ϵ​​  >  0​ such that ​n  ≥ ​ N​ϵ​​​ implies ​​|​u​i​​​(​x​n​​)​ − ​u​i​​​(​x​​ ∗​)​|​  
<  ϵ​ for all players ​i​. Letting ​ϵ  ∈ ​ (0, ​η​​ ∗​​(​x​​ ∗​)​)​​, which is possible because ​​η​​ ∗​​(​x​​ ∗​)​  >  0​,  
we therefore have ​Q​(​x​n​​, ​η​​ ∗​​(​x​​ ∗​)​ − ϵ)​  ≠  ∅​ for ​n  ≥ ​ N​ϵ​​​. Hence, ​​η​​ ∗​​(​x​n​​)​  ≥ ​ η​​ ∗​​(​x​​ ∗​)​ 
− ϵ​ for ​n  ≥ ​ N​ϵ​​​. Sending ​ϵ  →  0​, we obtain ​​lim inf​ n→∞​​ ​η​​ ∗​​(​x​n​​)​  ≥ ​ η​​ ∗​​(​x​​ ∗​)​​, which 
establishes the claim.

To conclude the proof, note that ​​η​δ​​  ≔ ​ min​ x∈​Γ​δ​​​​ ​η​​ 
∗​​(x)​​ is well defined because ​​Γ​δ​​​ 

is compact and ​​η​​ ∗​​ is lower semicontinuous, is strictly positive because ​​η​​ ∗​​(​Γ​δ​​)​  ⊆ ​
(0, ∞)​​, and satisfies ​Q​(x, ​η​δ​​)​  ≠  ∅​ for all ​x  ∈  ​Γ​δ​​​ by construction (recall that the 
supremum in (A1) is attained). ∎

Generic ​ϵ​-Grids and Thin Individual Indifference.—Here, we formalize the 
assertion that Thin Individual Indifference (Definition 4) characterizes collective 
choice problems that admit arbitrarily fine generic ​ϵ​-grids. The following formalizes 
what it means to admit arbitrarily fine grids:

DEFINITION 8: Collective choice problem ​  = ​ (X, ​​{≽}​​i=1,…, n,  A​​}​)​ is Finitely 
Approximable if, for every ​x  ∈  X​ and ​ϵ  >  0​, there exists a generic ​ϵ​-grid ​​X​ϵ​​​ such 
that ​x  ∈ ​ X​ϵ​​​.
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Definition 8 requires not only that a generic ​ϵ​-grid ​​X​ϵ​​  ⊆  X​ exists for every ​ϵ  >  0​ 
but also that such a grid can be constructed so as to contain any prespecified point ​x​ 
in the ambient policy space ​X​. Lemma 3 shows that finite approximability is charac-
terized by Thin Individual Indifference.

LEMMA 3: A collective choice problem ​​ is finitely approximable if and only if it 
satisfies Thin Individual Indifference.

As Lemma 3’s proof is technical and involved, we relegate it to the online 
Appendix.

Proof of Theorem 2.—For any ​ϵ  >  0​ and generic ​ϵ​-grid ​​X​ϵ​​​, we denote the cor-
responding discretized collective choice problem by ​​​​ϵ​​  ≔ ​ (​X​ϵ​​, ​​{≽}​​i=1,…, n,  A​​}​​)​​​​. We 
define two maps analogous to the definitions in Section IIIB. The agenda setter’s 
favorite improvement within grid ​​X​ϵ​​​, denoted by ​ϕ​( · ; ​X​ϵ​​)​ : ​X​ϵ​​  → ​ X​ϵ​​​, is

(A2)	​ ​{ϕ​(x; ​X​ϵ​​)​}​  ≔ ​  arg max​ 
y∈M​(x)​⋂  ​X​ϵ​​

​​ ​u​A​​​(y)​​,

where, as in Section IIIB, ​M​(x)​  ≔ ​ {y  ∈  X : y ​ ≻​M​​  x or y  =  x}​​. The second map 
is ​​f​ T ​​​( · ; ​X​ϵ​​)​ : ​X​ϵ​​  ⇉ ​ X​ϵ​​​, which denotes the equilibrium outcome correspondence (as 
defined in Section IIIB) for ​​​ϵ​​​. With these definitions in hand, we prove each direc-
tion of Theorem 2 in turn.

Sufficiency of Manipulability for Approximate Dictatorial Power: Suppose that ​
​ is Manipulable. As ​​ satisfies Thin Individual Indifference, Lemma 3 assures that 
for each ​ϵ  >  0​, there exists a generic ​ϵ​-grid ​​X​ϵ​​​.

Let ​δ  >  0​ be given, and let ​​η​δ​​  >  0​ be as defined in Lemma 2. Let ​​ϵ​δ​​  >  0​ be 
such that

(A3)	​ ​ max​ 
i∈ N  ∪​{A}​

​​ ​max​ 
x∈  X

​ ​ ​ max​ 
y∈​B​ϵ​​​δ​​​​​(x)​

​​ ​|​u​i​​​(x)​ − ​u​i​​​(y)​|​  ≤ ​  ​η​δ​​ _ 
2
 ​,​

where ​​B​ϵ​​​δ​​​​​(x)​  ≔ ​ {y  ∈  X : d​(y, x)​  < ​ ϵ​δ​​}​​, noting that such an ​​ϵ​δ​​  >  0​ exists 
because each ​​u​i​​​ is uniformly continuous (being that ​X​ is compact). For each ​ϵ  < ​ ϵ​δ​​​, ​​
X​ϵ​​ ∩ ​B​​ϵ​δ​​​​​(x)​  ≠  ∅​ for all ​x  ∈  X​ by construction. Therefore, (A3) implies that

(A4)	​ ​ max​ 
i∈ N  ∪​{A}​

​​ ​max​ 
x∈  X

​ ​ ​min​ 
y∈  ​X​ϵ​​

​ ​ ​|​u​i​​​(x)​ − ​u​i​​​(y)​|​  ≤ ​  ​η​δ​​ _ 
2
 ​.​

Henceforth, we consider ​ϵ  < ​ ϵ​δ​​​.
We first claim, building on Lemma 2, that every policy in ​​X​ϵ​​​ that is ​δ​-suboptimal 

for the agenda setter is ​​η​δ​​/2​-improvable in ​​X​ϵ​​​; namely, there exists an alternative in ​​
X​ϵ​​​ that leads to a utility increase of at least ​​η​δ​​/2​ for herself and some majority of 
voters. Formally,

(A5)	​ For every x  ∈ ​ X​ϵ​​ ∩ ​Γ​δ​​,  Q​(x, ​η​δ​​/2)​ ∩ ​X​ϵ​​  ≠  ∅.​
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To see why (A5) is true, let ​x  ∈ ​ X​ϵ​​ ∩ ​Γ​δ​​​ be given. First, by Lemma 2, there exists 
some ​y′  ∈  X​ such that ​​u​i​​​(y′)​  ≥ ​ u​i​​​(x)​ + ​η​δ​​​ for every ​i  ∈  S ∪ ​{A}​​, where ​S  ⊆  N​ 
contains some majority of voters. Second, (A4) assures that there exists some ​y  ∈ ​
X​ϵ​​​ such that ​​|​u​i​​​(y′)​ − ​u​i​​​(y)​|​  ≤ ​ η​δ​​/2​ for every ​i​. Combining these observations, we 
conclude that ​​u​i​​​(y)​  ≥ ​ u​i​​​(x)​ + ​η​δ​​/2​ for all ​i  ∈  S ∪ ​{A}​​.

Because ​y  ​≻​M​​  x​ above, an important implication of (A5) is that

(A6)	​ for every x  ∈ ​ X​ϵ​​ ∩ ​Γ​δ​​, ​ u​A​​​(ϕ​(x; ​X​ϵ​​)​)​  ≥ ​ u​A​​​(x)​ + ​ ​η​δ​​ _ 
2
 ​.​

We use this fact to prove the theorem: there exists some (uniform) ​​T​δ​​  ∈  ℕ​ such 
that, if there are ​T  ≥ ​ T​δ​​​ rounds, then the agenda setter’s payoff is no lower than ​​
u​ A​ ∗ ​ − δ​ in every equilibrium for any generic ​ϵ​-grid ​​X​ϵ​​​ with ​ϵ  <  ​ϵ​δ​​​.45 To put it for-
mally, there exists ​​T​δ​​​ such that for every ​T  ≥ ​ T​δ​​​ and ​ϵ  < ​ ϵ​δ​​​,

	​ ​ ⋃ 
​x​​ 0​∈  ​X​ϵ​​

​​​  ​f​ T ​​​(​x​​ 0​; ​X​ϵ​​)​  ⊆ ​ X​ϵ​​\ ​Γ​δ​​.​

If ​​x​​ 0​  ∈ ​ X​ϵ​​\ ​Γ​δ​​​, the fact that ​​⋃ ​x​​ 0​∈​X​ϵ​​​​   ​f​ T ​​​(​x​​ 0​; ​X​ϵ​​)​​  ⊆ ​ X​ϵ​​\ ​Γ​δ​​​ for all ​T  ≥  1​ follows from 
applying Lemma 1 to ​​​ϵ​​​, noting that ​ϕ​(x; ​X​ϵ​​)​ ​ ≽​A​​  x​ for every ​x​. Thus, we consider ​​
x​​ 0​  ∈ ​ X​ϵ​​ ∩ ​Γ​δ​​​. We denote the payoff difference between the agenda setter’s favor-
ite and least favorite policies by ​Δ  ≔ ​ u​ A​ ∗ ​ − ​min​ y∈X​​  ​u​A​​​(y)​​, which is well defined 
and finite because ​​u​A​​​ is continuous and ​X​ is compact. Correspondingly, define 
​​T​δ​​  ≔ ​ ⌈2Δ/​η​δ​​⌉​  ∈  ℕ​. Suppose, toward a contradiction, that ​y  ≔ ​ f​​ T​δ​​​​​(​x​​ 0​; ​X​ϵ​​)​  ∈ ​
X​ϵ​​ ∩ ​Γ​δ​​​. Then, it follows that

	​ ​u​A​​​(ϕ​(y; ​X​ϵ​​)​)​ − ​u​A​​​(​x​​ 0​)​  ≥ ​ u​A​​​(y)​ − ​u​A​​​(​x​​ 0​)​ + ​ ​η​δ​​ _ 
2
 ​​

	​ = ​ u​A​​​(​ϕ​​ ​T​δ​​​​(​x​​ 0​; ​X​ϵ​​)​)​ − ​u​A​​​(​x​​ 0​)​ + ​ ​η​δ​​ _ 
2
 ​​

	​ = ​  ∑ 
t=1

​ 
​T​δ​​

 ​​ ​[​u​A​​​(​ϕ​​ t​​(​x​​ 0​; ​X​ϵ​​)​)​ − ​u​A​​​(​ϕ​​ t−1​​(​x​​ 0​; ​X​ϵ​​)​)​]​ + ​ ​η​δ​​ _ 
2
 ​​

	​ ≥ ​ T​δ​​ · ​ 
​η​δ​​ _ 
2
 ​ + ​ ​η​δ​​ _ 

2
 ​​

	​ ≥  Δ + ​ ​η​δ​​ _ 
2
 ​,​

where the first line is by (A6), the second line is by Lemma 1 applied to ​​​ϵ​​​, the third 
line is an identity, the fourth line is by another application of (A6) to each term in 
the sum (noting that ​​ϕ​​ ​T​δ​​​​(​x​​ 0​; ​X​ϵ​​)​  ∈ ​ X​ϵ​​ ∩ ​Γ​δ​​​ implies that ​​ϕ​​ t​​(​x​​ 0​; ​X​ϵ​​)​  ∈ ​ X​ϵ​​ ∩ ​Γ​δ​​​ for all ​
t  < ​ T​δ​​​), and the final line is by definition of ​​T​δ​​​. However, given that ​​η​δ​​  >  0​, this 
inequality contradicts the definition of ​Δ​. We conclude that ​y  ∈ ​ X​ϵ​​\ ​Γ​δ​​​, as desired.

45 We note that this statement does not follow from Lemma 1. Lemma 1 implies that if there are ​T  ≥  ​|​X​ϵ​​|​ − 1​ 
rounds, then ​​⋃ ​x​​ 0​∈​X​ϵ​​​​   ​f​ T ​​​(​x​​ 0​; ​X​ϵ​​)​​  =  E​(​X​ϵ​​)​​, where ​E​(​X​ϵ​​)​  ≔  ​{x  ∈  ​X​ϵ​​ : x  =  ϕ​(x; ​X​ϵ​​)​}​​ denotes the set of unimprov-
able policies in ​​​ϵ​​​. We know from (A5) that ​E​(​X​ϵ​​)​  ⊆  ​X​ϵ​​\ ​Γ​δ​​​, i.e., any policy that is unimprovable in ​​​ϵ​​​ must be 
​δ​-optimal for the agenda setter. It would then follow that the agenda setter’s payoff is at least ​​u​ A​ ∗ ​ − δ​ when there are  
​T  ≥  ​|​X​ϵ​​|​ − 1​ rounds; as ​ϵ  →  0​, this argument would then require the number of rounds to grow without bound. 
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Necessity of Manipulability for Approximate Dictatorial Power: Suppose that ​
​ is not Manipulable. Then, there exists an unimprovable policy ​x​ and ​δ  >  0​ such 
that ​​u​A​​​(x)​  < ​ u​ A​ ∗ ​ − δ​. As ​​ satisfies Thin Individual Indifference, Lemma 3 assures 
that there exists an ​​ϵ​δ​​  >  0​ such that, for all ​ϵ  ∈ ​ (0, ​ϵ​δ​​)​​, there is a generic ​ϵ​-grid ​​
X​ϵ​​​ for which ​x  ∈ ​ X​ϵ​​​. Observe that ​x​ must also be unimprovable in the correspond-
ing discretized collective choice problem ​​​ϵ​​​. Applying Lemma 1 to this discretized 
problem reveals that for every number of rounds, the equilibrium outcome starting 
from initial default ​​x​​ 0​  =  x​ is ​x​ itself: ​​f​ T ​​​(x; ​X​ϵ​​)​  = ​ {x}​​ for every ​T  ∈  ℕ​. The agenda 
setter then attains a payoff of ​​u​A​​​(x)​  < ​ u​ A​ ∗ ​ − δ​, failing to achieve approximate dic-
tatorial power regardless of the number of rounds. ∎

A3. The Divide-the-Dollar Problem

Herein, we specialize to the standard “divide-the-dollar” problem, in which the 
policy space is ​X  = ​ Δ​​ n+1​​ and a policy ​x  ≔ ​ (​x​1​​, …, ​x​n​​, ​x​n+1​​)​​ is a division of the 
dollar; the first ​n​ indices are the shares of the ​n​ voters, and ​​x​n+1​​​ is that of the agenda 
setter. Each player has selfish risk-neutral preferences, so ​​u​i​​​(x)​  = ​ x​i​​​. The legisla-
ture begins with an initial default option ​​x​​ 0​​ and, as in our baseline analysis, uses 
simple majority rule in each of finitely many rounds.

In this context, we elucidate two features of our general analysis. First, we con-
struct a non-capricious equilibrium in which the agenda setter appropriates the 
entire dollar whenever there are three or more rounds. Second, we highlight how 
our dictatorial power result (Theorem 3) does not apply to equilibria with capricious 
tiebreaking: regardless of the number of rounds, there exists a pure strategy Markov 
perfect equilibrium with capricious tiebreaking in which the agenda setter fails to 
appropriate the entire dollar.

A Non-Capricious Equilibrium: To describe a non-capricious equilibrium, we 
adapt the agenda setter’s favorite improvement operator ​ϕ​ from Section IIIB to this 
setting (which features indifferences). For default policy ​x​, let ​β​(x)​​ denote the pol-
icy that sets the ​​(n − 1)​/2​ largest elements (among the first ​n​ elements) to zero and 
reallocates that portion of the dollar to the agenda setter; in the event of ties, ​β​(x)​​ 
selects the group of voters with this size with the lowest player indices. More pre-
cisely, let ​​G​​  0​​(x)​  ≔  ∅​, and define ​​G​​  k​​(x)​​ inductively for ​k  ∈ ​ {1, …, n}​​ as follows:

	​ ​G​​  k​​(x)​  ≔ ​ G​​  k−1​​(x)​ ∪ ​
{

j  ∈  N : j  =  min​
{

​ arg max​ 
i∈N \​G​​  k−1​​(x)​

​​ ​x​i​​}
​
}

​.​

Observe that ​​G​​  k​​(x)​​ identifies the ​k​ voters who have the highest shares in default 
policy ​x​ (and breaks ties in favor of those with lower player labels). We define the 
policy ​β​(x)​​ as

     ​     ​​(β​(x)​)​​
i
​​  ≔ ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
0,

​ 
if i  ∈ ​ G​​  ​(n−1)​/2​​(x)​;

​    ​x​i​​,​  if i  ∈  N \​G​​  ​(n−1)​/2​​(x)​;​    
​x​n+1​​ + ​∑ j∈​G​​  ​(n−1)​/2​​(x)​​   ​​ ​ x​j​​,

​ 
if i  =  n + 1.

 ​​ ​



3126 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2023

This operator adapts the favorite improvement operator ​ϕ​ to this setting: among pol-
icies that a majority of voters weakly prefer to ​x​, ​β​(x)​​ is one of the agenda setter’s 
favorites. Observe that for any policy ​x​, ​​β​​  2​​(x)​​ extracts the shares from all but one 
voter—the one who has the lowest share in policy ​x​—and ​​β​​  3​​(x)​​ yields the agenda 
setter the entire dollar.

We now construct a non-capricious equilibrium in which the agenda setter obtains 
the entire dollar if there are ​T  ≥  3​ rounds. Consider the following strategy profile: 
in each round ​t  ∈ ​ {1, …, T}​​, if the prevailing default is ​x​, then (i) the agenda setter 
proposes ​β​(x)​​, and (ii) each voter ​i  ∈  N​ votes in favor of a proposal ​y​ if and only 
if ​​β​​   T−t​​(y)​ ​ ≽​i​​ ​ β​​   T−t​​(x)​​; namely, she weakly prefers the continuation outcome from 
acceptance to the continuation outcome from rejection. As no player has a strictly 
profitable deviation and the strategy profile is pure and Markovian, this defines a 
non-capricious equilibrium by construction.

We illustrate the path of play in this equilibrium using the following example:

EXAMPLE 3: Suppose that there are three voters and the default option ​​x​​ 0​​ is such 
that ​​x​ 1​ 0​  > ​ x​ 2​ 0​  > ​ x​ 3​ 0​  >  0​. Then, ​β​(​x​​ 0​)​  = ​ (0, ​x​ 2​ 0​, ​x​ 3​ 0​, 1 − ​x​ 2​ 0​ − ​x​ 3​ 0​)​​, ​​β​​  2​​(​x​​ 0​)​  = ​ (0, 0, ​
x​ 3​ 0​, 1 − ​x​ 3​ 0​)​​, and ​​β​​  3​​(​x​​ 0​)​  = ​ (0, 0, 0, 1)​​. Observe that voters 1 and 2 approve each 
equilibrium-path proposal: they are indifferent between ​​β​​  2​​(​x​​ 0​)​​ and ​​β​​  3​​(​x​​ 0​)​​ and thus 
anticipate that rejecting either the first or second on-path offer nevertheless results 
in both of them obtaining zero surplus.

The above construction demonstrates a particular non-capricious equilibrium in 
which the agenda setter obtains the entire dollar within three rounds. Theorem 6 
further implies that all non-capricious equilibria of this distribution problem share 
this property.

A Capricious Equilibrium: We now show, using a setting with ​n  =  3​ voters, 
that the dictatorial power conclusion of Theorem 3 does not apply to equilibria with 
capricious tiebreaking.

Consider a strategy profile that differs from that described above only with respect 
to voters’ tiebreaking rule: voters now resolve indifference in favor of the agenda set-
ter’s proposal if and only if it is in the final or penultimate round (i.e., ​t  ∈ ​ {T − 1, T}​​) 
and otherwise break ties in favor of the prevailing default option. Observe that this 
strategy profile satisfies Definition 5(a), as it is pure and Markovian. However, it 
violates Definition 5(b) because, for any pair of continuation outcomes, the tie-
breaking decision conditions on the current round.

We claim that, for any initial default ​​x​​ 0​​ and number of rounds ​T  ≥  2​, this strat-
egy profile (i) results in the outcome ​​β​​  2​​(​x​​ 0​)​​ and (ii) is an equilibrium. Consequently, 
given any default ​​x​​ 0​​ in which all voters have positive shares (as in Example 3) and 
any number of rounds, the agenda setter fails to appropriate the entire dollar in this 
(capricious) equilibrium.

To see that the outcome is ​​β​​  2​​(​x​​ 0​)​​, observe that—as in Example 3—the outcome 
is ​β​(​x​​ 0​)​​ if ​T  =  1​ and ​​β​​  2​​(​x​​ 0​)​​ if ​T  =  2​. Suppose now that ​T  =  3​. Voters anticipate 
that accepting the initial on-path proposal ​β​(​x​​ 0​)​​ results in outcome ​​β​​  3​​(​x​​ 0​)​​, whereas 
rejecting it leads to ​​β​​  2​​(​x​​ 0​)​​. As the two voters with the largest shares (and lowest 
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indices) in ​​x​​ 0​​ both receive zero shares under both outcomes,46 our capricious tie-
breaking rule stipulates that they both vote against the initial proposal—unlike in 
Example 3—resulting in an on-path outcome of ​​β​​  2​​(​x​​ 0​)​​. It is then easy to see by 
induction that the same outcome arises for all ​T  ≥  3​.

We now argue that this strategy profile is an equilibrium. It suffices to consider 
the agenda setter’s incentives in rounds ​t  ≤  T − 2​.47 Consider round ​T − 2​, and 
let the prevailing default ​x​ be given. Suppose, toward a contradiction, that the 
agenda setter has a strictly profitable deviation from proposing some ​y  ≠  β​(x)​​. 
By the argument in the preceding paragraph, (i) the continuation outcome is ​​β​​  2​​(x)​​ 
if the agenda setter follows her strategy of proposing ​β​(x)​​, and (ii) players antici-
pate that acceptance of ​y​ results in outcome ​​β​​  2​​(y)​​, whereas its rejection leads to 
​​β​​  2​​(x)​​. By the supposition and properties (i)–(ii), it must be that some voter—call 
her ​i​—is strictly worse off under ​​β​​  2​​(y)​​ than under ​​β​​  2​​(x)​​. Property (ii) then implies 
that voter ​i​ must vote against this proposal. Moreover, by the construction of ​β​, both 
continuation outcomes result in at least two voters obtaining zero utility. Although 
the identities of these two voters may differ across these outcomes, as there are 
three voters in total, the pigeonhole principle implies that at least one voter—call 
her ​j​—obtains a zero share in both ​​β​​  2​​(y)​​ and ​​β​​  2​​(x)​​. Our capricious tiebreaking rule 
and property (ii) then stipulate that voter ​j​ rejects the proposal ​y​. Hence, we have 
found two distinct voters, ​i​ and ​j​, who both vote against proposal ​y​, implying that it 
does not pass. Therefore, the agenda setter does not find this deviation to be strictly 
profitable, leading to the desired contradiction. An analogous argument also applies 
for all rounds ​t  ≤  T − 2​.48
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