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Abstract

Voters often do not know who gains or loses from a policy. This paper stud-

ies how asymmetric information about a policy’s distributional effects influences

voting behavior. We show that asymmetric information and distributional un-

certainty together forge a powerful adverse selection effect in which voters are

wary of policies supported by other voters. This force impels a majority of vot-

ers to support policies contrary to their preferences and information even if they

ascribe low probability to others being better informed. Formally, we establish

that collective choice is fragile to asymmetric information and fails to aggregate

information. We identify and interpret a form of “adverse correlation” that is

necessary and sufficient for these electoral failures.
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1 Introduction

Many policies benefit some voters at a cost borne by others. At the outset, voters

may not know who gains and loses; indeed, voters may not only be uncertain but also

asymmetrically informed. We study how this asymmetric information influences voting

behavior. Our main finding is that the mere prospect of asymmetric information can

induce voters to support policies contrary to their own interests. This electoral effect

is reminiscent of Akerlof’s Lemons Problem: a voter may vote against policies that

command the support of others out of fear of what their support means for her. Thus,

even if the policy choice is not zero sum, zero-sum thinking may prevail in equilibrium.

To see how this happens, consider the following example. Ann, Bella, and Carol

vote between policies a and b, and the policy that obtains more votes wins. Each

voter’s payoff from policy a is 0. By contrast, policy b results in two winners, each of

whom accrue a payoff of 2, and one loser, who obtains a payoff of −3. Ex ante, voters

are symmetric: there are three equally likely states of the world, {ωA, ωB, ωC}, where
ωi is the state in which voter i is the loser.

Given these payoffs, policy b would win the election were voters fully informed, i.e.,

to know the state of the world. That policy would also prevail if all voters were known

to be uninformed, i.e., the no-information benchmark.1 But a different possibility

emerges once voters may be asymmetrically informed.

Suppose that each voter privately learns her payoff from policy b with (independent)

probability λ > 0 and otherwise remains uninformed. We take λ to be relatively small,

embodying the idea that private information is scarce. As we show, even the slight

chance that others may be better informed impacts voting behavior. Consider the

following strategy profile:

• An informed loser votes a and an informed winner votes b;

• An uninformed voter votes a.

We claim that this is a strict equilibrium. As an informed voter votes for her strictly

preferred policy, it suffices to consider the incentives of an uninformed voter, say Ann.

Her vote affects her payoff only if it breaks a tie: of Bella and Carol, one votes a

and the other votes b. Given the stipulated voting behavior, Ann knows that only

an informed winner would vote for b. By contrast, a vote for a may be cast by an

uninformed voter (just like Ann) or an informed loser. For λ ≈ 0, Ann ascribes much

1Throughout our analysis, we focus on weakly undominated equilibria.



higher probability to the former event. In this case, she and the other uninformed

voter have an equal chance of being the remaining winner. Hence, whenever her vote

is decisive, Ann believes that she is a winner with probability one-half, lower than the

ex ante odds of two-thirds. At these interim odds, Ann finds it strictly optimal to vote

a, ratifying that the strategy profile is a strict equilibrium.2 That is, when uniformed

voters fear that support for policy b comes from others who are better informed, they

find it optimal to vote a, thereby reinforcing the initial suspicion.

Moreover, if each voter obtains private information with a small probability (λ ≈ 0),

then all voters are likely to be uninformed. As they all vote a, that policy wins with near

certainty. This outcome contrasts with what prevails in the no-information benchmark;

it’s also informationally inefficient because if signals were realized publicly, with high

probability, voters would all see that they are uninformed and choose policy b.

In this paper, we formalize this strategic logic to see generally how asymmetric

information impacts distributive politics. We model an electoral choice that has distri-

butional consequences, like a trade or tax policy. Voters are uncertain both about the

number of people who benefit from a policy as well as their identities, and some voters

obtain private information about these variables. To isolate the role of asymmetric in-

formation, we begin with a benchmark in which all voters share the same information

and ex ante preferences. In that case, the unique equilibrium (in weakly undomi-

nated strategies) selects the ex ante optimal policy. We compare that benchmark with

an “informationally-scarce” setting in which each voter obtains additional private in-

formation with a small probability. Our analysis evaluates whether the prospect of

asymmetric information leads the electorate astray.3

Addressing this question requires us to assess what a voter makes of a policy when

she conditions on others learning privately that the policy will benefit them. Should

an uninformed voter, say Ann, see the good news for others as good or bad news

for herself? On one hand, others may receive good news about a policy because the

policy results in many winners, which improves Ann’s odds of being a winner as well.

This force of advantageous selection is potent when uncertainty about the number of

2The probability that Ann is a winner, conditional on being pivotal, is 1
2−λ , and she has a strict

incentive to vote a if λ < 1
3 .

3Our emphasis on informationally-scarce settings may be reasonable from an applied standpoint
as experts themselves disagree about the impact of many policies. For example, some predictions on
how trade treaties affect wages and employment focus on factor abundance and heterogeneity across
industries while others highlight within-industry heterogeneity, emphasizing the differential impact on
low and high skill workers.
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winners trumps distributional uncertainty, e.g., in a pure common-value election where

either all voters gain or all lose from policy b. The second force is adverse selection:

for any given number of winners, Ann’s odds of being a winner reduce when others

receive good news. This crowding-out effect features in our example above as it holds

the number of winners fixed.

More generally, which force dominates depends on the correlation between a voter’s

own payoff and the signals of other voters. We define the relevant correlation measure

in term of primitives. We say that the collective choice problem is adversely correlated if

the adverse selection effect dominates; otherwise, we deem it advantageously correlated.

Our main result (Theorem 1) characterizes how correlation shapes equilibrium behavior

in informationally-scarce settings; stated informally, it finds:

Main Result. If the collective choice problem is adversely correlated, there is a

strict equilibrium that selects the ex ante inferior policy with near certainty. Oth-

erwise, every equilibrium selects the ex ante optimal policy with near certainty.

Adverse correlation is thus a source of political fragility as elections may then select

a policy distinct from that which would prevail were all voters known to be uninformed.

The mere prospect that voters are asymmetrically informed, however unlikely, causes

the inferior policy to win in an equilibrium of the voting game. Not all equilibria select

this policy: there also exists an equilibrium in which the optimal policy prevails.4

But nevertheless, elections may fail to pick the right outcome and collective choice

hinges on voters’ ability to coordinate on a “good” equilibrium. By contrast, if the

collective choice problem is advantageously correlated, such coordination is obviated;

all equilibria—pure or mixed, symmetric or asymmetric—result in the optimal policy.5

For expositional clarity, we consider a model with a known number of voters, all

of whom are ex ante symmetric, aggregating votes by simple-majority rule. But the

logic of adverse selection goes beyond this. Similar results hold for other voting rules,

imposing a restriction to symmetric equilibria, and an electorate of random size. More-

over, ex ante asymmetries can amplify these forces because the presence of elite voters

makes non-elites fear adverse selection even more.

The primitive condition of adverse correlation lends itself to concrete interpretation.

We show that policy choices that are more polarizing, in terms of the proportional loss

4In the example, such an equilibrium is that in which all uninformed voters cast their votes for b.
5From this standpoint, our work connects to the growing interest in institutional design under

adversarial equilibrium selection, as in Mathevet, Perego, and Taneva (2020), Halac, Lipnowski, and
Rappoport (2021), Ali, Haghpanah, Lin, and Siegel (2022), Inostroza and Pavan (2023), and others.
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suffered by losers relative to the gains that accrue to winners, have a greater potential to

induce adverse correlation. We also formulate the “crowding-out effect” from learning

that others are winners in terms of the standard likelihood-ratio dominance order.

These comparative statics reveal features that make elections more prone to suspicion.

Adverse correlation also relates to the information conveyed by private signals. If

voters learn only about aggregate outcomes—in our model, the number of winners,

but more broadly, say, aggregate GDP or economic growth—without any distribu-

tional consequences, then the collective choice problem cannot be adversely correlated.

By contrast, purely distributional information that identifies who is first in line to ob-

tain gains induces adverse correlation. This contrast dovetails with analyses of how

media outlets profit from selling information that polarizes rather than unifies voters

(Martin and Yurukoglu, 2017; Perego and Yuksel, 2022). Our results call attention to

a pernicious “downstream” effect of this market competition on voting behavior.

We view our result as capturing how distrust may prevail when voters vote on

policies that have a strong distributional component. Recent evidence shows that

voters appear to hold polarized perceptions of reality (Alesina, Miano, and Stantcheva,

2020) and see their interests as conflicting with those of other voters (Levendusky and

Malhotra, 2016). Zero-sum thinking, where voters perceive gains that accrue to others

as being correlated with losses they would suffer, appears to be pervasive (Davidai and

Ongis, 2019; Chinoy, Nunn, Sequeira, and Stantcheva, 2022). Our analysis suggests a

strategic mechanism for zero-sum thinking and how it may prevail even if the policy

choice is not zero sum: the fear of what other voters may have learned can push many

voters to support a policy that they view to be inferior. Our results show that this

fear and distrust can emerge independently of identity politics or partisan interests,

and even with voters who are ex ante symmetric.

Our study complements prior work on distributive politics. Fernandez and Ro-

drik (1991) show that a reform that benefits a majority of voters ex post may not

pass ex ante if the majority do not find the lottery worthwhile; their setting involves

uncertainty without private information. We identify instead the potency of private in-

formation: relative to a complete information game devoid of any private information,

the electorate may be worse off when some voters are better but privately informed.6

6That better informed voters may, in equilibrium, make worse choices offers a new channel to eval-
uate the importance of “voter competence.” In a different context, Ashworth and Bueno De Mesquita
(2014) argue that more competent voters may be worse off; their analysis focuses on the effect of voter
competence on politicians’ behavior.
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Incomplete information amplifies the scope for political failures as a policy may be ex

ante optimal and yet fail to pass because each voter fears what others have learned.

That adverse selection leads to inferior choices and makes collective choice fragile to

private information are novel to our framework.

This interest in the sensitivity of collective choice to private information connects

our work to that on global games and higher-order beliefs (Carlsson and Van Damme,

1993; Kajii and Morris, 1997). Closer to our work, Morris and Shin (2012) find that

small amounts of private information can disrupt asset markets through adverse se-

lection. This strand of research shows that higher-order uncertainty renders some

equilibrium outcomes of complete information games untenable in nearby incomplete

information games; i.e., the equilibrium outcome correspondence fails lower hemicon-

tinuity. While related, our analysis emphasizes a different kind of fragility: incomplete

information games with scarce private information generate equilibrium outcomes that

do not obtain in the complete information game. Formally, the outcome correspondence

of weakly undominated equilibria fails upper hemicontinuity. As we show, second-order

uncertainty alone triggers this discontinuity.

Adverse selection is a source of informational inefficiency in our model as the elec-

torate selects a policy that would be rejected if all information were public. In this

regard, our work also connects to that on information aggregation; see, for instance,

Feddersen and Pesendorfer (1997), Razin (2003), Kim and Fey (2007), Bhattacharya

(2013), and Barelli, Bhattacharya, and Siga (2022). Our focus on the fragility to

asymmetric information leads us to adopt an approach that differs from this prior

work. Specifically, we fix a population size and study the limit equilibria as private

information becomes increasingly scarce; by contrast, prior approaches to information

aggregation fix an information structure with conditionally independent signals and

consider the limit equilibria for an increasingly large electorate, where collective infor-

mation is abundant but privately distributed. Both limits are conceptually meaningful

but address different questions. Our specific interest in distributive politics also neces-

sitates a model in which voter types (both payoffs and signals) are correlated (i.e., not

conditionally independent) so that a voter may perceive gains that accrue to others as

being correlated with losses that she suffers.
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2 Model

The Collective Choice Problem. Each of N := {1, . . . , n} voters cast a vote for

one of two policies p ∈ {a, b}. Our baseline analysis assumes that n ≥ 3 is odd and

votes are aggregated by simple-majority rule: policy p wins if and only if it receives

strictly more than τ := n−1
2

votes.

Voters are uncertain about their payoffs from each policy. A payoff for voter i is a

tuple vi = (vai , v
b
i ) ∈ V := Va × Vb, where Vp is a finite set of potential payoffs from

policy p. Before casting her vote, voter i receives a private signal si drawn from a

finite set of signals S := {s0, . . . , sK}. Thus, a state of the world ω consists of a payoff

profile v ∈ Vn and a signal profile s ∈ Sn. Uncertainty is described by a probability

distribution P on the state space Ω := Vn × Sn. We interpret the signal profile as

describing the private information that voters receive above and beyond any public

information that all have access to. The random variable V p denotes the payoff profile

from choosing policy p and S denotes the signal profile.7 The population of voters and

the probability space together define a collective choice problem.

Our baseline framework makes three assumptions. For the first assumption, we say

that state (v′, s′) permutes state (v, s) if there is a one-to-one mapping ψ : N → N
such that (v′i, s

′
i) = (vψ(i), sψ(i)) for all i ∈ N .

Assumption 1. Voters are exchangeable: if ω′ permutes ω, then P (ω′) = P (ω).

Exchangeability focuses attention on the conflict generated by asymmetric infor-

mation rather than heterogeneous ex ante preferences; we relax this assumption in

Section 5.3. Given Assumption 1, all voters agree on the (ex ante) optimal policy,

which we denote p∗, and the (ex ante) inferior policy, which we denote p∗. We define

the random variable V d := V p∗ −V p∗ to denote the payoff difference between these two

policies. We denote the payoff difference conditioning on any non-null event E ⊆ Ω by

V d
i (E) :=

∑
ω∈Ω

(
V p∗

i (ω)− V p∗
i (ω)

)
P (ω|E).

If E is null, we define V d
i (E) = 0 to simplify exposition.

Our second assumption distinguishes signal s0, which is uninformative, from the

remaining signals M := {s1, . . . , sK}, which are informative.

7In general, capital letters denote random variables and lower-case letters denote realizations. For
random variable X, {x} := {ω : X(ω) = x} is the event where x is realized, omitting the brackets
when clear from the context.
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Assumption 2. Signal s0 is uninformative and every other signal is sufficient to

deduce the ex post ordinal preference: for all (v, s) ∈ Ω,

(a) if si = s0, then P (v, s) = P (v, s−i)P (si); and

(b) if si ̸= s0, then V d
i (s) > 0 if and only if V d

i (si) > 0.

Assumption 2(a) asserts that signal s0 is realized independently of the payoff profile

and the other signals, and hence conveys no private information about these variables.

Assumption 2(b) speaks to the informativeness of the remaining signals: for a voter

who obtains an informative signal, learning the signals of others conveys no additional

information about her ordinal preference over policies. Hence, relative to the entire

signal profile s, the private signal si is sufficient to deduce voter i’s preferred policy.

A special case is where the informed signal reveals directly one’s cardinal payoffs from

each policy, as in our introductory example. Assumption 2(b) goes beyond this special

case by encompassing settings in which informed voters do not know all that much

about their cardinal payoffs but are just well-informed relative to the electorate about

their ordinal preferences. We exploit this generality in Section 4.

Among the informative signals, we say that signal sk conveys good news if V d
i (Si =

sk) > 0 and bad news if V d
i (Si = sk) < 0. Being ordinal, these notions convey whether

an informed voter favors the ex ante optimal or inferior policy. For a signal profile

s ∈ Sn, M(s) is the number of voters who receive informative signals, G(s) is the

number with good news, and B(s) is the number with bad news.

Our final assumption simplifies exposition without playing a substantive role.

Assumption 3. Voters have strict preferences and both bad news and good news are

possible:

(a) For every voter i ∈ N and non-null event E ⊆ Ω, V d
i (E) ̸= 0.

(b) P (B ≥ 1) > 0 and P (G ≥ τ) > 0.

Assumption 3(a) obviates the need to describe how voters behave when indifferent

and, with finitely many states, strict preferences are generic in the space of possible

payoff profiles. Assumption 3(b) rules out some trivial cases: when it is impossible

to receive bad signals, voting for the inferior policy is a weakly dominated strategy;

if P (G ≥ τ) = 0, there is always an uninteresting equilibrium where all uninformed

voters select the inferior policy only because their votes are then never decisive.

This completes the description of the baseline collective choice problem. We con-

trast behavior in this collective choice problem with private information to that in a

public information benchmark, where every voter observes the entire signal profile s.
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Solution Concept. A strategy for a voter is a signal-contingent probability of voting

for p∗. We study Bayes-Nash equilibria in weakly undominated strategies, which implies

that those with good news vote for p∗ and those with bad news vote for p∗. Henceforth,

we refer to these as equilibria. The following summarizes equilibrium existence in the

baseline collective choice problem and the public information benchmark.

Proposition 1. An equilibrium exists under both private and public information; in

the latter case, the equilibrium is unique.

3 The Fragility of Collective Choice

3.1 Scarce Information

In this section, we formalize how we take information to be scarce holding all other

variables fixed. The general idea is that the primitive probability distribution P de-

composes into a two-stage process: first, a probability distribution chooses a state in

which every voter obtains an informative signal; and second, for each voter i, her signal

is deleted with some probability λ > 0, independently of other voters, which results in

her obtaining the uninformative signal s0.

Formally, let ΩI := {ω ∈ Ω : for every voter i, Si(ω) ∈ M} denote the states in

which every voter obtains an informative signal, and PI(.) := P (.|ΩI) be the corre-

sponding conditional probability distribution. Given a signal profile s ∈ Sn, we say

that signal profile s′ ∈ Mn is a clarification if, for every voter i, si ̸= s0 implies

s′i = si. In other words, s′ might have been the “true” signal profile had information

not been deleted. We denote the set of all clarifications of profile s by C(s). Finally,

let λ := 1 − P (Si = s0) denote the probability that any voter receives an informative

signal under our primitive distribution P .

Lemma 1 in the Appendix shows that, under our assumptions, the two-stage process

envisioned above is a valid interpretation for the primitive probability distribution P :

For every (v, s) ∈ Ω, P (v, s) = λM(s)(1− λ)n−M(s)
∑
s̃∈C(s)

PI (v, s̃) .

Probabilities are therefore separable in the probability of who is informed, which de-

pends on λ, and a probability distribution on ΩI (states where every player is informed),

which is independent of λ. This separability implies that the collective choice prob-
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lem C := (N ,Ω, P ) decomposes uniquely into an informed collective choice problem

CI := (N ,ΩI , PI), in which every voter is informed, and a dilution λ that describes the

probability that a voter obtains an informative signal.8 By representing the collective

choice problem as the tuple (CI , λ), we can then vary λ while holding CI fixed. This is

how we take information to be scarce independently of other parameters.

The following defines what it means for a policy to win with scarce information.

Definition 1. Policy p wins in an equilibrium with scarce information if, for

every ε in (0, 1), there exists λε in (0, 1) such that, for all λ in (0, λε), policy p wins

with probability at least 1− ε in an equilibrium of the collective choice problem (CI , λ).

It immediately follows that the ex ante optimal policy wins with scarce public

information.

Proposition 2. In the public information benchmark, policy p∗ wins in the unique

equilibrium with scarce information.

The logic is that when information is scarce and public, all voters are likely unin-

formed and this fact is commonly known. Hence, each voter casts her vote for policy

p∗ thereby securing its victory. Collective choice therefore is robust to scarce public

information. By contrast, when signals are private, it is still probable that all vot-

ers are uninformed but this is not commonly known. We turn to the condition that

determines whether collective choice is robust to scarce private information.

3.2 Adverse Correlation

Is good news for others also good news for me? This question is at the core of our

analysis. The answer depends on how a voter’s payoff is correlated with others’ signals.

Consider a voter, Ann, who receives the uninformative signal. Based only on her

own information, the ex ante optimal remains optimal. Now suppose that she condi-

tions on κ voters obtaining good news and no voter obtaining bad news. Her conditional

expected payoff is then

V G(κ) := V d
i (G = κ,B = 0, Si = s0),

8Our terminology here borrows from Pomatto, Strack, and Tamuz (2023).
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i.e., the expected payoff difference between the optimal and inferior policies condition-

ing on Ann receiving the uninformative signal, κ others receiving good news, and no

one receiving bad news.9

We elaborate on the interpretation of this term. First, this posterior expected payoff

considers an event in which no voter obtains bad news; our analysis in Section 3.3

confirms that such events play an important role in equilibrium behavior. Second, in

principle, it’s unclear if Ann favors policy p∗ more or less once she conditions on κ

other voters obtaining good news. On one hand, the likelihood of drawing κ good

signals from κ random draws is higher if policy p∗ is likely to benefit many voters. On

the other hand, for any given number of beneficiaries, Anne’s chances of benefiting

from p∗ herself is lower once κ “slots” are already taken by others. These effects

push in opposing directions, one bearing on aggregate considerations and the other on

distributional considerations.

The sign of V G(κ) determines which effect is dominant at a specific value of κ;

we note how this sign can also vary with κ. For example, if no voter obtains good

news (κ = 0), the posterior expected payoff difference coincides with the prior ex-

pected payoff difference, which is strictly positive. Once some voters obtain good

news, the sign depends on the relative importance of the aggregate and distributional

considerations. Our introductory example features only distributional uncertainty and

V G(κ) < 0 for every κ > 0; knowing that anyone else obtained good news is bad news

for Ann. By contrast, when voter preferences are perfectly aligned—as in a common-

value problem—then there is only aggregate uncertainty in that all voters gain or all

lose from policy p∗. In that case, V G(κ) > 0 for every κ > 0.

Our correlation condition assesses if V G is negative for a relevant domain.

Definition 2. The collective choice problem is adversely correlated if there is some

κ in {1, . . . , τ} such that V G(κ) < 0. Otherwise, the collective choice problem is ad-

vantageously correlated.10

Recall that τ := (n− 1)/2 is the number of votes for policy p∗ that makes a voter

pivotal. The criterion above evaluates if there is any coalition of weakly smaller size

whose good news, on net, makes an uninformed voter favor the inferior policy p∗. This

criterion jointly evaluates the payoff and information structure; fixing a distribution

9Under our assumptions, V G does not depend on λ, as we show in Lemma 1 in the Appendix. As
such, it is a property only of CI , which we hold fixed as we consider the limit with scarce information.

10By Assumption 3(a), advantageous correlation equates to V G(κ) > 0 for every κ in {1, . . . , τ}.
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on payoffs, some information structures render the collective choice problem adversely

correlated whereas others make it advantageously correlated.

3.3 Main Result

We show that the fragility of collective choice hinges on its correlation.

Theorem 1. The inferior policy p∗ wins in an equilibrium with scarce information if

the collective choice problem is adversely correlated. Otherwise the optimal policy p∗

wins in every equilibrium with scarce information.

Recall that were each voter known to be uninformed, or if all information were

public and scarce, every equilibrium would select policy p∗. Theorem 1 shows, by

contrast, that the slightest prospect of private information could result in a different

equilibrium outcome. Voting behavior is fragile to private information whenever the

collective choice problem is adversely correlated: formally, the outcome correspondence

of weakly undominated equilibria violates upper hemicontinuity as λ→ 0. Conversely,

advantageous correlation assures robustness. Not only does the optimal policy p∗ win

with non-trivial odds, it does so with near certainty in any equilibrium, pure or mixed,

asymmetric or symmetric.

To see how adverse correlation results in policy p∗ winning in an equilibrium, we

start with the simplest case, namely V G(τ) < 0. Then, a strict equilibrium akin to

that of our introductory example implements the inferior policy: all uninformed voters

vote for policy p∗. An uninformed Ann infers, conditional on being pivotal, that τ

voters have voted for policy p∗. By construction, each of these voters must have heard

good news. As information is scarce, Ann believes all those who voted for p∗ are likely

uninformed, i.e., the number of voters who received bad news is likely 0. Her expected

payoff difference conditional on being pivotal then approximates V G(τ) < 0, which

implies that she strictly prefers to vote for policy p∗. As most voters are uninformed,

it wins with high probability.

Other cases require more elaborate constructions. Let V G(τ) > 0 and κ∗ be the

highest value of κ in {1, . . . , τ} such that V G(κ) < 0. We construct a (strict) pure-

strategy equilibrium that is asymmetric. In this equilibrium, we label some voters as

“suspicious” and all others are “sanguine.” A suspicious (resp., sanguine) voter casts

her vote for policy p∗ (resp., p∗) when she is uninformed. We specify that (τ − κ∗)
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voters are sanguine and all others are suspicious. Our argument establishing that this

is an equilibrium hews to the following logic:

• A suspicious uninformed voter, conditional on being pivotal, places high odds on

the event where (i) of the τ votes for policy p∗, (τ − κ∗) are cast by uninformed

sanguine voters and the remaining κ∗ votes are cast by suspicious voters who

obtained good news; (ii) all the (n − τ − 1) votes for policy p∗ are cast by

uninformed suspicious voters. Hence, her conditional expected payoff difference

is close to V G(κ∗) < 0. Thus, she strictly prefers to vote for policy p∗.

• A sanguine uninformed voter makes a different calculation that stem from her

being sanguine: conditional on being pivotal, she puts high odds that of the τ

votes for policy p∗, (τ − κ∗ − 1) are cast by uninformed sanguine voters and

(κ∗ + 1) votes are cast by suspicious voters who obtained good news. Hence, her

conditional expected payoff difference is close to V G(κ∗ + 1), which is strictly

positive as κ∗ is the highest value of κ such that V G(κ) < 0. Thus, she strictly

prefers to vote for policy p∗.

Having argued that the strategy profile is an equilibrium, we note that as λ → 0,

the election is likely decided by the uninformed voters. Given that sanguine voters are

in a minority, the inferior policy p∗ wins with near certainty.

Theorem 1 also asserts that under advantageous correlation, the optimal policy

prevails in every equilibrium with near certainty. Hence adverse correlation is also nec-

essary for electoral failures. This direction is considerably more challenging to prove

given the large number of candidate equilibria, including those that are asymmetric

and in mixed strategies. The key idea, we show, is that as private information becomes

increasingly scarce (λ → 0), the relevant posterior payoff of an uninformed voter ap-

proximates a weighted sum of the V G(κ) for different values of κ ∈ {0, .., τ} for any

weakly undominated strategy profile. The specific weights depend on the strategy pro-

file but, regardless of the weights, advantageous correlation implies that the sum is

strictly positive because V G(κ) > 0 for every κ. Hence, the decisions of others in any

equilibrium never generates enough bad news to sway uninformed voters to vote for

policy p∗ with non-trivial probability.

In light of our main result, the reader may wonder if adverse correlation nevertheless

accommodates a “good” equilibrium that selects the optimal policy? Yes.
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Theorem 2. Regardless of correlation, policy p∗ wins in at least some equilibrium with

scarce information.

The logic of Theorem 2 is that although the information structure is a primitive

of the collective choice problem, how an uninformed voter interprets others’ votes is

determined in equilibrium. Our construction in Theorem 1 sways an uninformed Ann

towards policy p∗ by having most votes in favor of policy p∗ to be cast by those who

have good news so that, under adverse correlation, policy p∗ is selected adversely to her

interests. By the same logic, a strategy profile in which most votes in favor of policy

p∗ are cast by those who have bad news could make policy p∗ selected adversely to

Ann’s interests, which would push Ann to vote for policy p∗. Our proof of Theorem 2

shows that the ex ante inferiority of policy p∗ makes it always feasible to construct

such an equilibrium. As uninformed voters overwhelmingly vote for policy p∗ in that

equilibrium, it wins when information is scarce.

Theorem 2 suggests that fragility is not a concern if voters can coordinate on equi-

libria that maximize ex ante welfare. We take the perspective that presuming voter

coordination is not modest, particularly in large electorates or in the absence of an ex

ante stage at which all voters are known to be symmetrically informed. Theorem 1

implies that, under adverse correlation, voter coordination is necessary to avoid an in-

ferior outcome that is rationalized by neither voters’ information nor their preferences;

the prospect of asymmetric information, however slight, can result in this perverse

outcome. By contrast, advantageous correlation obviates voter coordination as the

optimal policy is assured across all equilibria.

Our analysis applies beyond our baseline setting. We assume simple-majority rule

for simplicity but our analysis invokes it only for simplicity. Suppose that policy p∗

passes if it obtains at least τ+1 votes where τ is now any number in {1, . . . , n−1}. We

would continue to define adverse and advantageous correlation as per Definition 2, and

Theorem 1 still holds. Therefore, increasing the number of votes required for policy p∗

to pass only expands the scope for adverse correlation and electoral failures.

Section 5 describes elaborations that require further analysis. A similar characteri-

zation obtains for symmetric equilibria under a slightly different correlation condition;

that analysis also accommodates population uncertainty. We also relax the condition

that voters are ex ante symmetric, allowing for some voters to be “elites” who are

more likely to benefit from the optimal policy. We show that this ex ante conflict only

amplifies the forces described here. Before describing these extensions, we focus on a
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tractable class of the baseline model to identify various sources of adverse correlation.

4 Sources of Adverse Correlation

In this section, we study what features of a collective choice problem—its payoffs, the

probability distribution on the number of winners, and its information structure—

render it adversely correlated. For this comparison, we focus on a class of collec-

tive choice problem with binary payoffs : V d
i ∈ {vw,−vℓ} for some vw and vℓ strictly

positive.11 The event Wi := {ω : V d
i (ω) > 0} are all states where voter i gains

from policy p∗, and is referred to as a winner. The number of winners in state ω is

W (ω) := |{i ∈ N : ω ∈ Wi}|. As policy p∗ is ex ante optimal, we are assuming

throughout that P (Wi)vw − (1− P (Wi))vℓ > 0.

In this class of collective choice problems, we study how varying the payoffs, the

probability distribution on the number of winners, and the nature of the information

structure affects the collective choice problem.

4.1 Polarization Ratios and the Crowding-Out Effect

We first fix a simple information structure to focus on payoffs: suppose that informative

signals convey perfect news in that an informed voter learns if she is a winner or

loser, i.e., P (Wi|Si = sk) ∈ {0, 1} for each informative signal sk. The collective choice

problem can then be represented through the tuple (PW , v) where PW is the (marginal)

distribution on the number of winners, PW : {0, . . . , n} → [0, 1] and v := (vw, vℓ)

specifies the ex post payoff differences. We write V G(κ;PW , v) as the value of V G(κ)

for this collective choice problem. We order these collective choice problems by their

propensity for adverse correlation.

Definition 3. A collective choice problem (PW , v) is more adversely correlated

than the collective choice problem (P ′
W , v

′) if for every κ ∈ {1, . . . , τ},

V G(κ|P ′
W , v

′) < 0 =⇒ V G(κ|PW , v) < 0.

We denote this binary relation by ≽AC.
12

11For instance, Ω = {vw,−vℓ}n × {0}n × Sn for some vw > 0 and vℓ > 0, and p∗ = a.
12We note that ≽AC is a preorder in that it is reflexive and transitive but not complete.
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We identify two sources of adverse correlation. The first views payoffs through

their polarization ratio: given binary payoffs (vw, vℓ), the polarization ratio vℓ/vw

measures the proportional costs incurred by losers relative to the gains that accrue

to winners. The second views the crowding-out effect through likelihood ratios: the

probability distribution P ′
W likelihood-ratio dominates PW , denoted P ′

W ≽LR PW , if

P ′
W (w′)PW (w) ≥ P ′

W (w)PW (w′) whenever w′ > w.

Proposition 3. The following comparative statics results hold:

(a) A higher polarization ratio induces more adverse correlation: (PW , v) ≽AC (PW , v
′)

if vℓ/vw ≥ v′ℓ/v
′
w.

(b) Likelihood-ratio dominance induces less adverse correlation: (P ′
W , v) ≽AC (PW , v)

if PW ≽LR P
′
W .

A higher polarization ratio increases adverse correlation because, relative to the

inferior policy p∗, a higher polarization ratio worsens the gamble from the optimal

policy p∗ both ex ante and ex interim. By contrast, a likelihood-ratio dominant increase

in the marginal distribution over the number of winners has the opposite effect because

it reduces crowding-out from learning that others received good news. In combination

with Theorem 1, Proposition 3 implies that increasing the polarization ratio or reducing

the likelihood ratio makes collective choice more fragile to asymmetric information.

4.2 Aggregate and Distributional Information

Electoral choices are also shaped by the kind of information voters obtain. Contrast

the following messages by Republican Presidents about the economic consequences of

trade liberalization:

“Free trade serves the cause of economic progress. . . ” – Reagan, 1982

“Members of the club—the consultants, the pollsters, the politicians, the

pundits, and the special interests—grow rich and powerful while the Amer-

ican people grow poorer and more isolated. . . ” – Trump, 2016

The former emphasizes aggregate consequences without referring to who benefits

and loses whereas the latter focuses on those distributional consequences without speak-

ing about aggregate gains. Politicians and media outlets can choose between focusing

their messaging on aggregate or distributional consequences. Here, we identify how

this choice affects voting behavior.
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To this end, we depart from the perfect news considered in Section 4.1. Instead,

we say that signals convey only aggregate news if P (V = v|S = s,W = w) = P (V =

v|W = w) for any payoff profile v, signal profile s, and number of winners w such that

P (W = w) > 0. That is, conditioning on the number of winners, voters learn nothing

further about the payoffs from their signals.

Proposition 4. Suppose signals convey only aggregate news. Then the collective choice

problem is advantageously correlated for all (PW , v).

We contrast this case with one where signals convey only distributional news :

P (W = w|S = s) = P (W = w) for any signal profile s and number of winners w,

i.e., signals are uninformative about the number of winners.

Proposition 5. Suppose signals convey only distributional news. Then holding the

signal structure fixed, there is a polarization ratio ρ such that the collective choice

problem is adversely correlated whenever vℓ/vw ≥ ρ.13

The contrast between Propositions 4 and 5 reveals how the information structure

may preclude or induce adverse correlation by focusing on aggregate or distributional

news. This finding dovetails with Martin and Yurukoglu (2017) and Perego and Yuksel

(2022) who show that media providers may profit from delivering information that

polarizes voters. In conjunction with their analysis, Proposition 5 suggests that this

profit-seeking behavior may have detrimental effects on elections.14

5 Extensions

5.1 A Characterization for Symmetric Equilibria

The analysis of Theorem 1 considers all equilibria, including those that are asymmet-

ric.15 Restricting to symmetric equilibria, a stronger form of adverse correlation is

necessary for the inferior policy to win with scarce information, while a weaker form of

advantageous correlation is sufficient to guarantee that the optimal policy wins across

all symmetric equilibria.

13In the proof, we show that this critical ρ is low enough that policy p∗ remains optimal.
14Focusing on a different force, Yuksel (2022) shows that segregation in news consumption has a

further polarizing effect on the electoral platforms chosen by parties.
15We note that the equilibria described in Proposition 1-2 and Theorem 2 are symmetric.
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In a symmetric (weakly undominated) equilibrium, informed voters choose their

preferred policy and all uniformed voters choose p∗ with the same probability α ∈ [0, 1].

When α ∈ (0, 1), a voter can be pivotal when κ others receive good news for any

κ ∈ {0, ..., τ}, because it is always possible for exactly τ−κ uninformed voters to choose

p∗ along with the κ voters who received good news. However, these events are not

equally likely, depending both on the primitive probability of events and the behavior of

uninformed voters. The relevant correlation measure for symmetric equilibria therefore

involves a weighted sum of the conditional payoffs V G(·) evaluated at different values

of κ ∈ {0, ..., τ}:

K(θ) =
τ∑
κ=0

θκ
(
τ

κ

)
P (G = κ|B = 0)V G(κ).

This sum again focuses on the perspective of an uninformed voter, whose expected

payoff difference conditional on κ others receiving good news and no one receiving bad

news is V G(κ). In each summand, P (G = κ|B = 0) is the primitive probability that

κ voters receive good news, conditional on no one receiving bad news. The binomial

coefficient is an adjustment factor to account for the number of ways that the unin-

formed voter can be pivotal when no one receives bad news.16 As we elaborate below,

the variable θ encodes the relative likelihood that, in a symmetric mixed strategy pro-

file, a vote for policy p∗ is cast by an informed rather than an uninformed voter, when

κ voters received good news and no one received bad news. In particular, θκ offers

additional flexibility in weighting the summands: taking θ → 0 concentrates weight

on the term that involves V G(0) whereas θ → ∞ focuses the sum on the term that

involves V G(τ).

The relevant correlation measure here is the infimum, K∗ := infθ∈R++ K(θ).

Definition 4. The collective choice problem is strongly adversely correlated if

K∗ < 0 and weakly advantageously correlated if K∗ > 0.

On one hand, V G(κ) > 0 for all κ ∈ {0, ..., τ} is sufficient but not necessary for

K∗ > 0, and so advantageous correlation implies weak advantageous correlation but

not vice versa. On the other hand, V G(κ) < 0 for some κ ∈ {0, ..., τ} is necessary but

16Note that
(
τ
κ

)
=
(
n
τ

)−1(n
κ

)(
n−κ
τ−κ

)
, where

(
n
κ

)
is the number of ways of selecting the κ voters that

receive good news,
(
n−κ
τ−κ

)
is the number of ways of selecting τ − κ uninformed voters to vote for the

optimal policy along with voters who received good news, and their product is normalized by the total
number of ways of selecting τ votes for the optimal policy

(
n
τ

)
.

17



not sufficient for K∗ < 0, and so strong adverse correlation implies adverse correlation

but not vice versa. However, V G(τ) < 0 does imply K∗ < 0 because, as θ → ∞, the

τ -th summand in K(θ) is dominant.

Every collective choice problem is either strongly adversely or weakly advanta-

geously correlated except in the knife-edge case where K∗ = 0, which is possible only

on a measure-0 set of parameters. Parallel to Theorem 1, the following theorem there-

fore essentially characterizes when a collective choice problem is fragile to asymmetric

information with a restriction to symmetric equilibria.

Theorem 3. If the collective choice problem is strongly adversely correlated, the ex

ante inferior policy p∗ wins in a symmetric equilibrium with scarce information. By

contrast, if the collective choice problem is weakly advantageously correlated, then the

ex ante optimal policy p∗ wins in every symmetric equilibrium with scarce information.

Hence, fragility also emerges with symmetric equilibria. However, establishing this

fragility requires a different argument. Suppose that the collective choice problem is

strongly adversely correlated; moreover, assume that V G(τ) > 0.17 We show that

a sequence of symmetric mixed strategy equilibria selects policy p∗ with probability

approaching 1 as λ → 0. The idea is that K∗ < 0 implies the existence of θ̃ such that

K(θ̃) = 0. For each λ ∈ (0, 1), we then choose α such that θ̃ = λ
(1−λ)α ; in other words,

θ̃ is the relative likelihood that a vote for p∗ is cast by an informed voter. Choosing α

at this rate guarantees that an uninformed voter is indifferent between policies p∗ and

p∗ conditional on being pivotal, which rationalizes her mixing. Moreover, as λ → 0,

the probability that an uninformed voter votes for p∗ converges to 0. As most voters

are uninformed, policy p∗ then wins with near certainty.

The converse also requires a different argument because weak advantageous correla-

tion does not imply advantageous correlation. However, weak advantageous correlation

is sufficient to ensure that, regardless of how one pools votes for p∗ from uninformed

voters and those who hear good news, uninformed voters are never swayed to vote for

policy p∗ with substantial probability in any symmetric equilibrium.

5.2 Population Uncertainty

The characterization for symmetric equilibria can also accommodate population un-

certainty. Suppose that, as in Myerson (1998), the population size is random. For

17If V G(τ) < 0, the equilibrium constructed in the proof of Theorem 1 is already symmetric.
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simplicity, we assume that the population size is always odd and a policy p ∈ {a, b}
is then chosen by simple majority rule: for a realized population of n voters, policy p

wins if it receives at least τ(n) + 1 votes, where τ(n) := n−1
2
. We make the following

assumption about the random population size.

Assumption 4. The population size N is drawn from a probability measure Q with a

finite expectation and support Q, which is a subset of the odd positive integers strictly

greater than one.

Let Ωn = Vn × Sn be the state space for a realized population size n. Uncertainty

is described by the random population size (Q, Q) and a stochastic process {(Ωn, Pn) :

n ∈ Q}, where Pn is a probability distribution over payoff and signals profiles, ω ∈ Ωn,

for the voters in an election for population size n. We adapt our main assumptions

in Section 2 to apply conditional on each population size n (see online appendix for a

formal description). In addition, we assume that the ex-ante optimal policy p∗ is also

optimal conditioning on only the population size for every population size.

We generalize the correlation measure considered in Section 5.1, considering infer-

ences that a voter draws were she to think that the population size is n0, which is

the smallest population size in Q. Adapting our previous notation, let V G(κ, n0) :=

V d
i (Si = s0, G = κ,B = 0, N = n0) denote the expected payoff difference for a voter

who receives the uninformative signal, conditioning on κ voters obtaining good news,

no voter obtaining bad news, and there being n0 voters (where n0 ≥ κ). This term

feeds into the relevant correlation measure:

K∗(n0) := inf
θ∈R++

τ(n0)∑
κ=0

θκ
(
τ(n0)

κ

)
P (G = κ|B = 0)V G(κ, n0).

Theorem 4. If K∗(n0) < 0, then policy p∗ wins in a symmetric equilibrium with

scarce information. By contrast, if K∗(n0) > 0, then policy p∗ wins in every symmetric

equilibrium with scarce information.

The key idea is that an uninformed voter believes she is most likely to be pivotal in

a small election, and increasingly so as information becomes scarce. Hence, her beliefs

about adverse correlation at population size n0 drive behavior.
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5.3 The Role of Elites

Our baseline model isolates the role of asymmetric information by assuming away all

other differences between voters. Here, we allow for voters to be ex ante heterogeneous

and show that such differences only exacerbate the scope for electoral failures.

Formally, we continue to assume that all voters agree on the ex ante optimal policy

p∗ to give us unambiguous no-information and public information benchmarks, but

weaken Assumption 1.18 Specifically, we decompose voters into “elites” and “non-

elites.” Voters are exchangeable within each group, but not necessarily across these

groups. The collective choice problem therefore consists of the set of elite voters E , non-
elite votersNE , and a probability space (Ω, P ) = (Vn×Sn, P ) such that Assumptions 2

and 3 are satisfied, and for any permutations, ψE : E → E and ψN : NE → NE , and
state ω,P (ωE , ωNE) = P (ωψE(E), ωψN (NE)).

Given a non-empty set of voters H, let GH denote the random variable describing

the number of voters in H who received good news.

Definition 5. The collective choice problem is elite-adversely correlated if there

exists a binary partition of the electorate, {E ,NE} such that the following hold:

(a) Elites are a minority: |E| < τ .

(b) Elites do not fear the support of others:

V d
i (Si = s0, B = 0, G = GNE = τ − |E|+ 1) > 0 for every i ∈ E .

(c) Non-elites fear the support of others:

V d
i (Si = s0, B = 0, G = GNE = τ − |E|) < 0 for every i ∈ NE .

Definition 5(a) asserts that the elites are a minority of the electorate. Part (b) states

that these voters continue to support the optimal policy even after conditioning on the

support of others. In other words, they are not concerned about adverse selection. Part

(c), by contrast, states that non-elites are concerned by adverse selection: knowing that

all elites vote for the optimal policy, each views her odds of gaining from p∗ to be low

when sufficiently many non-elite voters obtain good news. Parts (b) and (c) together

imply that elites are more likely to benefit from policy p∗.

18By agreeing on the ex ante optimal policy, we mean that for every pair of voters, i and j,
E[V a

i − V b
i ]E[V

a
j − V b

j ] > 0.
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A special case of Definition 5 is where each elite voter has a higher “rank” than

every non-elite voter in that an elite voter is guaranteed to gain from the optimal

policy p∗ whenever a non-elite voter does. An elite voter then is elated to learn that

any non-elite voter has good news for it assures that she too gains from p∗. By contrast,

non-elites are crowded out from being winners both by elites and other non-elites. In

this vein, Definition 5 views the optimal policy as a gamble that is simply more likely

to benefit elites before its rewards trickle down to non-elite voters.

As voters agree that p∗ is ex-ante optimal, it remains the winner with scarce public

information. But collective choice may still be fragile to private information.

Proposition 6. Suppose payoffs are elite-adversely correlated. Then, the inferior pol-

icy p∗ wins in a strict equilibrium with scarce information.

The idea is that elite voters, unconcerned by adverse selection, vote for p∗ even

when they are uninformed. As elites are a minority, p∗ can only be in the race if it has

sufficient support from non-elites. An uninformed non-elite voter then worries about

being crowded out and hence has a strict incentive to vote for p∗.

Moreover, the presence of elite voters can exacerbate adverse selection for non-elites.

To see how, we specialize to the binary payoff setup described in Section 4.1, in which

informed voters obtain perfect news, and assume that Wi ⊆ Wj for all i ∈ NE and

j ∈ E . The collective choice problem is then fully described by the probability that

a voter receives an informative signal λ, the ex-ante distribution over the number of

winners PW , the payoffs v = (vW , vL), and the number of elite voters |E| := e. Let

Ẽ(e) = {ω ∈ Ω : Si = s0, B = 0, G = GNE = τ − e}.

Proposition 7. For a non-elite voter i, the conditional expected payoff V d
i (Ẽ(e)|PW , v, e)

is strictly decreasing in the number of elites e.

Hence, increasing the size of the elite group expands the range of polarization ratios

for which the collective choice problem is majority-adversely correlated, leading to a

greater scope for political failures.

6 Conclusion

We find that asymmetric information leads to adverse selection in distributive politics.

Voters may choose policies that do not match their collective preferences and informa-
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tion, and equilibria itself may be fragile to asymmetric information. Broadly, a form

of zero-sum thinking may prevail even if the policy choice is not zero sum.

We obtain this electoral failure in a strict equilibrium. There may be other equilibria

in which voters fare better. As to how voters behave in practice is an empirical question.

Motivated by this question, Ali, Mihm, Siga, and Tergiman (2021) study the extent

to which people account for adverse and advantageous selection. People appear to be

significantly better at accounting for adverse selection: across a range of experimental

treatments, subjects distrust better-informed partners who have conflicting interests

but fail to trust those with aligned interests. This finding dovetails with the evidence

that zero-sum thinking is pervasive, noted in social psychology (Meegan, 2010; Różycka-

Tran, Boski, and Wojciszke, 2015; Davidai and Ongis, 2019) and economics (Chinoy,

Nunn, Sequeira, and Stantcheva, 2022). That people see the world as zero-sum and

account for adverse selection lends support to the strategic underpinnings of our results.

The strategic calculus of adverse selection operates through voters considering what

it means for a policy to be viable, i.e., command enough support that it might actually

pass. This thought process involves, much like the lemon’s problem, identifying who

the supporters of a policy are, why they might favor that policy, and whether their

support for it is bad news. We find this line of thinking to resonate with political

rhetoric. For instance, populist movements often suggest that those who oppose them

are elites who do not share the interests of the common voter. Although we model

this logic as applying at an individual level, one could also do so at a group-level, in

the spirit of ethical voter models (Coate and Conlin, 2004; Feddersen and Sandroni,

2006).19 We also see this logic as potentially manifesting in other political contexts,

such as legislative action and lobbying, where the interested parties do not all expect

to gain but have to act jointly to select a policy. Each player may then worry about

being crowded out from gains when she conditions on others supporting a policy.

Our study shows that voting behavior in distributive politics may be highly sensi-

tive to private information. An equivalent way to frame our results is through the lens

of public and private information. Suppose that all voters obtain noisy public infor-

mation that indicates that policy p∗ is superior. If it were commonly known that no

voter obtains any additional private information, the electorate would use this public

19Ethical voter models typically address costly voting; we consider the same calculus here but with
costless voting. Say each voter of our model is a stand-in for workers in a different sector, and members
of each group vote in the group’s interest. Identical results then ensue if the collective choice problem
is adversely correlated across these sectors.
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information to select policy p∗ in every weakly undominated equilibrium. However, if

some voters obtain additional private information with even the slightest chance, under

adverse correlation, there is an equilibrium in which the electorate fails to use public

information to select the better policy. Thus, a better informed electorate might make

worse choices when some of that better information is delivered privately to voters.

While our analysis tackles several important questions, it leaves others unanswered.

We abstract from costly turnout decisions and it may be useful to see how endogenous

participation affects collective choice. Equally, it would be interesting to see how parties

strategically choose policies to exploit polarization.20 One may also envision the design

of information structures to capitalize on zero-sum thinking. We hope to address these

questions in future work.
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A Appendix

The appendix has the following structure:

1. Appendix A.1 includes preliminary results and notation, proves Proposition 1,

and describes the decomposition detailed in Section 3.1.

2. Appendix A.2 contains all proofs for Section 3.

3. Appendix A.3 contains all proofs for Section 4.

The Online Appendix contains all proofs for our extensions described in Section 5.
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A.1 Preliminaries

We first provide a formal description of the voting game and establish equilibrium

existence, and then describe how we analyze equilibria with scarce information.

Throughout, G = {sk ∈ M : V d
i (Si = sk) > 0} is the set of signals that convey good

news, and B = M\ G the set of signals that convey bad news. For g ∈ {0, ..., n − 1}
and m ∈ {g, ..., n− 1},

Z(g,m) = P (G = g|M = m)V d
i (G = g,M = m,Si = s0)

is the expected payoff difference for an uninformed voter who learns thatm other voters

received news g of whom received good news, weighted by the probability that g voters

receive good news when m receive news. Finally s0 is the signal profile where all voters

receive the uninformative signal.

A.1.1 Strategies and Equilibrium

Private information: A strategy-profile is a mapping σ : N × S → [0, 1], where

σ(i, si) := σi(si) represents the probability that voter i ∈ N votes for p∗ when she

receives the signal si ∈ S. Let Σ be the set of all strategy-profiles, and let

Σ∗
i = {σ ∈ Σ : ∀ i ∈ N , σi(s

k) = 1 ∀sk ∈ G and σi(s
k) = 0 ∀sk ∈ B}.

The set Σ∗ differs from Σ only by excluding strategy-profiles where informed voters vote

against their own signals, which are weakly dominated strategy-profiles by Assump-

tion 2.21 For a strategy-profile σ ∈ Σ∗, we simplify notation by letting σi := σi(s
0).

An action-profile is a mapping a : N → {0, 1}, where a(i) = 1 represents a vote for

p∗ and a(i) = 0 represents a vote for p∗. Let A be the set of all action-profiles. For

a ∈ A, a−1(1) = {i ∈ N : a(i) = 1} is the set of voters who vote for p∗. For any voter

i ∈ N and a ∈ A, let a−1
−i (1) = a−1(1)− {i}.

Given a collective choice problem C = (N ,Ω, P ), we denote by Pσ the probability

distribution on A×Ω induced by strategy-profile σ ∈ Σ and the primitive distribution

21A strategy-profile σ ∈ Σ is weakly undominated if, for each voter i ∈ N , there does not exists an
alternative strategy σ′

i such that voter i’s expected payoff from (σ′
i, σ

′
−i) is greater than equal to her

expected payoff from (σi, σ
′
−i) for all σ

′
−i ∈ Σ−i and strictly greater for some σ′

−i ∈ Σ−i.
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P on Ω, defined by

Pσ(a, ω) := P (ω)
∏

i∈a−1(1)

σi
(
Si(ω)

) ∏
j∈a−1(0)

(
1− σj

(
Sj(ω)

))
.

For a voter i, we then denote by Πi(C, σ) the difference between the expected payoff

when voter i votes for p∗ and the expected payoff when she votes for p∗ conditional on

her receiving the uninformative signal s0, which equates to

Πi(C, σ) :=
∑

{ω∈Ω:P (ω)>0}

V d
i (ω)Pσ

(∣∣a−1
−i (1)

∣∣ = τ
∣∣∣ω)P (ω|Si = s0)

since voter i impacts the election outcome only for action-profiles with |a−1
−i (1)| = τ .

Let Ni(g,m) be the collection of all (N0, N1) such that N0, N1 ⊆ N − {i} with

N0 ∩N1 = ∅, |N0| = τ − (m− g), and |N1| = τ − g. Then, when σ ∈ Σ∗,

Πi(C, σ) =
τ∑
g=0

τ+g∑
m=g

pi(σ|g,m)Z(g,m)

where22

pi(σ|g,m) := Pσ

(
|a−1

−i (1)| = τ
∣∣∣G = g,M = m,Si = s0

)
=

(
n− 1

m

)−1 ∑
(N0,N1)∈Ni(g,m)

∏
j∈N1

σj(s
0)
∏
k∈N0

(1− σk(s
0)). (1)

We observe that a strategy-profile σ ∈ Σ is an equilibrium (in weakly undominated

strategies) if and only if σ ∈ Σ∗ and, for all i ∈ N , Πi(C, σ) > 0 implies σi(s
0) = 1 and

Πi(C, σ) < 0 implies σi(s
0) = 0.

Public information: In the public information benchmark, a strategy-profile is a

mapping ϕ : N ×Sn → [0, 1] where ϕ(i, s) := ϕi(s) is the probability that voter i votes

for p∗ when she observes the signal-profile s ∈ Sn.

22We follow the standard convention that the product over terms in the empty set is 1.
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A.1.2 Proof of Proposition 1

In the private information baseline, let σα ∈ Σ∗ denote the symmetric strategy-profile

where σαi = α ∈ [0, 1] for all i ∈ N . Then, for g ∈ {0, ..., τ} and m ∈ {g, ..., g + τ},

pi(σ
α|g,m) =


1[g = τ ] if α = 0

1[m− g = τ ] if α = 1(
n−1−m
τ−g

)
ατ−g(1− α)τ−(m−g) if α ∈ (0, 1)

,

Hence, pi(σ
α|g,m) is continuous in α, and so Πi(C, σα) is continuous in α. If Πi(C, σ1) ≥

0, then σ1 is an equilibrium; if Πi(C, σ0) ≤ 0, then σ0 is an equilibrium; otherwise, there

exists α∗ ∈ (0, 1) such that Πi(C, σα
∗
) = 0 and so σα

∗
is an equilibrium.

In the public information benchmark, the only weakly undominated strategy-profile

is ϕ∗, where ϕ∗
i (s) = 1[V d

i (s) > 0] for all i ∈ N , which is the unique equilibrium. ■

A.1.3 Scarce information

For our equilibrium analysis with scarce information, the following Lemma shows how

a collective choice problem C can be decomposed into an informed collective choice

problem CI and the probability λ that any one voter is informed.

Lemma 1. Let C = (N ,Ω, P ) satisfy Assumptions 1 and 2. Then, for any state

ω = (v, s) ∈ Ω,

P (ω) = λM(s)(1− λ)n−M(s)
∑

s′∈C(s)

PI(v, s
′).

Moreover, if σ ∈ Σ∗, then in each term of Πi(C, σ), P (M = m|Si = s0) depends only

on λ, pi(σ|g,m) depends only on σ, and Z(g,m) depend only on CI.

Proof. Let ω = (v, s) ∈ Ω with I = {i ∈ N : Si(ω) ∈ I} and m = |I|. Then, by

Assumptions 1 and 2,

P (v, s) = P (v, sI)(1− λ)n−m =
P (v, sI , SN−I ∈ Mn−m)

λn−m
(1− λ)n−m

=
P (v, sI |S ∈ Mn)λn

λn−m
(1− λ)n−m = λm(1− λ)n−m

∑
s′∈C(s)

PI(v, s
′).
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Moreover, by Assumptions 1 and 2,

P (M = m|Si = s0) =

(
n− 1

m

)
λm(1− λ)n−1−m,

which depends only on λ. From Equation (1) it is immediate that pi(σ|g,m) depends

only on σ when g ≤ τ and m ≤ τ + g, and pi(σ|g,m) = 0 otherwise. Finally, we show

that Z(g,m) depends only on CI . For g ∈ {0, ..., n − 1} and m ∈ {g, ..., n − 1}, let
Ω(g,m) = {(v, s) ∈ Ω : G(s) = g,M(s) = m} and Ωi(g,m) = {ω ∈ Ω(g,m) : Si = s0}.
Then,

P (G = g|M = m,Si = s0) =

∑
(v,s)∈Ω(g,m) λ

m(1− λ)n−m
∑

s′∈C(s) PI(v, s
′)(

n−1
m

)
λm(1− λ)n−m

which depends only on CI , and so

V d
i (G = g,M = m,Si = s0) =

∑
(v,s)∈Ωi(g,m)

P (v, s|G = g,M = m)vdi

=
∑

(v,s)∈Ωi(g,m)

P (v, s)

P (G = g,M = m,Si = s0)
vdi

=
∑

(v,s)∈Ωi(g,m)

λm(1− λ)n−m
∑

s′∈C(s) PI(v, s
′)

P (G = g|M = m,Si = s0)
(
n−1
m

)
λm(1− λ)n−m

vdi ,

depends only on CI . ■

A.2 Proofs for Section 3

In Section 3, we fix CI := (N ,ΩI , PI), and look at the equilibrium outcomes of the

collective choice problems {(CI , λ) : λ ∈ (0, 1)} as λ gets small. By Lemma 1, the

correlation structure is a property of CI : if any collective choice problem in {(CI , λ) :
λ ∈ (0, 1)} is adversely/advantageously correlated, then all collective choice problems

in the class have the same correlation.

Since CI is fixed, we write the expected payoff difference Πi(C, σ) simply as a func-

tion of λ and σ. For κ ∈ {0, ..., τ}, assumption 3 implies that P (G = κ|M = κ, Si =

s0) > 0 and V G(κ) ̸= 0; hence, Z(κ, κ) ̸= 0 and Z(κ, κ) > 0 ⇐⇒ V G(κ) > 0.
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A.2.1 Proof of Proposition 2

Fix ε ∈ (0, 1) and let λε = 1− (1− ε)
1
n . Now consider the equilibrium strategy profile

ϕ∗ from the proof of Proposition 1. Since V d
i (s0) > 0, σ∗

i (s0) = 1 for all i ∈ N , and so

p∗ wins in this event. Hence, for all λ ∈ (0, λε), the probability that p∗ wins is greater

than P (S = s0) = (1− λ)n > (1− λε)
n = (1− ε). ■

A.2.2 Proof of Theorem 1

Suppose the informed collective choice problem is adversely correlated: V G(κ) < 0 for

some κ ∈ {1, ..., τ}. For any t ∈ {0, ..., n}, let σt be the strategy-profile in Σ∗ where

σti = 1[i ≤ t] for all i ∈ N (i.e., the first t voters vote for p∗ when uninformed and

the remaining voters vote for p∗ when uninformed). Let Nt = {1, ..., t} and N c
t =

{t+ 1, ..., n}.
Now fix ε ∈ (0, 1) and let λε = 1− (1− ε)

1
n . If t ≤ τ , p∗ wins in the event {S = s0}

and so, for all λ ∈ (0, λε), the probability that p∗ wins is greater than (1− ε). We can

therefore complete the proof by showing that there exists λ̄ such that, for all λ < λ̄,

σt is an equilibrium for some t ≤ τ . We do this by considering the two cases where

V G(τ) < 0 and V G(τ) > 0.

Case 1: When V G(τ) < 0, σ0 is an equilibrium for λ sufficiently small.

For any voter i ∈ N , pi(σ
0|g,m) = 1[g = τ ] because only voters with good signals

vote for p∗. Hence,

Πi(λ, σ
0) =

τ+g∑
m=τ

(
n− 1

m

)
λm(1− λ)n−1−mZ(g,m).

Since λτ (1− λ)τ > 0, it follows that Πi(λ, σ
0) < 0 if and only if

τ+g∑
m=τ

(
n− 1

m

)(
λ

1− λ

)m−τ

Z(g,m) < 0,

where the lhs converges to
(
n−1
τ

)
Z(τ, τ) < 0 as λ→ 0.

Case 2: When V G(τ) > 0, there exists κ ∈ {1, ..., τ − 1} such that V G(κ) < 0 and

V G(κ′) > 0 for κ′ ∈ {κ+ 1, ..., τ}, and στ−κ is an equilibrium for λ sufficiently small.

For any voter i ∈ Nτ−κ, pi(σ
τ−κ|g,m) = 0 if g < τ − (τ − κ − 1) = κ + 1 because
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there only τ − κ− 1 other voters who vote for p∗ when uninformed. Hence,

Πi(λ, σ
τ−κ) =

τ∑
g=κ+1

τ+g∑
m=g

(
n− 1

m

)
λm(1− λ)n−1−mpi(σ

τ−κ|g,m)Z(g,m)

Since λκ+1(1− λ)n−1−(κ+1) > 0, it follows that Πi(λ, σ
τ−κ) > 0 if and only if

τ∑
g=κ+1

τ+g∑
m=g

(
n− 1

m

)(
λ

1− λ

)m−(κ+1)

pi(σ
τ−κ|g,m)Z(g,m) > 0,

where the lhs converges to
(
n−1
κ+1

)
pi(σ

τ−κ|κ + 1, κ + 1)Z(κ + 1, κ + 1) as λ → 0. Since

i is pivotal in the non-null event where all κ + 1 of the voters in N c
τ−κ receive good

news, pi(σ
τ−κ|κ+1, κ+1) > 0, and Z(κ+1, κ+1) > 0 because V G(κ+1) > 0. Hence,

Πi(λ, σ
τ−κ) > 0 for λ sufficiently small.

For any voter i ∈ N c
τ−κ, pi(σ

τ−κ|g,m) = 0 if g < τ − (τ − κ) = κ because there

τ − κ other voters who vote for p∗ when uninformed. Hence,

Πi(λ, σ
τ−κ) =

τ∑
g=κ

τ+g∑
m=g

(
n− 1

m

)
λm(1− λ)n−1−mpi(σ

τ−κ|g,m)Z(g,m)

Since λκ(1− λ)n−1−(κ) > 0, it follows that Πi(λ, σ
τ−κ) < 0 if and only if

τ∑
g=κ

τ+g∑
m=g

(
n− 1

m

)(
λ

1− λ

)m−κ

pi(σ
τ−κ|g,m)Z(g,m) < 0,

where the lhs converges to pi(σ
τ−κ|κ, κ)Z(κ, κ) as λ→ 0. Since i is pivotal in the non-

null event where κ voters in N c
τ−κ receive good news, pi(σ

τ−κ|κ, κ) > 0, and Z(κ, κ) < 0

because V G(κ) < 0. Hence, Πi(λ, σ
τ−κ) < 0 for λ sufficiently small.

Together, the two cases show that, with adverse correlation, there exists some

λ̄ ∈ (0, 1) such that, for all λ ∈ (0, λ̄) there is an equilibrium in which a majority

of voters vote for p∗ when they are uninformed. Hence, p∗ wins when all voters are

uninformed and so, for λ ≤ min{λ̄, λε}, there is an equilibrium in which p∗ wins with

probability exceeding 1− ε.

For the converse, suppose the informed collective choice problem is advantageously

correlated: V G(κ) > 0 for all κ ∈ {1, ..., τ}. Fix some ε ∈ (0, 1), let σ ∈ Σ∗ and,

without loss of generality, let σi ≥ σi+1 for i = 1, ..., n − 1. We show that, for the
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strategy profile σ and λ sufficiently small, either p∗ wins with probability exceeding

1− ε or σ is not an equilibrium. Hence, for λ sufficiently small, if σ is an equilibrium,

then p∗ wins with probability exceeding 1− ε.

Let δ := (1 − ε)
1

2(τ+1) ∈ (0, 1) and λ′ε = 1 − (1 − ε)
1
2n . If στ+1 ≥ δ, then, in the

event {S = s0} where all voters are uninformed, voters i = 1, ..., τ + 1 vote for p∗ with

probability at least δ. Therefore, for all λ ∈ (0, λ′ε),

Pσ(|a−1(1)| ≥ τ + 1) ≥ δτ+1(1− λ)n > (1− ε)
τ+1

2(τ+1) (1− ε)
n
2n = 1− ε.

To complete the proof, it sufficies to show that, if στ+1 < δ, then there exists λε such

that, for all λ ∈ (0, λε), σ is not an equilibrium.

Therefore, suppose στ+1 < δ. We consider voter n, who when uninformed votes p∗

with probability less than 1, and show this is not a best-response. For g ∈ {0, ..., τ}
and m ∈ {g, ..., τ + g}, it follows from Equation (1) that

(
n− 1

m

)−1

(1− δ)τ−(m−g)
τ−g∏
j=1

σj ≤ pn(σ|g,m) ≤
(
n− 1−m

τ − g

) τ−g∏
j=1

σj,

and, therefore, for g ∈ {0, ..., τ},

τ+g∑
m=g

pn(σ|g,m)P (M = m|Sn = s0)Z(g,m) ≥

λg(1− λ)n−1−g
τ−g∏
j=1

σj

(
(1− δ)τZ(g, g)−

τ+g∑
m=g+1

(
λ

1− λ

)m−g

M(m, g)
∣∣Z(g,m)

∣∣)

where M(m, g) is shorthand for the multinomial coefficient

M(m, g) :=

(
n− 1

m, τ − g, τ − (m− g)

)
.

Since δ ∈ (0, 1) and Z(g, g) > 0, there exists λg ∈ (0, 1) such that

(1− δ)τZ(g, g)−
τ+g∑

m=g+1

(
λ

1− λ

)m−g

M(m, g)
∣∣Z(g,m)

∣∣ > 0

for all λ ∈ (0, λg). In particular, λg depends only on CI . Let λε = min{λg : g ∈
{0, ..., τ}}. Since

∏τ−g
j=1 σj > 0 when g = τ , it follows that Πn(λ, σ) > 0 for all λ ∈
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(0, λε). But then σ is not an equilibrium for λ ∈ (0, λε) because σn < 1. ■

A.2.3 Proof of Theorem 2

We first observe that, for σ ∈ Σ∗, Πi(λ, σ) can equivalently be written in terms of

number of other voters who receive bad news:

Πi(λ, σ) =
τ∑
b=0

τ+b∑
m=b

qi(σ|b,m)

(
n− 1

m

)
λm(1− λ)n−1−mZB(b,m)

where, for b ∈ {0, ..., τ} and m ∈ {b, ..., τ + b}, qi(σ|b,m) = pi(σ|m − b,m) and

ZB(b,m) = Z(m− b,m).

Now fix ε ∈ (0, 1) and let σα ∈ Σ∗ be the symmetric strategy-profile from the proof

of Proposition 1, where σi := α ∈ [0, 1] for all i ∈ N . We consider three cases.

Case 1: If ZB(τ, τ) > 0, then there exists λε such that, for all λ ∈ (0, λε), σ
1 is an

equilibrium in which p∗ wins with probability exceeding 1− ε.

Let λε = 1 − (1 − ε)
1
n . For the strategy-profile σ1, p∗ wins in the event {S = s0}

and so, for all λ ∈ (0, λε), the probability that p∗ wins is greater than (1− ε). We can

therefore complete the proof by showing that Πi(λ, σ
1) > 0 for λ sufficiently small.

From Equation (1), qi(σ
1|b,m) = 1[τ = b] and so

Πi(λ, σ
1) = λτ (1− λ)τ

n−1∑
m=τ

(
n− 1

m

)(
λ

1− λ

)m−τ

ZB(b,m)

Since λτ (1− λ)τ > 0, it follows that Πi(λ, σ
1) > 0 if and only if

n−1∑
m=τ

(
n− 1

m

)(
λ

1− λ

)m−τ

ZB(b,m) > 0

where the lhs converges to
(
n−1
τ

)
ZB(τ, τ) > 0 as λ→ 0.

Case 2: If ZB(τ, τ) < 0, there exists λε such that, for all λ ∈ (0, λε), there is α ∈ (0, 1)

such that σα is an equilibrium in which p∗ wins with probability exceeding 1− ε.

Let λε = 1− (1− ε)
1
2n = ᾱ. Then for all λ ∈ (0, λε) and α ∈ (ᾱ, 1], the probability

that p∗ wins for the strategy-profile σα in the event {S = s0} exceeds αn, and so p∗

33



wins with probability exceeding

αn(1− λ)n > ᾱn(1− λε)
n = 1− ε.

Hence, it suffices to show that there exists λ̄ ∈ (0, λε) such that, for all λ ∈ (0, λ̄), there

exists αλ ∈ (ᾱ, 1) such that σαλ is an equilibrium.

Analogous to the argument in case 1, ZB(τ, τ) < 0 implies that there exists λ1 ∈
(0, λε) such that, for all λ ∈ (0, λ1), Πi(λ, σ

1) < 0.

Since ᾱ ∈ (0, 1), for b ∈ {0, ..., τ} and m ∈ {b, ..., τ + b},

qi(σ
ᾱ|b,m) =

(
n− 1−m

τ − b

)
(1− ᾱ)τ−bᾱτ−(m−b) > 0

and, hence,

Πi(λ, σ
ᾱ) = (1− λ)n−1

τ∑
b=0

τ+b∑
m=b

(
λ

1− λ

)m(
n− 1

m

)
qi(σ

ᾱ|b,m)ZB(b,m),

which converges to
(
n−1
τ

)
(1− ᾱ)τ ᾱτZB(0, 0) as λ→ 0. Since ZB(0, 0) > 0, there exists

λ2 ∈ (0, λε) such that, for all λ ∈ (0, λ2), Πi(λ, σ
ᾱ) > 0.

Now let λ̄ = min{λ1, λ2, λε} and let λ ∈ (0, λ̄). Then, Πi(λ, σ
1) < 0 < Πi(λ, σ

ᾱ)

and, since Πi(λ, σ
α) is continuous in α, there exists αλ ∈ (ᾱ, 1) such that Πi(λ, σ

αλ) = 0,

and so σαλ is an equilibrium in which p∗ wins with probability exceeding 1− ε.

Case 3: If ZB(τ, τ) = 0 then P (B = τ |M = m) = 0 for all m ∈ {τ, ..., n − 1}.
Since pi(σ

1|m − b,m) = 0 for all b ∈ {0, ..., τ − 1} and m ∈ {b, ..., τ}, it follows that

Πi(λ, σ
1) = 0 for all λ, and so σ1 is an equilibrium in which p∗ wins in the event

{S = s0}. If λ ≤ 1−(1−ε) 1
n , then P (S = s0) ≥ 1−ε, and so p∗ wins in an equilibrium

with probability exceeding 1− ε.

Together, the three cases show that, with advantageous correlation, there exists

λε ∈ (0, 1) such that, for all λ ∈ (0, λε), there exists α ∈ (0, 1] such that σα is a

symmetric equilibrium in which p∗ wins with probability exceeding 1− ε. ■

A.3 Proofs for Section 4

For a binary collective choice problem C = (N ,Ω, P ), we letWi = {ω ∈ Ω : V d
i (ω) > 0}

be the set of states in which voter i is a winner, and W(ω) = {i ∈ N : ω ∈ Wi} denote
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the set of winners in state ω.

A.3.1 Proof of Proposition 3

Suppose C is binary collective choice problem in which signals are fully-informative.

We first show that, for any κ ∈ {0, ..., τ},

V G(κ|PW , v) =
n∑

w=κ

((
w − κ

n− κ

)
vW −

(
n− w

n− κ

)
vL

) (
w
κ

)
PW (w)∑n

w′=κ

(
w′

κ

)
PW (w′)

. (2)

For κ ∈ {0, ..., τ}, w ∈ {κ+ 1, ..., n}, and i ∈ N ,

P (G = κ|Si = s0,M = κ,W = w) =
(w
n

) (w−1
κ

)(
n−1−(w−1)

0

)(
n−1
κ

) +

(
n− w

n

) (w
κ

)(
n−1−w

0

)(
n−1
κ

) =

(
w
κ

)(
n
κ

)
and

P (G = κ|Si = s0,M = κ,W = κ) =
1(
n
κ

) .
Therefore, for any κ ∈ {0, ..., τ} and w ∈ {κ, ..., n}, and i ∈ N ,

P (W = w|Si = s0, G =M = κ) =

(
w
κ

)
PW (w)∑n

w′=κ

(
w′

κ

)
PW (w′)

.

Equation (2) then follows by observing that,

P (Wi|Si = s0, G =M = κ,W = w) =
w − κ

n− κ
.

Parts (a) and (b) follow because V G(κ) is increasing in vW for a fixed vL and PW ,

and decreasing in vL for a fixed vW and PW . Part (c) follows because, for w′ > w,

P ′
W (w′)PW (w) ≥ P ′

W (w)PW (w′) implies that(
w′

κ

)
P ′
W (w′)∑n

w′′=κ

(
w′′

κ

)
P ′
W (w′′)

(
w
κ

)
PW (w)∑n

w′′=κ

(
w′′

κ

)
PW (w′′)

≥
(
w
κ

)
P ′
W (w)∑n

w′′=κ

(
w′′

κ

)
P ′
W (w′′)

(
w′

κ

)
PW (w′)∑n

w′′=κ

(
w′′

κ

)
PW (w′′)

,

and so PW ≽LR P ′
W implies PW (.|Si = s0, G = M = κ) ≽LR P ′

W (.|Si = s0, G = M =

κ). Since P (Wi|Si = s0, G = M = κ,W = w) is increasing in w, PW (.|Si = s0, G =

M = κ) ≽LR P ′
W (.|Si = s0, G = M = κ) then implies that V G(κ|PW , vW , vL) ≥
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V G(κ|P ′
W , vW , vL). ■

A.3.2 Proof of Proposition 4

Suppose C is a binary collective choice problem in which signals convey only aggregate

news. For any signal profile s ∈ Sn, it follows that

V d
i (s) =

n∑
w=0

V d
i (s,W = w)P (W = w|S = s) =

n∑
w=0

V d
i (W = w)P (W = w|S = s),

and therefore, V d
i (s) = V d

j (s) for all i, j ∈ N . Now consider a signal profile s such

that si ∈ G and sj ∈ M for some voters i ̸= j. Then V d
i (si) > 0 and so V d

i (s) > 0 by

Assumption 2(b). It follows that V d
j (s) > 0, and so V d

j (sj) > 0 by Assumption 2(b).

Hence, sj ∈ G. Analogously, if si ∈ B and sj ∈ M, then sj ∈ B.
Let G(κ) = {s ∈ Mn : G(s) ≥ κ}. By Lemma 1 and the preceding argument, for

a voter who is uninformed, and learns that κ ∈ {1, ..., τ} other voters received good

news,

P (Wi|Si = s0,M = G = κ) = λκ(1− λ)n−κ
∑
s∈G(κ)

P (Wi|s)P (s|s ∈ G(κ))

= λκ(1− λ)n−κ
∑
s∈Gn

P (Wi|s)P (s|s ∈ Gn)

= λκ(1− λ)n−κP (Wi|S ∈ Gn)

and, therefore, V G(κ) > 0. ■

A.3.3 Proof of Proposition 5

We say that binary collective choice problems C = (N ,Ω, P ) and C ′ = (N ,Ω′, P ′)

are informationally equivalent if, for any N ′ ⊆ N and s ∈ Sn, P (W = N ′, S =

s) = P ′(W = N ′, S = s); that is, the problems differ in terms of the payoff but

not the information structure. We show that, when all news is distributional, for any

binary collective choice problem, there is an informationally equivalent problem that

has adverse correlation.

Suppose C = (N ,Ω, P ) is a binary collective choice problem in which signals convey

only distributional news. Without loss of generality, let P (Wi|Si = sk) ≥ P (Wi|Si =
sk+1) for k = 1, ..., K − 1 (where it does not matter in the following how ties are
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broken). Let G ′ = {k = 1, ..., K : P (Wi|Si = sK) ≥ P (Wi)} and B′ = M− G ′. Since

P (B ≥ 1) > 0, both G ′ and B′ are non-empty, and P (Wi|Si = s1) > P (Wi). For a

signal profile s ∈ Sn, G′(s) is the number of voters with a signal in G ′.

We first show that, for any voter h ∈ N ,

P (Wh) > P (Wh|Sh = s0, G′ =M = 1). (3)

Let w ∈ {0, ..., n} and E be any event such that E ∩W−1(w) is non-null. Then,

n∑
i=1

P (Wi|E,w) =
n∑
i=1

∑
ω∈Ω(w)∩E

P (Wi|E,w, ω)P (ω|E,w)

=
∑

ω∈Ω(w)∩E

P (ω|E,w)
n∑
i=1

P (Wi|E,w, ω)

= w
∑

ω∈Ω(w)∩E

P (ω|E,w) = w

Therefore, for any voter i ̸= h and w ∈ {0, ..., n} with P (W = w) > 0, Assumption 1

implies that

n∑
j=1

P (Wj|Si ∈ G ′,M = 1, w) = P (Wi|Si ∈ G ′,M = 1, w) +
∑
j ̸=i

P (Wj|Si ∈ G ′,M = 1, w)

= P (Wi|Si ∈ G ′,M = 1, w) + (n− 1)P (Wh|Si ∈ G ′,M = 1, w)

=
n∑
j=1

P (Wj|w) = P (Wi|w) +
∑
j ̸=i

P (Wj|w)

= P (Wi|w) + (n− 1)P (Wh|w).

Since P (Wi|w) < P (Wi|Si ∈ G ′,M = 1, w), it follows that P (Wh|w) > P (Wh|Si ∈
G ′,M = 1, w). Moreover, by Assumption 1,

P (Wh|Sk = s0, G′ =M = 1, w) =
∑
j ̸=h

P (Wh|Sj ∈ G ′,M = 1, w)P (Sj ∈ G ′|G′ =M = 1, w)

=
1

n− 1

∑
j ̸=h

P (Wh|Sj ∈ G ′,M = 1, w)

= P (Wh|Si ∈ G ′,M = 1, w),
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and, therefore, P (Wh|w) < P (Wh|Sk = s0, G′ = M = 1, w). Since signals convey only

distributional information,

P (Wh) =
n∑

w=0

P (Wh|w)P (w)

<

n∑
w=0

P (Wh|Sk = s0, G′ =M = 1, w)P (w)

=
n∑

w=0

P (Wh|Sk = s0, G′ =M = 1, w)P (w|Sh = s0, G′ =M = 1)

= P (Wh|Sh = s0, G′ =M = 1),

and, therefore, P (Wh) > P (Wh|Sk = s0, G′ =M = 1).

Now let k∗ = min{k = 1, ..., K : sk ∈ B′} and let P ∗ = max{P (Wi|Si = sk
∗
), P (Wh|Sk =

s0, G′ = M = 1)}. From the preceding argument, P (Wh) > P ∗ and so there exists

(v′W , v
′
L) >> 0 such that

P (Wh)v
′
W − (1− P (Wh))v

′
L > 0 > P ∗v′W − (1− P ∗)v′L.

The binary collective choice problem C ′ = (N ,Ω, P ′) uniquely defined by letting

P ′(W = N ′, S = s) = P (W = N ′, S = s) for any N ′ ⊆ N and s ∈ S is infor-

mationally equivalent to C, and C ′ is adversely correlated because the set of good news

signals for C ′ is exactly G ′. As a result, for any binary collective choice problem C
in which signals convey only distributional information there exists an informationally

equivalent collective choice problem with adverse correlation. ■
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B Online Appendix

The Online Appendix contains all preliminary arguments, notation, and proofs for the

extensions described in Section 5.

B.1 Symmetric Equilibria (Section 5.1)

Preliminaries: Let σα be the symmetric strategy-profile defined in the proof of

Proposition 1. Recall that, for g ∈ {0, ..., τ} and m ∈ {g, ..., g + τ},

pi(σ
α|g,m) =


1[g = τ ] if α = 0

1[m− g = τ ] if α = 1(
n−1−m
τ−g

)
ατ−g(1− α)τ−(m−g) if α ∈ (0, 1)

,

and so

Π0(σ
1, λ) =

τ∑
g=0

(
n− 1

τ + g

)
λτ+g(1− λ)τ−gZ(g, τ + g),

Π0(σ
0, λ) =

n−1∑
m=τ

(
n− 1

m

)
λm(1− λ)n−1−mZ(τ,m),

and, for α ∈ (0, 1),

Π0(σ
α, λ) =

τ∑
g=0

τ+g∑
m=g

M(g,m)λm(1− λ)n−1−mατ−g(1− α)τ+g−mZ(g,m),

= ατ (1− α)τ (1− λ)n−1

τ∑
g=0

(
λ(1− α)

α(1− λ)

)g τ+g∑
m=g

(
λ

(1− α)(1− λ)

)m−g

M(g,m)Z(g,m)

where M(g,m) is shorthand for the multinomial coefficient
(

n−1
τ−g,m,τ+g−m

)
.

Proof of Theorem 3

(1) Suppose C is strongly adversely correlated:
∑τ

κ=0 θ
κ
(
τ
κ

)
Z(κ, κ) < 0 for some θ ∈

R++, and fix some ε ∈ (0, 1).

By Case 1 in the proof of Theorem 1, if Z(τ, τ) < 0, then there exists λ̄ ∈ (0, 1 −
(1 − ε)

1
n ) such that σ0 is a symmetric equilibrium in which p∗ wins with probability
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exceeding 1− ε for all λ ∈ (0, λ̄). Therefore, we can focus on the case Z(τ, τ) > 0. In

that case, since

lim
λ→0

n−1∑
m=τ

(
n− 1

m

)
λm−τ (1− λ)n−1−mZ(τ,m) =

(
n− 1

τ

)
Z(τ, τ)

it follows that Π0(σ
0, λ) > 0 for λ > 0 sufficiently small.

Let ᾱ := 1− (1− ε)
1

2(τ+1) . If α < ᾱ and λ < 1− (1− ε)
1
2n , then p∗ wins in strategy

profile σα with probability exceeding

(1− ᾱ)τ+1(1− λ)n > (1− ε)
τ+1

2(τ+1) (1− ε)
n
2n = 1− ε

Since Π0(σ
0, λ) > 0 for λ sufficiently small, it therefore sufficies to show that there exists

λ̄ ∈ (0, 1) such that, for all λ ∈ (0, λ̄), there is a αλ ∈ (0, ᾱ) such that Π0(σ
αλ , λ) < 0.

For any λ ∈ (0, 1), let αλ := λ
(1−λ)θ+λ ; hence, αλ ∈ (0, 1), is increasing in λ, and

converges to 0 as λ→ 0. Therefore,

lim
λ→0

τ∑
g=0

(
λ(1− αλ)

αλ(1− λ)

)g τ+g∑
m=g

(
λ

(1− αλ)(1− λ)

)m−g

M(g,m)Z(g,m)

=
τ∑
g=0

θgM(g, g)Z(g, g) =

(
n− 1

τ

)
K(θ) < 0.

Hence, there is λ̄ ∈ (0, 1) such that Π0(σ
αλ , λ) < 0 for all λ ∈ (0, λ̄).

(2) Suppose C is weakly advantageously correlated:
∑τ

κ=0 θ
κ
(
τ
κ

)
ZG(κ) > 0 for all θ ∈

R++.

The correlation structure implies that Z(τ, τ) > 0, and so there exists θ̄ such that∑τ
κ=0 θ

κ
(
τ
κ

)
Z(κ, κ) > Z(0, 0) for all θ > θ̄. Since limθ→0

∑τ
κ=0 θ

κ
(
τ
κ

)
Z(κ, κ) = Z(0, 0),

it follows that K attains a minimum on [0, θ̄], which is strictly positive. As a result,

there exists δ > 0 such that
∑τ

κ=0 θ
κ
(
τ
κ

) (
ZG(κ)− δ

)
> 0 for all θ ∈ R++.

Now fix some ε ∈ (0, 1), and let ᾱ := (1 − ε)
1

2(τ+1) ∈ (0, 1). If α ∈ [ᾱ, 1] and

λ < 1− (1− ε)
1
2n , then p∗ wins with probability exceeding

ατ+1(1− λ)n > (1− ε)
τ+1

2(τ+1) (1− ε)
n
2n = 1− ε

in the strategy profile σα.
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For g ∈ {0, ..., τ}, let ϕ(g) := M(g, g)Z(g, g) and, for α, λ ∈ (0, 1), let

ϕ(g, α, λ) :=

τ+g∑
m=g+1

(
λ

(1− α)(1− λ)

)m−g

M(g,m)Z(g,m)

so that

Π0(σ
α, λ) = ατ (1− α)τ (1− λ)n

τ∑
g=0

(
λ(1− α)

α(1− λ)

)g (
ϕ(g) + ϕ(g, α, λ)

)
≥ ατ (1− α)τ (1− λ)n

τ∑
g=0

(
λ(1− α)

α(1− λ)

)g (
ϕ(g)− |ϕ(g, α, λ)|

)
For g ∈ {0, ..., τ} and α ∈ (0, ᾱ), |ϕ(g, α, λ)| ≤ |ϕ(g, ᾱ, λ)|, and so there exists λ̄ ∈ (0, 1)

such that |ϕ(g, ᾱ, λ)| ≤
(
n−1
τ

)
δ for all λ ∈ (0, λ̄) and g ∈ {0, ..., τ}. Hence, for all

λ ∈ (0, λ̄),

Π0(σ
α, λ) ≥ ατ (1− α)τ (1− λ)n

τ∑
g=0

(
λ(1− α)

α(1− λ)

)g (
ϕ(g)−

(
n− 1

τ

)
δ

)

= ατ (1− α)τ (1− λ)n
(
n− 1

τ

) τ∑
κ=0

(
λ(1− α)

α(1− λ)

)κ(
τ

κ

)
(Z(κ, κ)− δ) > 0,

since λ(1−α)
α(1−λ) ∈ R++. Therefore, for all λ ∈ (0, λ̄), σα is not an equilibrium for any

α ∈ (0, ᾱ). Moreover, if Z(τ, τ) > 0, there exists λ̄0 ∈ (0, 1) such that Π0(σ
0, λ) > 0

for all λ ∈ (0, λ̄0).

Hence, for λε = min{1 − (1 − ε)
1
2n , λ̄, λ̄0}, the preceding arguments show that, for

all λ ∈ (0, λε) and any α ∈ [0, 1], either p∗ wins with probability exceeding (1 − ε) in

the strategy profile σα or the strategy profile σα is not an equilibrium. ■

B.2 Population Uncertainty (Section 5.2)

Preliminaries: We first describe how we adapt our main assumptions from Section 2

to the setting with population uncertainty. As previously, let M = {s1, ..., sK} be the

set of informative signals for any population size. For ω ∈ Ωn, V (ω) and S(ω) are

the payoff and signal profiles in state ω, and V d
i (E, n) is the expected payoff difference

between the ex-ante optimal and inferior policies for a voter i who conditions on the

population size n and the event E ⊆ Ωn. We continue to define V d
i (E, n) := 0 when E
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is a null-event and assume that V d
i (E, n) ̸= 0 otherwise.

Assumption 5. Voters are exchangeable for any population size n ∈ Q: if ω, ω′ ∈ Ωn

and ω permutes ω′, then Pn(ω) = Pn(ω
′).

Let p∗n be the optimal policy when voters learn only that the population size is n.

By assumption 5, voters agree on p∗n. We assume that p∗n does not depend on n.

Assumption 6. For all n, n′ ∈ N , p∗n = p∗n′.

Assumption 7. There is an uninformative signal, and other signals are sufficient:

(a) Uninformative signal: For n ∈ Q, ω ∈ Ωn with Si(ω) = s0,

Pn(ω) = Pn(V (ω), S−i(ω))(1− λ).

for some λ ∈ (0, 1).

(b) Informative signals: For n ∈ Q and si ∈ M, V d
i (si, n) > 0 if and only if

V d
i (s

′, n′) > 0 for all n′ ∈ Q, s′ ∈ Sn′
such that s′i = si.

By Assumption 7, we can again classify informative signals as good or bad news.We

let τ0 := τ(n0) and P0 := Pn0 .

Assumption 8. P0(B ≥ 1) > 0 and P0(G ≥ τ0) > 0.

We denote the mean population size by µ and the CDF of Q by F . As observed by

Myerson (1998), being selected to participate in an election, leads a voter to update

their beliefs about the size of the electorate. To perform this updating when Q may be

countably infinite, we follow Myerson (1998) by first assuming N̄ ∈ Q players are pre-

selected, each of whom is equally likely to be recruited as a voter. We then calculate

voter i’s beliefs about the size of the electorate, conditional on the event Ri that i is a

voter, and take the limit as N̄ → ∞. Hence,

Q(N = n|Ri) := lim
N̄→∞

Q(N = n|Ri, N ≤ N̄)

= lim
N̄→∞

Q(Ri|N = n,N ≤ N̄)Q(N = n|N ≤ N̄)∑N̄
n′=n0

Q(Ri|N = n′, N ≤ N̄)Q(N = n|N ≤ N̄)

= lim
N̄→∞

n
N̄

1[n≤N̄ ]Q(N=n)

F (N̄)∑N̄
n′=n0

n′

N̄

Q(N=n′)
F (N̄)

=
nQ(N = n)

µ
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By Assumption 7(b), a voter who receives an informative signal has a unique un-

dominated action. Given the population uncertainty, we focus on the set of symmetric

undominated strategy profiles σα, where voters with good signals vote for p∗, voters

with bad signals vote for p∗, and voters with the signal s0 independently vote for p∗

with probability α for some α ∈ [0, 1]. Adapting our previous notation, let Π(α, λ) be

the expected payoff difference between a vote for p∗ and vote for p∗ for a voter who

receives signal s0 when P (Si ∈ M) = λ and other voters follow the strategy-profile

σα. A subscript n means “conditional on population size n,” with a subscript 0 for

the case when n = n0. By Assumption 7(a), signal s0 is not informative about the

population size, payoff-profile or signal-profile of the other voters. Hence, for a voter i

and m ∈ {0, ..., n− 1},

Pn(M = m|Si = s0, N = n) =

(
n− 1

m

)
λm(1− λ)n−1−m.

We formulate the following elementary property of absolutely convergent series for later

reference.

Lemma 2. Let a : N2 → R such that, for all t,
∑∞

n=0 a(n, t) is absolutely convergent

and, for all n, a(n, t) converges monotonically to 0. Then, limt→0

∑∞
n=0 a(n, t) = 0.

Proof. For (n, t) ∈ N2, let a+(n, t) = 1[a(n, t) ≥ 0]a(n, t) and a−(n, t) = 1[a(n, t) <

0]|a(n, t)|. Since
∑∞

n=0 a(n, t) is absolutely convergent for any t,

∞∑
n=0

a(n, t) =
∞∑
n=0

a+(n, t)−
∞∑
n=0

a−(n, t)

(where both series on the right-hand side converge, hence converge absolutely). We

show that limt→0

∑∞
n=0 a

+(n, t) = 0, and analogous argument then applies for the series

of negative terms.

Let ε > 0. First fix some some t∗. Since
∑∞

n=0 a
+(n, t∗) converges absolutely, there

exists n̄ such that
∑∞

n=n̄+1 a
+(n, t∗) ≤ ε

2
. Now fix n̄, since limt→0 a

+(n, t) = 0 for all

n ∈ {0, ..., n̄}, there exists t̄ ≥ t∗ such that
∑n̄

n=0 a
+(n, t) < ε

2
for all t ≥ t̄. Moreover,

since a(n, t) is decreasing in t,
∑∞

n=n̄+1 a
+(n, t) ≤

∑∞
n=n̄+1 a

+(n, t∗) = ε
2
for all t ≥ t∗.

Hence,
∑∞

n=0 a
+(n, t) ≤ ε for all t ≥ t̄. ■
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Proof of Theorem 4

For notational convenience, letRn(g,m) := Mn(g,m)Zn(g,m)nQ(n)
µ

, whereMn(g,m) :=(
n−1

m,τ(n)−g,τ(n)+g−m

)
, and

Zn(g,m) = P (G = g|M = m,Si = s0, N = n)V d
i (Si = s0, G = g,M = m,N = n),

and let v∗ = max{|va − vb| : (va, vb) ∈ Va × Vb}.

Proof. First, suppose K∗(n0) < 0 and fix ε ∈ (0, 1). We consider two cases.

Case 1: Suppose V G
0 (τ0) < 0, which implies

(
n0−1
τ0

)
Z0(τ0, τ0)

n0Q(n0)
µ

< 0 by Assump-

tion 8. By Assumption 4, limn→∞ nQ(n) = 0, and so

∞∑
n=n0+1

n−1∑
m=τ(n)

(
n− 1

m

)
λm−τ0(1− λ)n−1−m−τ0|Zn(τ(n),m)|nQ(n)

µ
≤ v∗

λτ0(1− λ)τ0
,

hence, the series is absolutely convergent. Moreover, for m ≥ τ(n), it follows that

λm−τ0(1−λ)n−1−m−τ0 is strictly increasing in λ ∈ (0, 1/2) and converges to 0 as λ→ 0.

As a result, there exists λ̄ ∈ (0, 1) such that, for all λ ∈ (0, λ̄),

∞∑
n=n0+1

n−1∑
m=τ(n)

Rn(τ(n),m)λm−τ0(1− λ)n−1−m−τ0 ≤ 1

2

(
n0 − 1

τ0

)
|Z0(τ0, τ0)|

n0Q(n0)

µ

Therefore, for all λ ∈ (0, λ̄),

Π(0, λ) =
∞∑

n=n0

n−1∑
m=τ(n)

Rn(τ(n),m)λm(1− λ)n−1−m

≤ 1

2
λτ0(1− λ)τ0

(
n0 − 1

τ0

)
Z0(τ0, τ0)

n0Q(n0)

µ
< 0.

Let λ′ε be the unique solution to
∑∞

n=0(1−λ)nQ(n) = 1−ε, and λε = min{λ̄, λ′ε}. Then,
for all λ ∈ (0, λε), σ

0 is an equilibrium in which p∗ wins with probability exceeding

1− ε.

Case 2: Suppose that V G
0 (τ0) > 0 but

∑τ0
κ=0 θ

κ
(
τ0
κ

)
Z0(κ, κ) < 0 for some θ ∈ R++.

For any λ ∈ (0, θ
1−θ ), let αλ := λ

θ(1−λ) ; then, αλ ∈ (0, 1), is strictly increasing in λ,

and converges to 0 as λ→ 0.
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Since limn→∞ nQ(n) = 0,

∞∑
n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g

Rn(g,m)λm(1− λ)n−n0−mα
τ(n)−τ0−g
λ (1− αλ)

τ(n)−τ0+g−m ≤ v∗

ατ0λ (1− αλ)τ0

and so the series on the left-hand side is absolutely convergent for any λ ∈ (0, θ
1+θ

).

Moreover,

λm(1− λ)n−n0−mα
τ(n)−τ0−g
λ (1− αλ)

τ(n)−τ0+g−m

= θ−n+n0+m(λ(1− λ)θ − λ2)τ(n)−τ0
(

λ

θ(1− λ)− λ

)m−g

,

which is strictly increasing in λ ∈ (0, θ
2(1+θ)

) and converges to 0 as λ→ 0. As a result,

there exists λ̄ ∈ (0, θ
2(1+θ)

) such that, for all λ ∈ (0, λ̄),

∞∑
n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g

|Rn(g,m)|λm(1− λ)n−n0−mα
τ(n)−τ0−g
λ (1− αλ)

τ(n)−τ0+g−m

≤ 1

4

(
n0 − 1

τ0

)
n0Q(n0)

µ

τ0∑
κ=0

θκ
(
τ0
κ

)
|Z0(κ, κ)|

Moreover,

τ0∑
g=0

g+τ0∑
m=g+1

|R0(g,m)|λm(1− λ)−mα−g
λ (1− αλ)

g−m

=

τ0∑
g=0

g+τ0∑
m=g+1

|R0(g,m)|θm
(

λ

θ(1− λ)− λ

)m−g

,

which converges to 0 as λ→ 0. Therefore, there exists λ̄′ ∈ (0, λ̄) such that

τ0∑
g=0

g+τ0∑
m=g+1

|R0(g,m)|λm(1− λ)−mα−g
λ (1− αλ)

g−m

≤ 1

4

(
n0 − 1

τ0

)
n0Q(n0)

µ

τ0∑
κ=0

θκ
(
τ0
κ

)
|Z0(κ, κ)|
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for all λ ∈ (0, λ̄′). Therefore, for all λ ∈ (0, λ̄′),

Π(αλ, λ) =
∞∑

n=n0

τ(n)∑
g=0

g+τ(n)∑
m=g

|Rn(g,m)|λm(1− λ)n−1−mα
τ(n)−g
λ (1− αλ)

τ(n)+g−m

≤ 1

2
ατ0λ (1− αλ)

τ0(1− λ)n0−1

(
n0 − 1

τ0

)
n0Q(n0)

µ

τ0∑
κ=0

θκ
(
τ0
κ

)
Z0(κ, κ) < 0.

Finally, analogous to the argument in Case 1, V G
0 (τ0) > 0 implies that there exists

λ̄′′ ∈ (0, λ̄′) such that Π(0, λ) > 0 for all λ ∈ (0, λ̄′′). As a result, for any λ ∈ (0, λ̄′′)

there exists α′
λ ∈ (0, αλ) such that Π(α′

λ, λ) = 0; hence an equilibrium.

Now let λ′ε be the unique solution to
∑∞

n=n0

(
θ(1−λ)−λ

θ

)n
Q(n) = 1 − ε when ε ≤

θ−1 and 1 otherwise, and let λε = min{λ̄′′, λ′ε}. Then, for all λ ∈ (0, λε), σ
α′
λ is an

equilibrium in which p∗ wins with probability exceeding 1− ε.

Now, suppose K∗(n0) > 0 and fix ε ∈ (0, 1). The advantageous correlation condi-

tion implies that Z0(τ0, τ0), Z0(0, 0) > 0, and therefore there exists δ > 0 such that∑τ0
κ=0 θ

κ
(
τ0
κ

)
Z0(κ, κ) > δ for all θ ∈ R++.

Let νε be the unique solution in (0, 1) to
∑∞

n=n0
νnQ(n) = 1−ε, and let λ̄ = 1−√

νε

and ᾱ =
√
νε. Then, for any α ∈ (ᾱ, 1] and λ ∈ (0, λ̄), p∗ wins with probability

exceeding
∞∑

n=n0

ᾱn(1− λ̄)nQ(n) =
∞∑

n=n0

νnεQ(n) = 1− ε

in the strategy profile σα. It therefore suffices to show that there exists λε ∈ (0, λ̄)

such that, for all λ ∈ (0, λε) and α ∈ [0, ᾱ], σα is not an equilibrium. We do this by

first showing that there exists λ̄0 ∈ (0, 1) such that σ0 is not an equilibrium for all

λ ∈ (0, λ̄0) (step 1), and then showing that there exists λ∗ ∈ (0, 1) such that, for all

λ ∈ (0, λ∗), σα is not an equilibrium for any α ∈ (0, ᾱ) (step 2).

Step 1: Since limn→∞ nQ(n) = 0,

∞∑
n=n0+1

n−1∑
m=τ(n)

|Rn(τ(n),m)|
(
n− 1

m

)
λm−τ0(1− λ)n−1−m−τ0 ≤ v∗

λτ0(1− λ)τ0

and so the series is absolutely convergent. Moreover, for m ≥ τ(n) > τ0, λ
m−τ0(1 −

λ)n−1−m−τ0 is strictly increasing in λ ∈ (0, 1/2) and converges to 0 as λ → 0. As a
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result, there exists λ0 ∈ (0, 1) such that

∞∑
n=n0+1

n−1∑
m=τ(n)

|Rn(τ(n),m)|λm−τ0(1− λ)n−1−m−τ0 ≤ 1

4

(
n0 − 1

τ0

)
Z0(τ0, τ0)

n0Q(n0)

µ

Moreover, since λm−τ0(1 − λ)τ0−m is increasing in λ ∈ (0, 1) and converges to 0 as

λ→ 0, there exists λ′0 ∈ (0, 1) such that

n0−1∑
m=τ0+1

(
n0 − 1

m

)
λm−τ0(1− λ)τ0−m|Z0(τ0,m)| ≤ 1

4

(
n0 − 1

τ0

)
Z0(τ0, τ0)

Let λ̄0 = min{λ0, λ′0}; then for all λ ∈ (0, λ̄0),

Π(0, λ) =
∑
n=n0

∑
m=τ(n)

Rn(τ(n),m)

(
n− 1

m

)
λm(1− λ)n−1−m

≥ 1

2

(
n0 − 1

τ0

)
λτ0(1− λ)τ0Z0(τ0, τ0)

n0Q(n0)

µ
> 0,

and so σ0 is not an equilibrium.

Step 2: It remains to show that there exists λ∗ ∈ (0, 1) such that, for all λ ∈ (0, λ∗), σα

is not an equilibrium for any α ∈ (0, ᾱ). We show this by establishing a contradiction.

Suppose that, for any λ∗ ∈ (0, 1), there exists λ ∈ (0, λ∗) and αλ ∈ (0, ᾱ) such that

Π(αλ, λ) = 0; hence, there exists a sequence (λt, αt)
∞
t=1 such that λt → 0 and, for all

t ≥ 1, αt ∈ (0, ᾱ), and Π(αt, λt) = 0, where

Π(αt, λt) =
∞∑

n=n0

τ(n)∑
g=0

g+τ(n)∑
m=g

Rn(g,m)λmt (1− λt)
n−1−mα

τ(n)−g
t (1− αt)

τ(n)+g−m. (4)

We consider three collectively exhaustive cases: (i) there is a subsequence such that
αt(1−λt)

λt
→ 0, (ii) there is a subsequence such that αt → 0 but αt(1−λt)

λt
≥ γ for some

γ > 0, and (iii) there is a subsequence such that αt ≥ γ for some γ > 0.

Case (i). In this case, there is a subsequence such that λt, αt,
αt(1−λt)

λt
, λt(1 − λt)(1 −

αt),
λt

(1−λt)(1−αt)
are all decreasing, and converge to 0. From Π(αt, λt) = 0, it follows

that (for all t, with the subscript suppressed for convenience),

−
(
n0 − 1

τ0

)
λτ0(1− λ)τ0(1− α)τ0Z0(τ0, τ0)

n0Q(n0)

µ
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=

τ0−1∑
g=0

R0(g, g)λ
g(1− λ)n0−1−gατ0−g(1− α)τ0

+

τ0∑
g=0

g+τ0∑
m=g+1

R0(g,m)λm(1− λ)n0−1−mατ0−g(1− α)τ0+g−m

+
∞∑

n=n0+1

Rn(τ(n), τ(n))λ
τ(n)(1− λ)τ(n)(1− α)τ(n)

+
∞∑

n=n0+1

τ(n)−1∑
g=0

Rn(g, g)λ
g(1− λ)n−1−gατ(n)−g(1− α)τ(n)

+
∞∑

n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g+1

Rn(g,m)λm(1− λ)n−1−mατ(n)−g(1− α)τ(n)+g−m

Therefore (dividing both sides by [λ(1− λ)(1− α)]τ0),

−
(
n0 − 1

τ0

)
Z0(τ0, τ0)

n0Q(n0)

µ

=

τ0−1∑
g=0

R0(g, g)

(
α(1− λ)

λ

)τ0−g

+

τ0∑
g=0

g+τ0∑
m=g+1

R0(g,m)

(
α(1− λ)

λ

)τ0−g ( λ

(1− λ)(1− α)

)m−g

+
∞∑

n=n0+1

Rn(τ(n), τ(n))[λ(1− α)(1− λ)]τ(n)−τ0

+
∞∑

n=n0+1

τ(n)−1∑
g=0

Rn(g, g)

(
α(1− λ)

λ

)τ(n)−g
[λ(1− α)(1− λ)]τ(n)−τ0

+
∞∑

n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g+1

Rn(g,m)

(
α(1− λ)

λ

)τ(n)−g (
λ

(1− λ)(1− α)

)m−g

[λ(1− α)(1− λ)]τ(n)−τ0 .

By Lemma 2, the left-hand side converges to 0 but the right-hand side is constant and

bounded away from 0.

Case (ii). In this case, there is a subsequence such that λt, αt,
αt

1−αt
, αt(1− λt)

2(1−αt)

are all decreasing and converge to 0. From Π(αt, λt) = 0 it follows that (t subscript
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suppressed)

−
τ0∑
g=0

(
n0 − 1

g

)(
n0 − 1− g

τ0 − g

)
λg(1− λ)n0−1−gατ0−g(1− α)τ0Z0(g, g)

n0Q(n0)

µ

=

τ0∑
g=0

τ0∑
m=g+1

R0(g,m)λm(1− λ)n0−1−mατ0−g(1− α)τ0+g−m

+
∞∑

n=n0+1

τ(n)∑
g=0

Rn(g, g)λ
g(1− λ)n−1−gατ(n)−g(1− α)τ(n)

+
∞∑

n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g+1

Rn(g,m)λm(1− λ)n−1−mατ(n)−g(1− α)τ(n)+g−m

Therefore (dividing both sides by ατ0(1− α)τ0(1− λ)n0−1),

−
(
n0 − 1

τ0

)
n0Q(n0)

µ

τ0∑
g=0

(
τ0
g

)(
λ

α(1− λ)

)g
Z0(g, g)

=

τ0∑
g=0

τ0∑
m=g+1

R0(g,m)

(
λ

α(1− λ)

)m(
α

1− α

)m−g

+
∞∑

n=n0+1

τ(n)∑
g=0

Rn(g, g)

(
λ

α(1− λ)

)g
[α(1− α)(1− λ)2]τ(n)−τ0

+
∞∑

n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g+1

Rn(g,m)

(
λ

α(1− λ)

)m(
α

1− α

)m−g

[α(1− α)(1− λ)2]τ(n)−τ0

:=Π̃(α, λ)

If there exists a further subsequence such that λt
αt(1−λt) is decreasing, then the left-

hand side converges to 0 by Lemma 2 while the right-hand side is constant. Otherwise,

there exists a subsequence such that λt
αt(1−λt) converges up to some θ∗ > 0. For each t

in that subsequence, let α∗
t =

λt
θ∗(1−λt) . Eventually, α

∗
t ∈ (0, 1), and so

τ0∑
g=0

τ0∑
m=g+1

R0(g,m) (θ∗)m
(

α∗

1− α∗

)m−g

+
∞∑

n=n0+1

τ(n)∑
g=0

Rn(g, g) (θ
∗)g [α∗(1− α∗)(1− λ)2]τ(n)−τ0
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+
∞∑

n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g+1

Rn(g,m) (θ∗)m
(

α∗

1− α∗

)m−g

[α∗(1− α∗)(1− λ)2]τ(n)−τ0

is absolutely convergent. Since, for each t there exists t′ ≥ t such that
αt′

1−αt′
≤ αt

1−αt

and αt′(1− αt′)(1− λt′)
2 ≤ α∗

t (1− α∗
t )(1− λt)

2, it follows that

τ0∑
g=0

τ0∑
m=g+1

R0(g,m) (θ∗)m
(

α

1− α

)m−g

+
∞∑

n=n0+1

τ(n)∑
g=0

Rn(g, g) (θ
∗)g [α(1− α)(1− λ)2]τ(n)−τ0

+
∞∑

n=n0+1

τ(n)∑
g=0

g+τ(n)∑
m=g+1

Rn(g,m) (θ∗)m
(

α

1− α

)m−g

[α(1− α)(1− λ)2]τ(n)−τ0

is eventually absolutely convergent, and then converges 0 by Lemma 2.

Case (iii). In this case, there is a subsequence such that λt is decreasing and, since

α ∈ (0, ᾱ), there exists some γ ∈ (0, 1/2) such that αt ∈ [γ, (1 − γ)] for all t. From

Π(αt, λt) = 0 it follows that (t subscript suppressed)

−
∞∑

n=n0

(
n− 1

τ(n)

)
(1− λ)n−1ατ(n)(1− α)τ(n)Zn(0, 0)

nQ(n)

µ

=
∞∑

n=n0

τ(n)∑
m=1

Rn(0,m)λm(1− λ)n−1−mατ(n)(1− α)τ(n)−m

+
∞∑

n=n0

τ(n)∑
g=1

g+τ(n)∑
m=g

Rn(g,m)λm(1− λ)n−1−mατ(n)−g(1− α)τ(n)+g−m

Since α ∈ [δ, 1 − δ] it follow that ατ(n)(1 − α)τ(n) ≥ γτ(n), and so the left-hand side is

greater
∑∞

n=n0

(
n−1
τ(n)

)
(1− λ)n−1δτ(n)Zn(0, 0)

nQ(n)
µ

, which converges to

∞∑
n=n0

(
n− 1

τ(n)

)
δτ(n)Zn(0, 0)Q(n) > 0,

while the right-hand side converges to 0 by Lemma 2. ■
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B.3 The Role of Elites (Section 5.3)

Preliminaries: For any state ω, we denote by GE(ω) the number of elites who receive

good news, ME(ω) the number of elites who receive informative signals, GN(ω) =

G(ω)−GE(ω) andMN(ω) =M(ω)−ME(ω), with typical realizations of these random

variables denoted, respectively, by gE, mE, gN , and mN .

For gE ∈ {0, ..., |E|}, gN ∈ {0, ..., |NE|},mE ∈ {ge, ..., |E|}, andmN ∈ {ge, ..., |NE|},

Zi(gE, gN ,mE,mN) := P (gE, gN |Si = s0,mE,mN)Vi(Si = s0, gE, gN ,mE,mN).

Proof of Proposition 6

Fix ε ∈ (0, 1) and let σ∗ ∈ Σ∗ with σ∗
i (s

0) = 1[i ∈ E ]. Since |E| ≤ τ , p∗ wins for the

strategy profile σ∗ in the event {S = s0}, and therefore wins with probability exceeding

1 − ε for all λ ∈ (0, 1 − (1 − ε)
1
n ). Hence, it is sufficient to show that σ∗ is a strict

equilibrium for λ sufficiently small.

If i ∈ E receives signal s0, then

Πi(σ
∗, λ) = λτ−|E|+1

|E|−1∑
gE=0

|E|−1∑
mE=gE

|NE|∑
mN=ĝ(mE ,mN )

(
|E| − 1

mE

)(
|NE|
mN

)
λmE+mN−τ+|E|−1(1− λ)n−1−mE−mNZi(gE, ĝ(mE,mN),mE,mN),

where ĝ(mE,mN) = τ − (|E| − 1− (me − ge)). Since

lim
λ→0

Πi(σ
∗, λ)λ−τ+|E|−1 =

(
|NE|

τ − |E|+ 1

)
Zi(0, τ − |E|+ 1, 0, τ − |E|+ 1),

which is strictly positive by elite-adverse correlation, there exists λ̄E ∈ (0, 1) such that

Πi(σ
∗, λ) > 0 for all elites who receive the signal s0 for all λ ∈ (0, λ̄E).

If i ∈ NE receives signal s0, then

Πi(σ
∗, λ) = λτ−|E|

|E|∑
gE=0

|E|∑
mE=gE

|NE|−1∑
mN=ĝ(mE ,mN )−1

(
|E|
mE

)(
|NE| − 1

mN

)
λmE+mN−τ+|E|(1− λ)n−1−mE−mNZi(gE, ĝ(mE,mN)− 1,mE,mN).
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Since

lim
λ→0

Πi(σ
∗, λ)λ−τ+|E| =

(
|NE|
τ − |E|

)
Zi(0, τ − |E|, 0, τ − |E|),

which is strictly negative by elite-adverse correlation, there exists λ̄NE ∈ (0, 1) such

that Πi(σ
∗, λ) < 0 for all non-elites who receive the signal s0 for all λ ∈ (0, λ̄NE).

As a result, σ∗ is an equilibrium for all λ ∈ (0,min{λ̄E, λ̄NE}). ■

Proof of Proposition 7

For some (PW , vW , vL, e), let i ∈ NE and w ∈ {τ + 1, ..., n}. Then,

P (GN = τ − e|Si = s0,M =MN = τ − e,W = w)

=

(
w − e

n− e

) (w−e−1
τ−e

)(
n−1−e−(w−e−1)

0

)(
n−1−e
τ−e

) +

(
n− w

n− e

) (w−e
τ−e

)(
n−1−e−(w−e)

0

)(
n−e−1
τ−e

) =

(
w−e
τ−e

)(
n−e
τ−e

)
P (GN = τ − e|Si = s0,M =MN = τ − e,W = τ) =

(
τ−e
τ−e

)(
n−e
τ−e

)
Therefore, for any w ∈ {τ, ..., n},

P (W = w|E0(e)) =

(
w−e
τ−e

)
PW (w)∑n

w′=τ

(
w′−e
τ−e

)
PW (w′)

.

where E0(e) = {Si = s0, G =M =MN = τ − e} for i ∈ NE . Since

P (Wi|E0(e),W = w) =
w − e− (τ − e)

n− e− (τ − e)
=
w − τ

n− τ
,

it follows that

Vi(E0(e)) =
n∑

w=τ

((
w − τ

n− τ

)
vW −

(
n− w

n− τ

)
vL

) (
w−e
τ−e

)
PW (w)∑n

w′=τ

(
w′−e
τ−e

)
PW (w′)

.

For 0 ≤ e < e′ ≤ τ and τ ≤ w < w′ ≤ n,(
w′ − e′

τ − e′

)(
w − e

τ − e

)
<

(
w − e′

τ − e′

)(
w′ − e

τ − e

)
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and so PW (.|E0(e)) ≽LR PW (.|E0(e
′)). Since P (Wi|E0(e),W = w) is strictly increasing

in w for i ∈ NE , it follows that Vi(E0(e)) ≥ Vi(E0(e
′)). ■
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