Sanchit Chaturvedi (Stanford), Jonathan Luk (Stanford), and I just submitted the paper “The Vlasov–Poisson–Landau system in the weakly collisional regime”, where we prove Landau damping and extra dissipation for plasmas modeled by the physical Vlasov-Poisson-Landau system in the weakly collisional regime , where is the collisional parameter. The results are obtained for Sobolev data that are -close to global Maxwellians on the torus . While Landau damping is a classical subject in plasma physics that predicts mixing and relaxation without dissipation of the electric field in a plasma, extra dissipation arises due to the interplay between phase mixing and entropic relaxation, or between transport and diffusion, which enhances decay to a faster rate than the usual diffusion rate. In this blog post, I give a flavor of the proof of our results, where we develop a purely energy method which combines Guo’s weighted energy method with the hypocoercive energy method and the Klainerman’s vector field method.
Plasma Physics
Plasma echoes near stable Penrose data
Echoes in a plasma are the excitement of new waves due to nonlinear interaction. The excitement may happen at an arbitrarily large time, which is the main source of difficulties in understanding Landau damping. For analytic data, the echoes are suppressed as the electric field is exponentially localized in time, and the nonlinear Landau damping holds for such data, as was first obtained by Mouhot and Villani in their celebrated work (Acta Math 2011; see also the extension to include Gevrey data). The nonlinear Landau damping remains largely elusive for less regular data (e.g., data with Sobolev regularity).
Recently, in a collaboration with E. Grenier (ENS Lyon) and I. Rodnianski (Princeton), we give an elementary proof of the known Landau damping results, which I also blogged it here, that were seen as a perturbation of the free transport dynamics, whose damping is direct (that is, the phase mixing). In the companion paper with E. Grenier and I. Rodnianski, we construct a class of echo solutions, which are arbitrarily large in any Sobolev spaces (in particular, they do not belong to the analytic or Gevrey classes studied by Mouhot and Villani), but nonetheless, the nonlinear Landau damping holds. In this blog post, I shall briefly discuss the plasma echo mechanism and our new results.
Landau damping for analytic and Gevrey data
Landau damping is a classical subject in Plasma Physics, which studies decay of the electric field in a collisionless plasma in the large time. The damping was discovered and fully understood by Landau in the 40s for the linearized evolution near Maxwellians, and later extended by O. Penrose in the 60s for general spatially homogenous equilibria. The first mathematical proof of the nonlinear Landau damping was given by Mouhot and Villani for analytic data in their celebrated work (Acta Math, 2011). Their proof was then simplified, and the result was extended by Bedrossian, Masmoudi, and Mouhot to include data in certain Gevrey classes (Annals of PDEs, 2016).
Recently, in a collaboration with E. Grenier (ENS Lyon) and I. Rodnianski (Princeton), we give an elementary proof of these same results, which I shall give a sketch of it in this blog post. To avoid some tedious algebra, I mainly focus on the analytic case, which is precisely the case originally studied by Mouhot and Villani, leaving some remarks to the Gevrey cases at the very end of the post, where you’ll also find the slides of my recent lectures over Zoom on this topics.
On the non-relativistic limit of Vlasov-Maxwell
In this note, I briefly explain my recent joint work with D. Han-Kwan (CNRS, Ecole polytechnique) and F. Rousset (Paris-Sud) on the non-relativistic limit of Vlassov-Maxwell. Precisely, we consider the relativistic Vlasov-Maxwell system, modeling the dynamics of electrons with electron density distribution , which reads
on , with the relativistic velocity .
Stability of a collisionless plasma
What is a plasma? A plasma is an ionized gas that consists of charged particles: positive ions and negative electrons. To describe the dynamics of a plasma, let be the (nonnegative) density distribution of ions and electrons, respectively, at time , position , and particle velocity (or momentum) . The dynamics of a plasma is commonly modeled by the Vlasov equations
Nonlinear instability of Vlasov-Maxwell systems in the classical and quasineutral limits
Daniel Han-Kwan and I have just submitted a paper entitled: “Nonlinear instability of Vlasov-Maxwell systems in the classical and quasineutral limits”, which is also available on arxiv: arXiv:1506.08537. In this paper, we study the instability of solutions to the relativistic Vlasov-Maxwell systems in two limiting regimes: the classical limit when the speed of light tends to infinity and the quasineutral limit when the Debye length tends to zero. First, in the classical limit , with being the inverse of the speed of light, we construct a family of solutions that converge initially polynomially fast to a homogeneous solution of Vlasov-Poisson in arbitrarily high Sobolev norms, but become of order one away from in arbitrary negative Sobolev norms within time of order . Second, we deduce the invalidity of the quasineutral limit in in arbitrarily short time.