Dispersion for Schrödinger equations

The Schrödinger equation forms the basic principles of quantum mechanics (like that of Newton’s second law in classical mechanics). It also plays an important role in describing waves at an appropriate regime in classical fluid dynamics (e.g., water waves) and plasma physics (e.g., Langmuir’s waves or oscillations in a plasma!). In this quick note, I shall present a few basic properties and classical results for the Schrödinger equations, focusing mainly on the defocusing cubic nonlinear equations

\displaystyle i\partial_t u + \Delta u = |u|^2 u \ \ \ \ \ (1)

on {\mathbb{R}_+ \times \mathbb{R}^d}, {d\ge 1} (also known as the Gross-Pitaevskii equation). These notes are rather introductory and classical (e.g., Tao’s lecture notes), which I’m using as part of my lectures at the summer school that P. T. Nam and I are running this week on “the Mathematics of interacting Bose gases” at VIASM, Hanoi, Vietnam (August 1-5, 2022)!

Continue reading

Madelung version of Schrödinger: a link between classical and quantum mechanics

This week I am at the Wolfgang Pauli Institute (WPI) in Vienna for the summer school on “Schrödinger equations”. Several interesting talks on or related to Schrödinger, including those of Y. Brenier on Madelung equations, F. Golse on mean field and classical limits of N-body quantum system, P. Germain on the derivation of the kinetic wave equation, C. Bardos on Maxwell-Boltzmann relation for electrons, F. Nier on Bosonic mean field dynamics, among others (still two days to go!). I also spoke on the Grenier’s iterative scheme, as discussed in my previous blog.

Continue reading