The inviscid limit problem for Navier-Stokes equations

A longstanding open problem is to establish the inviscid limit of classical solutions to the incompressible Navier-Stokes equations for smooth initial data on a domain with boundaries. The question is of great physical and mathematical interest, and it deeply links to the transition to turbulence in fluids that may possibly take place faster than expected due to the presence of a boundary. In this article, I shall give a quick overview of this subject, and then highlight some recent works with my former student, Trinh T. Nguyen, (currently a Van Vleck Assistant Professor at University of Wisconsin, Madison), whose main results establish the inviscid limit for smooth data that are only required to be analytic locally near the boundary. This may be the best possible type of positive results that one can hope for, given the known violent instabilities at the boundary, which I shall discuss below. Before getting on, this picture should already hint at the great delicacy in studying boundary layers (source internet):

Continue reading