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Abstract—Stability analysis of average value models (AVMs) of
vector-controlled Modular Multilevel Converters (MMCs) i s the
subject matter of this paper. Stability analysis of fundamental
frequency phasor-based AVMs of MMCs can be conducted in
a traditional linear time-invariant (LTI) framework throu gh
eigenvalue computation. This class of models do not consider
circulating current control loop and hence fails to capturesystem
instability that occurs in a certain range of gains of the circulating
current controller. We propose stability analysis in a linear time-
periodic (LTP) framework to solve this issue. To that end, a
nonlinear AVM is presented that considers the submodule (SM)
capacitor insertion dynamics and takes into account the output
and the circulating current control schemes in vector control
approach. Upon linearization, an LTP model is derived from
this averaged model. It is shown that the Poincaŕe multipliers
are indicative of system instability corresponding to a certain
range of gains of the circulating current controller.

Index Terms—Linear Time Periodic, Linear Time Varying,
Modular Multilevel Converter, Stability, State Transitio n Matrix.

I. I NTRODUCTION

T HE Modular Multilevel Converter (MMC) has gained
immense popularity since it was invented [1], [2]. The

focus of this paper is on the stability analysis of average
value models (AVMs) of MMCs. It presents a comprehensive
stability analysis framework for MMCs under closed-loop
control that takes into account the circulating current control
loops and the output current control loops. As an example,
vector control, which is popular in the industry, is considered
as the control methodology. The proposed analytical approach
is critical in developing insight into the zones of stability
of MMC controller gains, and therefore, can have significant
theoretical and practical importance.

Literature review shows that a lot of attention has been
focused on the modeling and control of MMCs [3] - [30]. On
the contrary, only a few papers [31] - [34] presented stability
analysis framework of the MMC. We divide the literature into
two parts: (A) papers that presented only modeling and control
philosophy, and (B) papers that presented stability analysis.
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In the following sections, we will conduct a comprehensive
review of this literature in order to distinguish our contribution.

A. Literature on MMC Modeling & Control

Xiaofeng et-al [3] proposed a model to represent the cir-
culating current in the MMC. The paper did not include the
controllers in their model and did not present any framework
for stability analysis. Kolb et-al [4] focused on a novel control
strategy for MMCs, which allows feeding a three-phase ma-
chine over its complete frequency range. Two operating modes
were proposed in this paper: a low frequency mode for startup
and low speed operation, and a high frequency mode for higher
speeds. The same authors proposed a cascaded control system
for MMCs for variable-speed drives [5]. The decoupled current
control strategy proposed in this paper transforms theabc

frame quantities intoαβ0 quantities for the phase currents and
the circulating currents (referred as ‘e’ currents). The proposed
control system ensures a dynamic balancing of the energies in
the MMC cells at minimum internal currents over the complete
frequency range. However, none of these papers presented
a comprehensive modeling framework that can be used for
stability analysis of MMCs. Munch et-al [6] wrote a very
important paper that showed that MMC can be modeled as
a periodic bilinear time-varying system capturing all currents
and energies. It assumed that the submodule (SM) capacitor
voltages are balanced and focused on horizontal and vertical
energy balancing among the group of phase modules (PMs).
The state-space model, although insightful, leads to a control
design that requires a p-periodic Linear Quadratic Regulator
(PLQR), which possesses periodic time-varying gains. No
obvious advantage was established over the existing constant
gain controllers that are more popular due to their simplicity.
Moreover, the paper did not offer any insight into the stability
analysis using such models. Reference [7] proposed a Linear-
Time-Invariant (LTI) state-apace model of the MMC, which is
not adequate to analyze the interaction between the circulating
current control and output current control loops.

Siemaszko et-al [8] presented a comparison between four
modulation strategies in MMCs. These strtegies are: direct
modulation, closed-loop control, open-loop control and Phase-
shifted Carrier-based Pulse-width modulation (PSCB-PWM).
Similar analysis was also reported in [9]. A fundamental-
frequency control of the circulating current of the MMC
was proposed in [10]. Although these three papers focus on
different control methodologies of MMC, they do not present
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any modeling and stability analysis. A nonlinear switching
function-based model of MMC was presented in [11], which
was used for time-domain simulation. Marcelo et-al presented
a model of the MMC based on switching function-driven
controllable voltage sources in [12] and proposed a vector
control strategy in [13] for output current control, circulating
current control, and average dc voltage control. Unfortunately,
due to the switched nature of the model, it is not straight-
forward to do stability analysis. Yan et-al [14] presented an
averaged model in rotatingd− q reference frame. The model
is oversimplified and does not consider circulating current.
Stefan et-al [15] proposed the reduction of cell capacitance by
injecting harmonic current in the circulating current. Steffen
et-al [16], [17] presented a nonlinear time-varying state-space
AVM of MMCs. The model described in [17] is of particular
interest, and has some similarities with the model developed
in this paper. The key difference however, is that, in this paper
the closed loop control is also considered within the model.
More importantly, an approach for stability analysis has also
been presented in our paper, which was not done in [17]. Many
other papers including [18] - [26] also focused on modeling
and control of MMCs without considering any framework for
stability analysis. Teeuwsen et-al [27] presented a positive-
sequence fundamental frequency model of MMCs for phasor
simulation with large AC systems. This model cannot capture
the circulating current and corresponding control loops. A
fundamental frequency AVM, called the Type6 model, was
reported in [28] and [29]. These models can also be used
for phasor-based simulations. In this paper, we shall call such
models ‘phasor-based AVMs.’ Phasor-based AVMs neglect the
dynamics of the submodule (SM) capacitors and, therefore,
do not capture the circulating current. Upon linearization,
this class of models can be treated as linear time-invariant
(LTI) and traditional eigenvalue analysis can be performedto
ascertain stability. We will demonstrate that there are different
regions of gains of the circulating current controller thatcan
destabilize the MMC. Since the phasor-based AVMs do not
consider the circulating current control loop, it can not indicate
such instability. The objective of this work is to present a
modeling and stability analysis framework that solves this
problem.

It is important to note that the operating principle of MMCs
is fundamentally different from other VSC topologies. Unlike
the conventional VSC topologies (e.g.,2 or 3-level), the MMC
operates based onphysical modificationof its circuit, i.e.,
insertion and bypassing of its SMs in a discrete manner. The
AVM presented in [30] approximates the SM insertion and
bypassing as a continuous function, and, thus, captures the
circulating currents flowing through the arms.

B. Literature on Stability Analysis of MMC

Although a lot of work has been done on the modeling
and control aspect of MMCs, very little has been reported on
establishing a comprehensive stability analysis framework of
MMCs that considers closed-loop control, e.g. vector control
approach. The global asymptotic stability of MMCs was ana-
lyzed in [31], which did not consider any closed-loop control

strategy for stability analysis. In [32] and [33], the authors
studied the stability of the MMC as an open-loop system. They
made multiple simplifying assumptions to convert the linear
time-varying (LTV) model into an LTI model. Hagiwara et-
al [34] used Routh-Hurwitz stability criterion for conducting
stability analysis of one arm of the MMC converter where only
the circulating current was considered as the state variable.

C. Motivation, Contribution & Application of this paper

In view of the above literature review, it is clear that

• Papers that presented stability analysis of MMCs either
modeled systems under open-loop conditions or made
quite a few simplifying assumptions to avoid complexities
of a rigorous stability analysis.

• A modeling framework of MMCs considering closed-
loop control, which is suitable for stability analysis, has
not been presented.

• An analytical method for rigorous stability study is neces-
sary. It will be shown in this paper that traditional eigen-
value analysis fails to detect the regions of instability of
MMCs under closed-loop control.

The AVM introduced in this paper, while complex, considers
the closed-loop control system in the modeling framework.
Moreover, it presents a rigorous stability analysis approach
without simplifying assumptions.

The key contributions of this paper are:

• It presents a comprehensive modeling framework that
augments the AVM that considers SM insertion dynamics
with widely-used vectorial control for the output current
control loop and the circulating current control loop.

• It proposes a stability analysis methodology of MMCs in
a linear time-periodic (LTP) framework.

• It demonstrates through case studies that the proposed
approach can indicate a range of compensator gains of the
circulating current control scheme which can destabilize
the MMC.

The proposed analytical approach is critical in developing
insight into the zones of stability of MMC controller gains,and
therefore, can have significant theoretical and practical impor-
tance. It should be mentioned that the proposed technique is
applicable for any control philosophy (not limited to vector
control), as long as the closed-loop system can be represented
in the form of an LTP model.

II. OVERVIEW OF MMC CONTROL SYSTEM

Figure 1 shows a circuit diagram of thejth phase of
an MMC. The MMC is connected to the host ac system
through a transformer represented by its series resistanceand
leakage inductance. The MMC control system has three key
functionalities:

• Balancing Control:The capacitor voltages across all SMs
shown in Fig. 1 must be balanced and kept equal. Dif-
ferent voltage balancing techniques have been proposed
in literature, e.g. [35] - [42].

• Circulating Current Control:Second harmonic circulat-
ing current originates from unbalance in the arm voltages.
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Fig. 1. Schematic of thejth phase (j = a, b, c) of the MMC.

This distorts the arm current and increases the dc voltage
ripple in SMs. References [43] - [48] are a few papers
from the vast literature in this area that have proposed
circulating current control strategies.

• Output Current Control:The output current or phase
currents are not affected by the circulating current and
can be controlled by decoupled current control approach.

Throughout this paper, it is assumed that the voltages across all
the SMs are balanced and the dc-side voltagevdc is constant.

III. PHASOR-BASED AVM OF MMC

The phasor-based AVM [28] is derived with the following
assumptions:

• SM capacitor insertion dynamics is neglected.
• Second harmonic circulating current is completely sup-

pressed.
• The model is derived in a synchronously rotatingd − q

reference frame assuming no harmonic content in the arm
voltagesv1j andv2j .

From Fig. 1, applying KCL in phasej, one obtains

i1j =
ij

2
+ idiffj

i2j = − ij

2
+ idiffj (1)

Applying KVL in phasej one obtains

vdc − v1j − v2j = 2L
didiffj

dt
+ 2Ridiffj

v2j

2
− v1j

2
− vgj = L′

dij

dt
+R′i1j (2)

whereL′ = Lt +
L
2

, andR′ = Rt +
R
2

. As shown in Fig. 1,
v1j and v2j are the voltages across the upper and the lower
arm SMs that are inon-state.

As mentioned before, the second harmonic component of
the circulating current is assumed to be perfectly suppressed.

Expressing the second equation of (2) in a synchronously
rotatingd− q reference frame, one can write:

L′
did

dt
= −R′id + L′ωiq + ed − vgd

L′
diq

dt
= −R′iq − L′ωid + eq − vgq (3)

where,ed = v2d−v1d
2

, eq =
v2q−v1q

2
. We consider widely-used

vector control strategy for the output current control loop,
which is described next.

A. Vector Control: Output Current Control Scheme

A VSC is commonly current-controlled through a vectorial
control strategy in a rotatingd − q reference frame [49].
Figure 2 shows the current control scheme of the MMC in
the d − q-frame with the decoupling feed-forward signals. A
Phase-Lock-Loop (PLL) ensures that thed-axis of the rotating
d− q reference frame is aligned with the grid voltage vector
~vg.

-

- -

Fig. 2. The current control scheme of the MMC in a rotatingd − q frame
of reference.

As Fig. 2 indicates, the reference voltage commands in the
d− q frame are given by

[

e∗d
e∗q

]

= Kp

[

i∗d
i∗q

]

−Kp

[

id
iq

]

+KI

[

xd1

xq1

]

+ωL′

[

−iq
id

]

+

[

vgd
vgq

]

(4)

wherexd1 andxq1 are the state variables of the Proportional-
Integral (PI) compensators in thed−q frame. Thed andq-axis
components of the ac grid voltage vector~vg and those of the
current~i are denoted byvgd, vgq, id, andiq, respectively. The
state-space equations of the PI compensators can be written
as

[

ẋd1

ẋq1

]

=

[

i∗d
i∗q

]

−
[

id
iq

]

(5)
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It is assumed that the converter delay is negligible and the
following control law as described in [43] is considered:

ed = e∗d =
v2d − v1d

2
, eq = e∗q =

v2q − v1q

2
(6)

B. State-space Model of Phasor-based AVM

Combining equations (3), (4), (5), and (6) one can write the
phasor-based AVM in the following state-space form:









i̇d
i̇q
ẋd1

ẋq1
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−Kp+R′

L′
0 KI

L′
0
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[

i∗d
i∗q

]

(7)
It can be seen that this model has4 state-variables and2
control variables. Next, we will discuss the stability analysis
of the same.

IV. STABILITY ANALYSIS: PHASOR-BASED AVM

Equation (7) shows that

• The model is linear time-invariant (LTI) in nature
• The state matrix is independent of the circulating current

controller gains

Traditional eigenvalue computation can be performed to ana-
lyze the stability of this system. Clearly, any instabilitycaused
by the circulating current controller will not be captured.In
Section VII, we will do eigenvalue analysis for a test system
to highlight this point.

This sets up the motivation for developing a comprehensive
modeling and stability analysis framework that will be ableto
solve such issues.

V. PROPOSEDAVM OF MMC CONSIDERING SM
INSERTIONDYNAMICS

Unlike the phasor-based AVM, the insertion of SM capac-
itances was considered in this model, as proposed in [30].
In practice, the change in the total capacitance of one arm
of the converter shown in Fig. 1 will happen in a discrete
manner. As the number of SMs increase, this variation can be
approximated using a continuous function.

Let η∗Uj andη∗Lj denote the fractions of the total number of
SMs in the upper and the lower arm of phasej, which are in
on-state. Variablesη∗Uj andη∗Lj are control commands, which
are obtained from the output current control scheme and the
circulating current control scheme. SinceC is the capacitance
of each SM andN is the total number of SMs in each arm,
the equivalent capacitance of the modules inon-stateis given
by C

Nη∗

Uj

for the upper arm and C
Nη∗

Lj

for the lower arm. The

capacitor voltage dynamics of the upper and the lower arm
SMs of phasej can be written as

C

Nη∗Uj

dvUj

dt
= i1j

C

Nη∗Lj

dvLj

dt
= i2j (8)

where vUj and vLj are the voltages across all SMs in the
upper arm and the lower arm of thejth phase, respectively.

In this work, the dc-side voltagevdc is assumed constant.
From (1), (2), and (8) a nonlinear AVM can be formulated for
the MMC, as:

f1j =
dvUj

dt
=

N

C

(

ij

2
+ idiffj

)

η∗Uj (9)

f2j =
dvLj

dt
=

N

C

(

− ij

2
+ idiffj

)

η∗Lj (10)

f3j =
didiffj

dt
=

1

2L

(

vdc − 2Ridiffj − η∗UjvUj − η∗LjvLj

)

(11)

f4j =
dij

dt
=

1

L′

(

−vgj −R′ij +
η∗LjvLj

2
−

η∗UjvUj

2

)

(12)

We shall proceed from where we left in Section III-A and
develop the framework for including the output current control
scheme into our model, which is described next.

A. Vector Control: Output Current Control Scheme

Continuing from where we were in Section III-A, let the ac
system phase voltages be

vga = Vgm cosωt

vgb = Vgm cos

(

ωt− 2π

3

)

vgc = Vgm cos

(

ωt− 4π

3

)

(13)

Assumingρ = ωt, the reference voltage corresponding to
phasea can be derived as:

e∗a =
[

cos ρ − sin ρ
] [

e∗d e∗q
]T

(14)

Pre-multiplying (4) by
[

cos ρ − sin ρ
]

, we get:

e∗a = Kp

{

i∗d cos ρ− i∗q sin ρ
}

−Kpia +KIxa1 + vga

− ωL′ {id sin ρ+ iq cos ρ} (15)

wherexa1 = [ cos ρ − sin ρ ]
[

xd1 xq1

]T
. We as-

sume that no zero-sequence current can flow in the system,
i.e.,

ia + ib + ic = 0 (16)

With this assumption, we can write:

id sin ρ+ iq cos ρ =
1√
3
(ib − ic) =

1√
3
(ia + 2ib) (17)
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Keeping the identities of the reference input quantitiesi∗d
and i∗q , one can derive the equation fore∗a as

e∗a = Kp

(

i∗d cos ρ− i∗q sin ρ
)

−
(

Kp +
ωL′

√
3

)

ia +KIxa1

+ vga −
2ωL′

√
3

ib (18)

It can be observed that the voltage referencee∗a is cross-
coupled with phase-b current. Fundamentally, this coupling
implies that the reference voltage of one phase is not only
determined by the voltage, current, and PI-controller state
variable of that phase, but also by the current of the other
phase.

Following similar steps, the reference voltage for phase-b

can be derived as

e∗b = Kp

{

i∗d cos

(

ρ− 2π

3

)

− i∗q sin

(

ρ− 2π

3

)}

−
(

Kp −
ωL′

√
3

)

ib +KIxb1 + vgb +
2ωL′

√
3

ia (19)

The voltage reference for phase-c can be expressed in terms
of those of phasea and b. Therefore, from now on, only the
models for phasesa andb will be analyzed.

The state-space model of the PI compensators in a syn-
chronously rotatingd − q reference frame was described in
equation (5). Transforming thed-q frame quantities to phase
quantities, one obtains

f5a =
dxa1

dt
= − ω√

3
(xa1 + 2xb1)− ia +

(

i∗d cos ρ− i∗q sin ρ
)

(20)

f5b =
dxb1

dt
=

ω√
3
(2xa1 + xb1)− ib + i∗d cos

(

ρ− 2π

3

)

− i∗q sin

(

ρ− 2π

3

)

(21)

Equations (20) and (21) will be augmented with equations
(9) through (12) while formulating the nonlinear state-space
model described in Section V-D.

Next, we will include the circulating current controller in
the model.

B. Vector Control: Circulating Current Control Scheme

The circulating current [43],idiffj, is given by

idiffa =
idc

3
+ I2f cos (2ωt+ ϕ)

idiffb =
idc

3
+ I2f cos

(

2ωt+ ϕ− 4π

3

)

idiffc =
idc

3
+ I2f cos

(

2ωt+ ϕ− 2π

3

)

(22)

The circulating current is controlled in ad − q reference
frame that rotates with an angular speed of2ω [43], as Fig. 3
illustrates.

-

-

-

Fig. 3. Scheme for regulation of circulating current.

As Fig. 3 indicates, the reference voltage commands in the
d− q reference frame can be written as
[

e∗2fd
e∗
2fq

]

= Kpf

[

i∗2fd
i∗
2fq

]

−Kpf

[

i2fd
i2fq

]

+KIf

[

xd2

xq2

]

+2ωL

[

i2fq
−i2fd

]

(23)
Assumingξ = 2ωt, one can derive the corresponding voltage
references for phasea andb as

e∗fa = Kpf

(

i∗2fd cos ξ − i∗2fq sin ξ
)

−
(

Kpf +
2ωL√

3

)(

idiffa −
idc

3

)

+KIfxa2

− 4ωL√
3

(

idiffb −
idc

3

)

(24)

e∗fb = Kpf

{

i∗2fd cos

(

ξ − 4π

3

)

− i∗2fq sin

(

ξ − 4π

3

)}

−
(

Kpf − 2ωL√
3

)(

idiffb −
idc

3

)

+KIfxb2 +
4ωL√

3

(

idiffa −
idc

3

)

(25)

The state variables of the PI compensators, Fig. 3, in thed−q

frame are related to the corresponding phase values as
[

xa2

xb2

]

=

[

cos ξ − sin ξ
cos

(

ξ − 4π
3

)

− sin
(

ξ − 4π
3

)

] [

xd2

xq2

]

(26)
The state-space equations of the PI compensators can be

written as
[

ẋd2

ẋq2

]

=

[

i∗2fd
i∗
2fq

]

−
[

i2fd
i2fq

]

(27)

Transforming thed-q frame quantities toa andb-phase quan-
tities we get
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f6a =
dxa2

dt
=

2ω√
3
(xa2 + 2xb2)−

(

idiffa −
idc

3

)

+
(

i∗2fd cos ξ − i∗2fq sin ξ
)

(28)

f6b =
dxb2

dt
= − 2ω√

3
(2xa2 + xb2)−

(

idiffb −
idc

3

)

+

{

i∗2fd cos

(

ξ − 4π

3

)

− i∗2fq sin

(

ξ − 4π

3

)}

(29)

Equations (28) and (29) will be augmented with equations
(9) through (12), (20), and (21) while formulating the nonlin-
ear state-space model.

C. Control Law

The control commandsη∗Uj andη∗Lj are produced from the
control commandse∗j ande∗fj based on the relations

η∗Uj =
1

2
−

e∗j + e∗fj

vdc
(30)

η∗Lj =
1

2
+

e∗j − e∗fj

vdc
(31)

The following constraints need to be imposed on the control
commands

0 ≤ η∗Uj ≤ 1, 0 ≤ η∗Lj ≤ 1 (32)

D. State-space Model of AVM with SM Insertion Dynamics

Equations (9) through (12), (20), (21), (28), and (29)
constitute a nonlinear state-space model for the MMC of the
form ẋ = f (x, u, z). These equations were put into boxes in
previous sections for ease of identification. Variablesη∗Uj and
η∗Lj in equations (9)-(12) are replaced by expressions ofe∗j
ande∗fj as in equations (18), (19), (24), (25), (30), and (31).
Since there are6 equations for each phase (phasesa andb), it
leads to12 state variables (x). In addition, there are4 control
variables (u) and 4 algebraic variables (z). These equations
are expressed in a compact form as shown below:

ẋ = f (x, u, z)

(33)

x = [ vUa vUb vLa vLb idiffa idiffb · · ·
ia ib xa1 xb1 xa2 xb2]T

(34)

u =
[

i∗d i∗q i∗2fd i∗2fq
]T

(35)

z =
[

vga vgb vdc idc
]T

(36)

As mentioned before, equations for phasesa andb are suf-
ficient for the dynamic model, in view of the assumption (16).

VI. PROPOSEDSTABILITY ANALYSIS: AVM
CONSIDERING SM INSERTIONDYNAMICS

As described in Section V-D, the state-space model is
nonlinear in nature. To do stability analysis, we will linearize
this model around an operating point, as described next.

A. Linearized State-Space Model

The nonlinear state-space model (33) can be linearized
around a nominal operating point(x0, u0, z0), and expressed
in the form

∆ẋ(t) = A(t)∆x(t) +B(t)∆u(t) + Γ(t)∆z(t),

A(t) ∈ ℜn×n, B(t) ∈ ℜn×m,Γ(t) ∈ ℜn×p

A(t) =
∂f

∂x

∣

∣

∣

∣

0

, B(t) =
∂f

∂u

∣

∣

∣

∣

0

,Γ(t) =
∂f

∂z

∣

∣

∣

∣

0

(37)

The subscript‘0′ is used to signify values at the current
operating condition. The non-zero elements of the matrixA(t),
B(t), andΓ(t) are given below.

Elements of A(t) matrix:

A(1, 5) =
N

C

{

η∗Ua0 +
1

vdc0

(

ia0

2
+ idiffa0

)(

Kpf +
2ωL√

3

)}

A(1, 6) =
N

C

4ωL√
3vdc0

(

ia0

2
+ idiffa0

)

A(1, 7) =
N

C

{

η∗Ua0

2
+

1

vdc0

(

ia0

2
+ idiffa0

)(

Kp +
ωL′

√
3

)}

A(1, 8) =
N

C

2ωL′

√
3vdc0

(

ia0

2
+ idiffa0

)

A(1, 9) = −N

C

KI

vdc0

(

ia0

2
+ idiffa0

)

A(1, 11) = −N

C

KIf

vdc0

(

ia0

2
+ idiffa0

)

A(2, 5) = −N

C

4ωL√
3vdc0

(

ib0

2
+ idiffb0

)

A(2, 6) =
N

C

{

η∗Ub0 +
1

vdc0

(

ib0

2
+ idiffb0

)(

Kpf − 2ωL√
3

)}

A(2, 7) = −N

C

2ωL′

√
3vdc0

(

ib0

2
+ idiffb0

)

A(2, 8) =
N

C

{

η∗Ub0

2
+

1

vdc0

(

ib0

2
+ idiffb0

)(

Kp −
ωL′

√
3

)}

A(2, 10) = −N

C

KI

vdc0

(

ib0

2
+ idiffb0

)

A(2, 12) = −N

C

KIf

vdc0

(

ib0

2
+ idiffb0

)

A(3, 5) =
N

C

{

η∗La0 +
1

vdc0

(

− ia0

2
+ idiffa0

)(

Kpf +
2ωL√

3

)}

A(3, 6) = −N

C

4ωL√
3vdc0

(

− ia0

2
+ idiffa0

)

A(3, 7) =
N

C

{

−η∗La0

2
− 1

vdc0

(

− ia0

2
+ idiffa0

)(

Kp +
ωL′

√
3

)}

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TPEL.2015.2480845

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

A(3, 8) = −N

C

2ωL′

√
3vdc0

(

− ia0

2
+ idiffa0

)

A(3, 9) =
N

C

KI

vdc0

(

− ia0

2
+ idiffa0

)

A(3, 11) = −N

C

KIf

vdc0

(

− ia0

2
+ idiffa0

)

A(4, 5) = −N

C

4ωL√
3vdc0

(

− ib0

2
+ idiffb0

)

A(4, 6) =
N

C

{

η∗Lb0 +
1

vdc0

(

− ib0

2
+ idiffb0

)(

Kpf − 2ωL√
3

)}

A(4, 7) =
N

C

2ωL′

√
3vdc0

(

− ib0

2
+ idiffb0

)

A(4, 8) =
N

C

{

−η∗Lb0

2
− 1

vdc0

(

− ib0

2
+ idiffb0

)(

Kp −
ωL′

√
3

)}

A(4, 10) =
N

C

KI

vdc0

(

− ib0

2
+ idiffb0

)

A(4, 12) = −N

C

KIf

vdc0

(

− ib0

2
+ idiffb0

)

A(5, 1) = −η∗Ua0

2L
,A(5, 3) = −η∗La0

2L

A(5, 5) =
1

L

{

−R− 1

2vdc0

(

Kpf +
2ωL√

3

)

(vUa0 + vLa0)

}

A(5, 6) = − 2ω√
3vdc0

(vUa0 + vLa0)

A(5, 7) =
1

2L

1

vdc0

(

Kp +
ωL′

√
3

)

(−vUa0 + vLa0)

A(5, 8) =
1

L

ωL′

√
3vdc0

(−vUa0 + vLa0)

A(5, 9) =
1

2L

KI

vdc0
(vUa0 − vLa0)

A(5, 11) =
1

2L

KIf

vdc0
(vUa0 + vLa0)

A(6, 2) = −η∗Ub0

2L
,A(6, 4) = −η∗Lb0

2L

A(6, 5) =
2ω√
3vdc0

(vUb0 + vLb0)

A(6, 6) =
1

L

{

−R− 1

2vdc0

(

Kpf − 2ωL√
3

)

(vUb0 + vLb0)

}

A(6, 7) =
1

L

ωL′

√
3vdc0

(vUb0 − vLb0)

A(6, 8) =
1

2L

1

vdc0

(

Kp −
ωL′

√
3

)

(−vUb0 + vLb0)

A(6, 10) =
1

2L

KI

vdc0
(vUb0 − vLb0)

A(6, 12) =
1

2L

KIf

vdc0
(vUb0 + vLb0)

A(7, 1) = −η∗Ua0

2L′
, A(7, 3) =

η∗La0

2L′

A(7, 5) =
1

L′

1

2vdc0

(

Kpf +
2ωL√

3

)

(vLa0 − vUa0)

A(7, 6) =
1

L′

2ωL√
3vdc0

(vLa0 − vUa0)

A(7, 7) =
1

L′

{

−R′ − 1

2vdc0

(

Kp +
ωL′

√
3

)

(vLa0 + vUa0)

}

A(7, 8) = − ω√
3vdc0

(vLa0 + vUa0)

A(7, 9) =
1

2L′

KI

vdc0
(vLa0 + vUa0)

A(7, 11) =
1

2L′

KIf

vdc0
(−vLa0 + vUa0)

A(8, 2) = −η∗Ub0

2L′
, A(8, 4) =

η∗Lb0

2L′

A(8, 5) = − 1

L′

2ωL√
3vdc0

(vLb0 − vUb0)

A(8, 6) =
1

L′

1

2vdc0

(

Kpf − 2ωL√
3

)

(vLb0 − vUb0)

A(8, 7) =
ω√
3vdc0

(vLb0 + vUb0)

A(8, 8) =
1

L′

{

−R′ − 1

2vdc0

(

Kp −
ωL′

√
3

)

(vLb0 + vUb0)

}

A(8, 10) =
1

2L′

KI

vdc0
(vLb0 + vUb0)

A(8, 12) =
1

2L′

KIf

vdc0
(−vLb0 + vUb0)

A(9, 7) = −1, A(9, 9) = − ω√
3
, A(9, 10) = − 2ω√

3

A(10, 8) = −1, A(10, 9) =
2ω√
3
, A(10, 10) =

ω√
3

A(11, 5) = −1, A(11, 11) =
2ω√
3
, A(11, 12) =

4ω√
3

A(12, 6) = −1, A(12, 11) = − 4ω√
3
, A(12, 12) = − 2ω√

3

Elements of B(t) matrix:

B(1, 1) = −NKp cos ρ

Cvdc0

(

ia0

2
+ idiffa0

)

B(1, 2) =
NKp sin ρ

Cvdc0

(

ia0

2
+ idiffa0

)

B(1, 3) = −NKpf cos ξ

Cvdc0

(

ia0

2
+ idiffa0

)

B(1, 4) =
NKpf sin ξ

Cvdc0

(

ia0

2
+ idiffa0

)

B(2, 1) = − NKp

Cvdc0

(

ib0

2
+ idiffb0

)

cos

(

ρ− 2π

3

)

B(2, 2) =
NKp

Cvdc0

(

ib0

2
+ idiffb0

)

sin

(

ρ− 2π

3

)

B(2, 3) = −NKpf

Cvdc0

(

ib0

2
+ idiffb0

)

cos

(

ξ − 4π

3

)

B(2, 4) =
NKpf

Cvdc0

(

ib0

2
+ idiffb0

)

sin

(

ξ − 4π

3

)

B(3, 3) = −NKpf cos ξ

Cvdc0

(

− ia0

2
+ idiffa0

)

B(3, 4) =
NKpf sin ξ

Cvdc0

(

− ia0

2
+ idiffa0

)

B(4, 1) =
NKp

Cvdc0

(

− ib0

2
+ idiffb0

)

cos

(

ρ− 2π

3

)

B(4, 2) = − NKp

Cvdc0

(

− ib0

2
+ idiffb0

)

sin

(

ρ− 2π

3

)
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B(4, 3) = −NKpf

Cvdc0

(

− ib0

2
+ idiffb0

)

cos

(

ξ − 4π

3

)

B(4, 4) =
NKpf

Cvdc0

(

− ib0

2
+ idiffb0

)

sin

(

ξ − 4π

3

)

B(5, 1) =
Kp cos ρ

2Lvdc0
(vUa0 − vLa0)

B(5, 2) =
Kp sin ρ

2Lvdc0
(−vUa0 + vLa0)

B(5, 3) =
Kpf cos ξ

2Lvdc0
(vUa0 + vLa0)

B(5, 4) =
Kpf sin ξ

2Lvdc0
(−vUa0 − vLa0)

B(6, 1) =
Kp

2Lvdc0
(vUb0 − vLb0) cos

(

ρ− 2π

3

)

B(6, 2) =
Kp

2Lvdc0
(−vUb0 + vLb0) sin

(

ρ− 2π

3

)

B(6, 3) =
Kpf

2Lvdc0
(vUb0 + vLb0) cos

(

ξ − 4π

3

)

B(6, 4) =
Kpf

2Lvdc0
(−vUb0 − vLb0) sin

(

ξ − 4π

3

)

B(7, 1) =
Kp cos ρ

2L′vdc0
(vLa0 + vUa0)

B(7, 2) =
Kp sin ρ

2L′vdc0
(−vLa0 − vUa0)

B(7, 3) =
Kpf cos ξ

2L′vdc0
(−vLa0 + vUa0)

B(7, 4) =
Kpf sin ξ

2L′vdc0
(vLa0 − vUa0)

B(8, 1) =
Kp

2L′vdc0
(vLb0 + vUb0) cos

(

ρ− 2π

3

)

B(8, 2) =
Kp

2L′vdc0
(−vLb0 − vUb0) sin

(

ρ− 2π

3

)

B(8, 3) =
Kpf

2L′vdc0
(−vLb0 + vUb0) cos

(

ξ − 4π

3

)

B(8, 4) =
Kpf

2L′vdc0
(vLb0 − vUb0) sin

(

ξ − 4π

3

)

B(9, 1) = cos ρ,B(9, 2) = − sin ρ

B(10, 1) = cos

(

ρ− 2π

3

)

, B(10, 2) = − sin

(

ρ− 2π

3

)

B(11, 3) = cos ξ, B(11, 4) = − sin ξ

B(12, 3) = cos

(

ξ − 4π

3

)

, B(12, 4) = − sin

(

ξ − 4π

3

)

Elements of Γ(t) matrix:

Γ(1, 1) = − N

Cvdc0

(

ia0

2
+ idiffa0

)

Γ(1, 3) =
Ne∗a0
Cv2dc0

(

ia0

2
+ idiffa0

)

Γ(1, 4) =
Nη∗Ua0

3C

Γ(2, 2) = − N

Cvdc0

(

ib0

2
+ idiffb0

)

Γ(2, 3) =
Ne∗b0
Cv2dc0

(

ib0

2
+ idiffb0

)

Γ(2, 4) =
Nη∗Ub0

3C

Γ(3, 1) =
N

Cvdc0

(

− ia0

2
+ idiffa0

)

Γ(3, 3) = −Ne∗a0
Cv2dc0

(

− ia0

2
+ idiffa0

)

Γ(3, 4) =
Nη∗La0

3C

Γ(4, 2) =
N

Cvdc0

(

− ib0

2
+ idiffb0

)

Γ(4, 3) = − Ne∗b0
Cv2dc0

(

− ib0

2
+ idiffb0

)

Γ(4, 4) =
Nη∗Lb0

3C

Γ(5, 1) =
1

2Lvdc0
(vUa0 − vLa0)

Γ(5, 3) =
1

2L

{

1 +
e∗a0
v2dc0

(−vUa0 + vLa0)

}

Γ(5, 4) = − R

3L

Γ(6, 2) =
1

2Lvdc0
(vUb0 − vLb0)

Γ(6, 3) =
1

2L

{

1 +
e∗b0
v2dc0

(−vUb0 + vLb0)

}

Γ(6, 4) = − R

3L

Γ(7, 1) =
1

L′

{

−1 +
1

2vdc0
(vUa0 + vLa0)

}

Γ(7, 3) =
e∗a0

2L′v2dc0
(−vLa0 − vUa0)

Γ(8, 2) =
1

L′

{

−1 +
1

2vdc0
(vUb0 + vLb0)

}

Γ(8, 3) =
e∗b0

2L′v2dc0
(−vLb0 − vUb0)

Next, we will analyze the stability properties of this lin-
earized model.

B. Linear Time Periodic Framework & Analysis

From the expressions ofA(t), B(t), andΓ(t), it is clear
that the elements of these matrices are functions of instan-
taneous values of different variables (e.g. voltages, currents,
and controller state variables). From the physical properties of
MMC, it is known that some of these have only fundamental
frequency component while others have dc, fundamental,
second harmonic components, or a combination thereof. Let
the nominal operating condition for phase-a variables be:

e∗a0 = Em0 cos(ωt+ θea0)
e∗fa0 = Emf0 cos (2ωt+ θefa0)

ia0 = Im0 cos(ωt+ θia0)
idiffa0 = idc0

3
+ I2f0 cos(2ωt+ ϕ0)

vUa0 = VU00 + VU10 cos(ωt+ θU10) + VU20 cos(2ωt+ θU20)
vLa0 = VL00 + VL10 cos(ωt+ θL10) + VL20 cos(2ωt+ θL20)
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Similar expressions can be written for the phaseb variables.
Substituting these variables in the expressions ofA(t), B(t),

and Γ(t), it is clear that the linear model is time-varying.
Stability analysis of such a linear time-varying (LTV) system is
challenging since modal analysis methods, such as eigenvalue
analysis used for linear time-invariant (LTI) systems, cannot
be applied.

It can be seen that the state-space model (37) is primarily
TA-periodic with a time-period ofTA = ω

2π
. Hence, we

can categorize this as a Linear Time-Periodic (LTP) system.
Therefore, the stability properties of LTP systems [50], [51]
can be applied in this case.

For the sake of completeness, one can recall the following
definitions and fundamental concepts relating the LTP sys-
tems [50], [51]:

1) Fundamentals of Linear Time-Periodic (LTP) Systems:

• Periodic Function:A function is primarilyTA-periodic
or periodic with primary periodTA if TA ∈ ℜ+∗ is the
smallest number such that

f(t) = f(t+ TA), ∀t (38)

whereℜ+∗ denotes the set of real strictly positive num-
bers.

• Linear Time-Periodic (LTP) system:A Linear Time-
Periodic (LTP) system is characterized by the following
representation

∆ẋ(t) = A(t)∆x(t) +B(t)∆u(t) + Γ(t)∆z(t),

∆x(t) ∈ ℜn,∆u(t) ∈ ℜm,∆z(t) ∈ ℜp

Here, the elements of matricesA(t), B(t), andΓ(t) are
known, real-valued, piecewise continuous, primarilyTA-
periodic functions defined onℜ+.

• Fundamental Matrix:Any nonsingular solution of the
homogeneous differential system∆ẋ (t) = A(t)∆x (t)
is known as its Fundamental Matrix.

• State Transition Matrix (STM):There exists a unique
fundamental matrixΦ(t, t0) of the homogeneous system
mentioned above, such thatΦ(t0, t0) = I. This matrix is
called the State Transition Matrix (STM) of the system.
Without any loss of generality, we shall assumet0 = 0.

• Monodromy Matrix:The STM computed after one time-
period TA, i.e. Φ(TA, 0) is known as the Monodromy
Matrix.

• Poincaŕe multipliers:The eigenvalues of the Monodromy
matrix are called the Poincaré multipliers.

For the stability analysis of the LTP systems, it is essential
to calculate the state-transition matrix (STM)Φ(·, 0). In most
cases, the STM can not be computed in closed form. For-
tunately, the computation of a monodromy matrixΦ(TA, 0),
which is essentially the STM after one time-periodTA, suffices
for stability analysis.

The monodromy matrixΦ(TA, 0) can be calculated by
numerically solving the equation∆ẋ(t) = A(t)∆x(t) with n

different initial conditionsxr(0) = ǫr, r = 1, 2, . . . n, where
ǫr = [δri] is the rth column of the identity matrixI [50].
Let xr(TA), r = 1, 2, ..., n, be then independent solutions
obtained for each initial condition. Then the monodromy

matrix is given by:

Φ (TA, 0) =
[

x1(TA) x2(TA) . . . xn(TA)
]

(39)

As mentioned above, the eigenvalues of the monodromy matrix
are called the Poincaŕe multipliers. For an asymptotically
stable system, the Poincaré multipliers lie within the unit
circle.

Therefore, the steps for conducting stability analysis of the
proposed MMC model are summarized as follows:

• Step I: Derive the nonlinear state-space AVM of MMC
as described in equation (33).

• Step II: Develop the Linear Time-Periodic (LTP) model
of the MMC by linearizing the nonlinear AVM obtained
from Step I around an operating condition(x0, u0, z0) as
shown in equaion (37).

• Step III: Calculate the monodromy matrixΦ(TA, 0) by
numerical integration of∆ẋ(t) = A(t)∆x(t) with n

different initial conditionsxr(0) = ǫr, r = 1, 2, . . . n,
whereǫr = [δri] is therth column of the identity matrix
I [50]. This has been described before in more details.

• Step IV:Compute the Poincaré multipliers, i.e. the eigen-
values of the monodromy matrixΦ(TA, 0).

• Step V:If the largest magnitude of the Poincaré multiplier
is less than unity, then the MMC is considered asymp-
totically stable.

VII. C ASE STUDY

A. Test System

The test system consists of a401-level, 1000-MW, ±320-
kV MMC, Fig. 1, with the following parameters:

Rated MV A = 1059MVA,N = 400, C = 10 mF,

L = 50 mH,R = 0.5236 Ω,
Lt = 60 mH,Rt = 0.5236 Ω.

B. Benchmarking the AVM with SM Insertion Dynamics

The proposed nonlinear AVM of the MMC was described
in Section V and the state-space model was presented in
a compact form in subsection V-D. These differential equa-
tions was implemented using basic math blocks from MAT-
LAB/Simulink library and its response was benchmarked
against a detailed model built in PSCAD/EMTDC. The de-
tailed model considers individual SMs and the voltage balanc-
ing control for all 400 SMs per arm. The MMC simulation
model was developed in PSCAD/EMTDC in the following
way:

• The converter leg was modeled by two dependent voltage
sources, two resistances and two inductances. The termi-
nal voltage is connected to the ac grid through a leakage
reactance;

• Each dependent voltage source in the arm is controlled by
a hosted code that reads the arm currents and computes
the voltage of each submodule, generating the control
signal for the dependent voltage sources and forming
the final arm voltage. The hosted code has a500 kHz
sample frequency, allowing a high accuracy in the digital
computation;
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• The simulation model results were compared to other
simulation models where each submodule was created by
conventional electronic components from PSCAD library,
for M = 4, 6, 8, 10, and20, showing negligible error;

• Then, the simulation model was augmented forM = 400,
in order to simulate the system mentioned in the present
paper.

Such a benchmarking analysis gives us the confidence in
the accuracy of the AVM and any stability analysis that is
performed by linearizing such models.

The converter was assumed to control the real power (P )
and the reactive power (Q) at the PCC, Fig. 1. The PI
compensator parameters for the output current control scheme
and the circulating current control scheme were calculated

using the following equations:

Kp =
L′

τ
, KI =

R′

τ
, Kpf =

L

τf
, KIf =

R

τf

For benchmarking studies,1
τ
= 500 s−1 and 1

τf
= 2000 s−1

was chosen.

1) Enabling Circulating Current Control:The response of
different variables obtained from the nonlinear averaged model
(black trace) is compared against the detailed model (red trace)
in Fig. 4. During t = 0 − 3.0 s, the circulating current
controller is not activated. It can be seen that the converter
is controlling the real powerP at 1000 MW at unity power
factor. The circulating currentidiffa has a dc component and
a double frequency component. As expected, the phase current
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shown.

ia does not have any harmonics. The voltages across the upper
and lower arm SMs that are turned ON,v1a and v2a, have
second and third harmonics. It can be seen that, under steady
state, the dotted traces and the solid traces overlap almost
indistinguishably.

At t = 3.0 s, the circulating current controller is enabled.
The controller suppresses the second harmonic component
and only the dc component remains inidiffa. Following the
transients att = 3.0 s, harmonic content in voltagesv1a
and v2a are significantly reduced. It can also be observed
that the circulating current control scheme is not completely
decoupled from the output current control scheme. Transients
in real powerP , reactive powerQ, and phase currentia can
be observed. It can be seen that the response of the averaged
model very closely matches that of the detailed model.

The zoomed view ofv1a andv2a are shown in Fig. 5. One
can appreciate the close match between these models from this
figure. It can also be observed that the detailed model inserts
the SMs in a discrete manner as opposed to the averaged model
that treats the insertion of SMs as a continuous function.

C. Stability Analysis

1) Eigen Analysis of Phasor-based AVM:As described
in sections III-B and IV, stability of phasor-based AVM
can be analyzed through eigenvalue analysis. Considering
1

τ
= 500 s−1, eigenvalues were obtained from the state

matrix shown in equation (7). The eigenvalues are:λ =
[−500.0000− 36.9599 − 382.2588 − 154.7011]. Please note
that the eigenvalues are real, stable, and independent of the
circulating current controller gains.

2) Stability Analysis of AVM Considering SM Insertion
Dynamics: The nonlinear averaged model was linearized for
stability analysis. As mentioned in Section VI, the first step in
this process is to obtain a steady-state operating condition. In
this case, the steady-state condition(x0, u0, z0) was obtained
by numerical integration of (33) underP = 1000 MW and
Q = 0 MVAr with the circulating current controller enabled.

The values of the variables needed for computing matrixA of
the linearized model are:
e∗a0 = 276.60cos(ωt+ 0.14)
e∗fa0 = 19.35 cos (2ωt− 4.63)
ia0 = 2.45cos(ωt)
idiffa0 = 0.5250
vUa0 = 634.37+50.01cos(ωt−1.70)+16.95cos(2ωt−4.52)
vLa0 = 634.37+50.01cos(ωt+1.44)+16.95cos(2ωt−4.52)
where the angles are expressed in radians, voltages are in kV,
and currents are in kA. The values of the phase-b quantities
can be determined considering appropriate phase difference.

Under this nominal condition, the periodic nature of the
elements of the first, third, fifth, and seventh row of matrixA

are illustrated in Fig. 6. The monodromy matrix was computed
through numerical integration as mentioned in Section VI-B.
The corresponding Poincaré multipliers are:

µ= [0.8717 + 0.0000j 0.8427 + 0.0000j . . .

0.8380± 0.0655j 0.1437 + 0.0000j . . .

0.0066± 0.1032j 0.0130 + 0.0000j . . .

−0.0007± 0.0006j − 0.0000± 0.0000j]
T

Therefore, the system is stable as the multipliers lie within
the unit circle.

Next, the value of the PI controller parameters were changed
by varying the value of1

τf
. The locus of the maximum value

of the magnitude of the Poincaré multipliers with respect to
1

τf
is shown in Fig. 7. The operating condition corresponds to

P = 1000 MW, Q = 0 MVAr. It can be seen that an increase
in the value from2000 s−1 to 4400 s−1 moves the maximum
value of the magnitude of the Poincaré multipliers towards the
perimeter of the unit circle.

The value of 1
τf

was set to5000 s−1 and the simulation was
run for the conditionP = 1000 MW, Q = 0 MVAr. At t = 3.0
s, the circulating current controller is enabled. Figure 8 shows
the instability under such a scenario. The averaged model and
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the detailed model both demonstrate this phenomena.

When the value of1
τf

is reduced from2000 s−1, it can be
seen from Fig. 7 that the maximum value of|µ| reduces and
becomes minimum just above1500 s−1. As 1

τf
is reduced

further, the system approaches instability. Figure 9 shows
the response obtained from the averaged model. Instability
is observed in the response when1

τf
is set to150 s−1, with

the operating point corresponding toP = 1000 MW, Q = 0
MVAr. At t = 3.0 s, the circulating current controller is
enabled.

VIII. C ONCLUSION

A framework for stability analysis of the MMC is presented
based on the Linear Time-Periodic nature of the proposed
model. It has been shown that the proposed framework can
indicate the zones of instability for certain gains of the
circulating current controller, which can not be captured by
the traditional eigenvalue analysis of phasor-based AVM.
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