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Online Robust PCA for Malicious Attack-Resilience
in Wide-Area Mode Metering Application
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Abstract—This paper presents a method for detecting and
correcting malicious data corruptions in PMU measurements.
Detection of malicious injections is formulated as a compressed
sensing problem and the actual signals are recovered using
an online robust principal component analysis (PCA)-based
algorithm. Different patterns of malicious injection attacks on
PMU data are considered and the effect of corruption and
reconstruction using the algorithm is analyzed on wide-area
mode metering application. The performance of the proposed
algorithm has been evaluated with different subspace selection.
A suitable threshold for the algorithm is selected by a graphical
analysis of the receiver operating characteristics curve. Data from
a 16-machine, 5-area New England-New York system is used
along with a recursive modal estimation algorithm to validate
the effectiveness of the proposed approach under ambient and
transient conditions.

Index Terms—PMU, Compressed sensing, Cybersecurity,
Sparse optimization, Oscillation monitoring, Robust PCA

I. INTRODUCTION

THe power grid is becoming increasingly vulnerable to
cyber-attacks due to its ever growing dependence on

the wide area measurement systems (WAMS) integrated with
advanced sensors such as Phasor Measurement Units (PMUs).
As pointed out in [1], in spite of a dedicated Intranet-based
communication network in NASPInet architecture, it is not
immune to cyber-attacks. Also PMUs use civilian GPS signals,
which are prone to cyber attacks. A cyber attacker could gain
access of the communication network of PMUs via GPS spoof-
ing [2] and corrupt the data with carefully crafted anomalous
injections in some signals. Propagation of these corrupted
information [3] can affect WAMS-based applications [4] and
lead to inappropriate control decisions causing instability to
the network.
WAMS applications can be divided into two categories.

1. applications requiring full observability of the network
— e.g. voltage stability assessment of meshed networks. 2.
applications not requiring full network observability — e.g.
oscillation monitoring and stability assessment. The first type
of application requires the so called ‘dynamic’ state estima-
tion, which estimates system voltages and angles using PMU
measurements. In contrast ‘dynamic state’ estimation, which
estimates generators’ dynamic states like speed, power angle,
etc. from PMU measurements at generator terminals, falls
under the second type of application.
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In this work, our focus is on mode metering application
using PMU data, which also falls under the second category.
Mode meters are already operational in control centers of
many utilities including California ISO, PG&E, BPA [5], and
TVA [6], and a corresponding web-based version has been
deployed in 7 operations centers and 11 reliability coordinators
in the Eastern Interconnection [5] for quite some time.
Literature on false data injection (FDI) originated by cyber-

attacks in PMU dynamic data samples includes a common path
algorithm [7], a hybrid intrusion detection system [8], and a
Bayesian-based approximation filter proposed in [9]. Effect of
bad data or cyber intrusion detection in state estimation has
been rigorously studied in most of the past works [9]–[21].
Reference [12] proposed a solution for FDI, which can

detect corruptions in SCADA measurements used for ‘dynamic
state’ estimation utilizing a secure set of PMU measurements.
A similar work on detection of FDI attacks on state estimation
with the use of a secure set of PMUs has been reported in [13].
Marcos-et-al [14] have presented an iteratively reweighted
phase-phase correlator to detect randomly occuring outliers
at different instances in different PMU signals by exploiting
robust Mahalanobis distance. Leveraging the same metric,
reference [15] utilizes network model and correlation between
PMU and SCADA signals to detect multiple isolated bad
data outliers. Reference [22] proposes a classification method
for distinguishing between disturbance outliers and multiple
bad data outliers with Principal Component Analysis (PCA)
features. A robust generalized maximum-likelihood estimator
based on projection statistics is proposed in [16] for handling
multiple interacting and conforming (but isolated in time) bad
data outliers in SCADA and PMU measurements. However,
the effect of ‘continuous’ injection of correlated corruption
attacks on multiple signals, which can increase the bias error
during the estimation over time has not been studied.
Reference [17] has proposed a robust frequency divider

method along with correlation-based projection statistics,
which requires different hyper-parameters for handling mea-
surement noise, errors, losses, and FDI-based cyberattacks.
A projection statistics-based outlier detection technique with
multiple hypothesis tests in [18] has been presented for han-
dling observation, innovation, and structural bad data outliers
in PMU measurements. However, this method is limited in
application to the estimation of dynamic states of generators or
online bus frequency estimation using PMUs at their terminals.
As mentioned earlier, in this paper our focus is on the

mode-metering application, which requires PMUs to be placed
on major tie-line buses for monitoring critical modes of the
system. However, this type of PMU placement does not ensure
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complete network observability, which is critical for PMU-
enabled state estimation. To the best of our knowledge, due
to this reason PMU-enabled state estimators are yet to be
integrated with the WAMS-based mode metering application.
Therefore, most of the detection techniques specific to state
estimation are not applicable here.
In literature, a Baysian-based Approximated Filter (BAF)

was first proposed in [9] to extract modal damping and
frequencies from corrupted data. Reference [19] proposed a
Kalman-like particle filter for random uncorrelated FDI attacks
such as fault injection and data repetition attacks. Reference
[20], [21] proposed a heuristics, which depends on continuous
monitoring or tracking of the transmission line parameters
along with setting of different hyper-parameters for detection
of only step or ramp manipulation attacks. However, the
heuristics need to be updated every time network configuration
changes.
In [22], the authors have studied the effect of multiple bad

data outliers occurring at the same instant in PMU measure-
ments on the lower and higher dimensional principal compo-
nent scores. Papers [23]–[25] also exploit lower dimensionality
of PMU data for reconstruction of missing samples. In such
cases, reconstruction of samples are very accurate since the
identity of the corrupted samples are known a-priori. A simple
least squares (LS) solution can provide accurate estimates for
the missing samples in this case. However, in different types
of cyberattacks, the identity of the corrupted samples are not
known in advance. This gives rise to a two-stage problem
involving detection of the compromised samples followed by
reconstruction of those samples. In such cases, matrix-based
block processing algorithms [26]–[30] or vector processing
algorithms [31] can be used. References [26], [28] have pre-
sented matrix decomposition problem for detecting successive
cyberattacks with the assumption of placement of PMUs
for a completely observable network. The adversary having
access to full system topology information was assumed in
reference [28] to design unobservable attacks in a completely
observable network. Recently, a method has been proposed
in [29], which exploits the low-rank property of the Hankel
structure to identify and correct random bad data outliers. The
algorithm can estimate samples in all the channels at any
instant during simultaneous data losses due to communication
congestion. Although this method works very well in presence
of large magnitude bad data outliers and simultaneous missing
data, its reconstruction performance deteriorates in case of
continuous injection of correlated corruptions. Moreover, a
large set of hyper-parameters are needed to be learned and
tuned from historical data. With increasing number of PMUs,
the number of hyper-parameters increases and this process can
become challenging.
A Principal Component Pursuit (PCP)-based block process-

ing algorithm, which detects and corrects different types of
corruptions due to cyberattacks on an unobservable network
without any hyperparameter settings was presented in [27].
Although this is a model-free approach, when used in a
moving-window framework, it produces redundant estimates
for past samples in the current window. The block processing
algorithms give reasonably fast solution, but the algorithm or

application has to wait until the data window gets filled in.
Our main objective here is online detection of malicious

injections in measurements and their accurate reconstruction
for the purpose of real-time modal estimation. In contrast to
existing literature, this paper proposes an interface layer based
on a robust principal component analysis (RPCA) technique
that has been used in the past for solving compressed sens-
ing/sparse recovery [32]–[34] problem. Unlike PCP, the pro-
posed algorithm pre-processes a vector of data samples from
a set of signals at any time instant to detect data corruption
stemming from cyber-attack or otherwise and reconstructs the
data vector at the corrupted positions using an appropriate
subspace for wide-area mode metering applications. Building
on our latest work in [31], the proposed algorithm selects an
appropriate subspace from a library of subspaces generated
from offline simulations of different operating conditions.
The effectiveness of the proposed approach is demonstrated
when different types of carefully designed cyber-attacks [9]
corrupt PMU data during ambient and transient conditions. In
addition, the effect of the proximity of different subspaces
to the subspace representing current operating condition on
the reconstruction of data and corresponding modal estimation
are presented. We show that a measure of this proximity is
the angle between these subspaces, which gets reflected in
the reconstruction error. A comparison with the PCP-based
method [27] and the method from [29] reveals the effectiveness
of the proposed approach.
This paper is divided into five sections. Section II presents

the proposed architecture for malicious corruption-resilient
wide-area mode metering using online RPCA algorithm. Sec-
tion III discusses the problem formulation for detecting mali-
cious injection attack in a data vector of phasor signal samples
at any instant and proposes an algorithm to reconstruct the
original data from corrupted data samples with the knowledge
of operating condition. The reconstructed data samples are
then used by a simple Recursive Least Squares (RLS)-based
algorithm [35] to estimate the modal damping ratios and
frequencies. The test results considering different types of
corruption attacks on signals during nominal and off-nominal
operating conditions are demonstrated in Section IV. The
performance of the algorithm with different subspaces is
evaluated by their ability to reconstruct and to estimate the
modal frequency and damping ratios. Section V concludes the
paper.

II. PROPOSED ARCHITECTURE

An architecture for malicious corruption-resilient wide-area
mode metering application is shown in Fig. 1. It is based
on a concept of online malicious corruption detection and
correction of data received from different PMUs using a data
pre-processor. There are two inputs to the proposed data pre-
processor. The first input is the vector of PMU measurements
coming from PDC and second input is coming from the library
of subspaces. The pre-processor detects corruption in PMU
measurements by solving a sparse recovery problem with the
use of a robust PCA-based convex optimization algorithm. The
data vector is then reconstructed with minimum mean square
error (MSE) by least squares (LS) estimation using a subspace
selected from a library of low-rank subspaces derived from
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Figure 1. Proposed architecture for online malicious corruption-resilient wide-area mode metering application.

uncorrupted offline simulation data. During online operation,
the algorithm utilizes the information about changes in net-
work topology obtained from the topology processor in the
control center to select an appropriate subspace based on the
current operating condition. Any malicious injections through
cyberattacks is assumed to take place before the data arrives
at the control center by overcoming the communication layer
security. The control center is assumed to be secure from such
attacks.
In this work, we studied the following types of attacks.
• Parameter manipulation attack - Injection of signals
with altered modal characteristics.

• Fault-resembling injection attack - Injection of signals
from fault recordings.

• Missing data attack - Stopping data samples from reach-
ing the control center – PDC produces the latest available
data sample repeatedly unless fresh samples appear.

• Data repetition attack - Extracting a block of data from
the past and repeat that in the transient condition.

The effect of these attacks on the estimations of the fre-
quency and damping ratio of inter-area modes is presented.
For example, the damping ratio estimates can appear to be
higher or lower than the actual values, which can potentially
misinform the operators’ decision making.
We would like to emphasize that these are intelligent cy-

berattacks. Someone who has access to PMU signals used for
interarea oscillation monitoring can launch false data injection
(FDI) attacks. An intelligent attacker would device ways to
inject bad data whose magnitude does not exceed 3-sigma rule
and thus gets undetected by most of the algorithms. Moreover,
we have injected correlated corruption into the compromised
signals instead of choosing random corruption at any instant
on any signal. Attackers without any domain-knowledge might
attempt step or ramp attacks which are much easier to detect
with the proposed method as compared to these intelligent
attacks.

We consider the performance of the data pre-processing
algorithm with change in operating condition. This is demon-
strated by testing different subspaces for reconstruction of data.
We have shown that the angle between subspaces representing
the current operating point and another operating point can be
qualitatively related to the MSE of data reconstruction.

III. PROBLEM FORMULATION

The goal of the data pre-processor block is to identify the
corrupted signals among a set of signals and quantify the
amount of corruption present at any sampling instant by using
an efficient convex optimization algorithm.
Let the measurements coming from PMUs include time-

stamped samples of n1 different voltage phasors which in-
cludes two types of signals: voltage magnitudes, angles. At
any instant these samples can be represented by a vector Mt

of voltage magnitudes (n1×1) or angles (n1×1). Since we are
interested in observing interarea oscillation modes, the PMUs
are assumed to be placed on the major inter-tie buses and
corresponding number of signals of either voltage magnitudes
or angles is n1. These are highly correlated signals in the sense
that all are governed by the system dynamics. Therefore, at
any instant the values of all samples are dependent on each
other and interpreted as a dense vector Lt in our proposed
model. The corruption present in each of these samples at any
instant can be interpreted as a sparse vector St with a few
nonzero elements being the additive corrupted values to those
signals.
The objective of the proposed model is to recover a time-

sequence of sparse vectors St of dimension n1 × 1 and a
time-sequence of dense vectors Lt of dimension n1 × 1 from
their sum as follows.

Mt = Lt + St (1)

where, Lt originates from a low-dimensional subspace Rn1

of uncorrupted past measurements (Fig. 1). When the vector of
signal samples obtained Mt is uncorrupted, St is 100% sparse
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(||St||0 = 0), which means no corruption is present in the
samples, i.e. Mt = Lt. When 20% of the signals are corrupted
at any instant, St is 80% sparse (‖St‖0= multiple of 2),
which implies 20% of samples in the vector are corrupted.
Therefore, the degree of sparsity in St will depend on how
much corruption is present.
In other words, this is a problem of recovering a sparse

corruption St in signal samples Mt at any instant. In litera-
ture [36], this is presented as an online robust principal com-
ponent analysis (RPCA) problem. Conventional PCA is more
sensitive to outliers whereas RPCA can efficiently compute
Principal Components (PCs) in presence of outliers.
In this work, a modified version of the recursive projected

compressed sensing (ReProCS) [34] method-based algorithm
is proposed to solve the above problem. As shown in the Fig. 1,
the algorithm takes the incoming new data vector Mt of one
sample from each signal at an instant t as an input vector. In
this work, we process voltage magnitude vector of dimension
n1×1 separately from the voltage angle vector. The knowledge
of current operating condition of the network is utilized by
the algorithm to select an appropriate set of basis vectors Û
representing current subspace from a library, see Fig. 1. At
every time step t, both Lt and St estimated by the algorithm
are such that L̂t lies in the subspace spanned by Û and Ŝt

represents the corruptions added to L̂t to form Mt.
� Preparation of the Library of Subspaces: The algorithm,

for detection of corruption in current operating condition,
takes input Û from a library of subspaces formed using
offline planning simulation data. Since PMU measures voltage
magnitude, angles, and frequencies, which are three type of
signals, three different subspaces are extracted for each type
of signals for any operating condition. Therefore, the proposed
algorithm will be running in parallel on each type of signals
separately utilizing corresponding subspaces. We propose that
a self-clearing fault with a particular network configuration
should be created for generating training data at each operating
point through offline simulation, which captures the dynamic
behavior of the system around that operating point. This tran-
sient data is rich in information about the electromechanical
modes, which are supposed to be estimated through wide-area
monitoring. Therefore, the simulated data MTrain=[Mt;0 ≤
t ≤ tTrain], MTrain ∈ R

n1×n2 is generated using ringdown
response around each operating point (e.g. following a self-
clearing fault) followed by de-trending of samples.
The following considerations determine the choice of win-

dow size n2 of the data-(a) The starting point is chosen from
an instant following the first half cycle after the fault clearing
in order to avoid the nonlinearities associated with the fault. (b)
The end-point of the window is selected based on the settling
time of the low frequency electromechanical oscillations. �

Given a training data set MTrain ∈ R
n1×n2 containing n1

signals with n2 samples, the subspace spanned by U is formed
by applying the singular value decomposition (SVD).

MTrain = UΣV ∗ =
∑r

i=1 σiuiv
∗

i (2)

where, ‘r’ represents the true rank of the matrix MTrain and
σ1,... σr denote ‘r’ singular values. The left and right singular

vectors are given by U = [u1, . . . , ur] and V = [v1, . . . , vr],
respectively. The true subspace for MTrain is spanned by the
basis vectors in matrix U . For a low-rank representation of the
subspace, an approximate basis matrix Û corresponding to the
true subspace is calculated from a given training set MTrain

by performing a low-rank (rapprox < rtrue) approximation of
the data [37]. This process takes basis vectors corresponding
to a certain number rapprox of higher singular vectors to
form the approximate basis Û =

[

u1, . . . , urapprox

]

. Û is then
considered as the basis matrix representing the subspace for a
particular operating condition and is stored in the library.
The key idea is to project any new measurement vector Mt

into a subspace, which is orthogonal to the low-rank signal
subspace represented by Û using the projection matrix Φ.

yt := ΦtMt = Φt (Lt + St) = ΦtSt + βt (3)

where, Φt = I − Û Û ′ and yt is the projected measurement
vector.
The projection ensures that the contribution from corruption

St is preserved while nullifying the contribution from Lt [34].
Here βt is interpreted as small noise. This leads to an opti-
mization problem, which has a nonconvex objective function
in the form of l0 norm as presented below.

min
xt

‖xt‖0 s.t. ‖yt − Φtxt‖2 ≤ ξt (4)

where, ξt = ‖βt‖2 is unknown in advance since true βt =

ΦtLt. Therefore, ξt is calculated from β̂t, which is taken as
ΦtLt−1. The solution vector xt = Ŝx

t of size (n1 × 1) to
the above minimization problem is the correct estimate of the
sparse vector St.
To overcome the nonconvexity of the objective, a convex

relaxation of the above is utilized, which leads to a compressed
sensing/sparse recovery problem [32]–[34] called the “least
absolute shrinkage and selection operator (LASSO).” This tries
to recover the sparse St from yt. The problem can now be
formulated as follows.

min
xt

‖xt‖1 s.t. ‖yt − Φtxt‖2 ≤ ξt (5)

The solution to the above problem is achieved with any
efficient l1 solver as long as the corruption support size is
less than 20% of the total number of signals. We used ‘CVX’,
a package for specifying and solving convex programs [38],
[39], for solving this optimization problem.
The estimated corrupted positions or the estimated support

of Ŝt can be determined by thresholding Ŝx
t by a small positive

number ω. Thresholding is performed to delete the extra
elements in the solution vector Ŝx

t , which in turn eliminates
the false positives. General practice is to use ω proportional
to the energy of the signal where ω =

√

‖Lt‖
2
2 /n1 and in

case of ‖St‖2 ≪ ‖Lt‖2, ω is a fraction of
√

‖Lt‖
2
2 /n1,

ω = q
√

‖Lt‖
2
2 /n1 [34].

The estimate Ŝt can be obtained on this determined support
using least squares (LS) method. This estimate Ŝt is used to
find the estimate L̂t = Mt - Ŝt. By recovering St correctly, an
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accurate estimate of Lt can be recovered from Mt. We will
refer to L̂t as ‘reconstructed data’.

A. Proposed Algorithm
We present a modified version of the algorithm proposed

in [34] to suite the problem of detecting corruptions in PMU
measurements. The following describes the procedure derived
from [34] to recover the correct signal vector from a set of
corrupted measurements when some signals are affected by
anomalous injections at any instant. Vectors Mt, T̂t, Ŝt, L̂t

are of size (n1 × 1) where n1 denotes the number of signals
considered.
Input: Mt, Ût; Output: T̂t , Ŝt , L̂t; Parameters: q;
Initialization
• Set the initial support Ŝ = [.].
While t ≥ t0

1) Choose basis matrix Ût from the library such that it
closely represents the present condition. (See the remark
below on control room implementation)

2) Orthogonal projection: Compute yt= ΦtMt where Φt ←
(I-ÛtÛ

′

t).
3) Compute ξt = ‖βt‖2 where βt ← ΦtMt for t = 0 and

βt ← ΦtLt−1 for t ≥ 0.
4) Compute Ŝx

t as a solution to equation (5) using l1 solver
from ‘CVX’.

5) Calculate ω = q
√

‖Mt‖
2
2 /n1 for t = 0 for the first

sample and ω = q
√

‖Lt−1‖
2
2 /n1 for t ≥ 0.

6) Compute the support set T̂t by thresholding Ŝx
t where

T̂t =
{

i :
∣

∣

∣
Ŝx
t (i)

∣

∣

∣
≥ ω

}

and T̂ c
t =

{

i :
∣

∣

∣
Ŝx
t (i)

∣

∣

∣
< ω

}

.
7) Compute Ŝt ← LS(yt,Φt, T̂t) where H ← LS(y,A,Ψ)

means that HΨ = (A′

ΨAΨ)
−1

A′

Ψy and HΨc = 0̄. Here
AΨ denotes a submatrix of matrix A containing the
columns with indices in the set Ψ.

8) Estimate L̂t ← Mt − Ŝt.
9) Increment t by sampling time duration and go to step 1.
� Remark on Assumptions: Since higher sparsity in St

leads to more efficient correction, our assumption is that the
attackers do not have access to all the PMUs. As will be shown
from empirical results in Section IV C, our algorithm can
detect corruption with reasonable accuracy when upto 30%
of signals are attacked simultaneously. However, it is more
efficient when 20% of the signals are corrupted simultaneously.
Therefore, we assume that the attacker has access to no more
than 20% of PMU signals.

� Remark on Implementation in Control Center: Figure 1
shows the practical implementation of the proposed approach
in Control Center. As described before, the library of sub-
spaces is generated from the offline (planning) simulation. The
simulations are conducted under typical loading conditions
taking into account the daily and seasonal variations. Under
each condition the (N-1) contingency scenarios are simulated
for which individual subspaces represented by Û will be
calculated and stored. As the day progresses, the operators will
enact appropriate batches of subspaces. From such a batch of
subspaces, an appropriate Û is chosen using the input from
the Topology Processor - see Fig. 1. Experience of system
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Figure 2. Single-line diagram of 16-machine, 5-area New England-New York
system with PMUs installed at major inter-tie buses highlighted in red.

planners is invaluable in generating an exhaustive library
of subspaces. As a new time-aligned vector of PMU data
samples from PDC appear, this vector is passed through a data
preprocessor containing the RPCA algorithm. Here, the new
measurement vector Mt is projected into a subspace, which
is orthogonal to the low-rank signal subspace represented by
Û and subsequent steps described in the algorithm above are
executed. At the output, the reconstructed measurement vector
is obtained, which is used by the mode meter - see Fig. 1.
B. Modal Estimation
As shown in Fig. 1, the reconstructed data L̂t is used

by the mode meter. Different algorithms can be used for
modal estimation [5], [6]. In this work, we have applied a
variable forgetting factor-based Recursive Least Squares (RLS)
algorithm [35], which is well-known and is not repeated here.

IV. TEST SYSTEM AND CASE STUDIES
We have considered a positive-sequence fundamental fre-

quency phasor model of the 16-machine, 5-area New England-
New York system [40] as the test system with PMUs installed
at major inter-tie buses highlighted in red, see Fig. 2. A PMU
data rate of 60Hz is assumed. Ten voltage magnitudes and
angle measurements (i.e. 20 signals) are considered as two
separate data sets and de-trending was performed on all signals.
In our case studies, any two signals out of 10 (either 10
voltage magnitudes and/or 10 voltage angles) is assumed to
be corrupted at a particular instant. The threshold parameter
q used by the algorithm can be chosen as a small positive
number. Unless otherwise stated, all simulation results use
q = 0.1. Only the corrupted sample is recovered at each instant
through LS estimation, see step (7) in the proposed algorithm.
The reconstructed samples L̂t at any instant are utilized by an
RLS-based mode metering algorithm.
The first 4 (rapprox= 4) left singular vectors corresponding

to higher singular values are retained as basis vectors to
form the basis matrix Û which span the subspace at different
operating points, which build the subspace library. In this
work, we have used a window of 40 seconds, which results in
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Figure 3. Case I: Parameter manipulation attack in signal |V54| under ambient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

Figure 4. Case I: Estimated frequency and damping ratio from corrupted
(dark grey ‘∆’) signal is misleading. Reconstruction (black ‘o’) produces
reasonable accuracy as compared to original (light grey ‘∗’).

n2 = 2394 samples for calculating the basis vectors U of the
orthonormal subspace for any network configuration.
A. Test Under Nominal Operating Condition
In this case, corruption attacks are performed during ambi-

ent state under nominal condition (Op− 1) and transient state
following a self-clearing fault. We assume that a basis matrix
Û1 based on the transient data following a self-clearing fault
near bus 53 is available based on offline simulations.
1) Ambient Condition: To simulate the ambient condition,

band-limited zero-mean Gaussian noise was injected in load
terminals of the test system. All the attacks during ambient
state of the network were performed on four signals, which
are ∠V40, ∠V54, |V40|, and |V54|.

�Case I: Parameter Manipulation Attack: Figure 3 shows
the parameter manipulation attack in signal |V54| for 1000
samples. Unless otherwise stated, only deviation in the signals
from nominal values are shown. The attack model uses the

Figure 5. Case I: Mean error (µerror) ± Standard deviation of the error
(σerror) obtained during reconstruction of |V | signals with (a) PCP [27] and
the (b) proposed method. The plots of µerror+σerror and µerror−σerror

show statistical dispersion of reconstruction error obtained over 50 seconds.

weighted sum of three damped sinusoids with frequencies
equal to 0.382Hz, 0.55Hz, and 0.618Hz. The damping ratios
are chosen to be 8.0%, 4.4%, and 5.7%, respectively. Figure 3
also compares the degree of malicious injection in the signal
and the quality of reconstruction. These are measured by
the difference between the original and the corrupted signal
denoted by ‘corruption,’ and the difference between original
and reconstructed signal denoted by ‘error.’ The error is close
to zero, which shows a good quality of reconstruction.
Figure 4 shows the estimated frequencies and damping

ratios of an inter-area mode obtained from (i) linear model of
the network at the current operating point (dash), (ii) original
signal (light grey ‘∗’), (iii) corrupted signal (dark grey ‘∆’),
and (iv) reconstructed signal (black ‘o’). These also show that
a small window of corrupted data (Fig. 3(a)) can jeopardize the
estimates (‘∆’) of frequency and damping ratio as compared
to the linear model, original and reconstructed signals, and
give out misleading information. The estimates obtained from
reconstructed signal closely follows that of original.
The efficiency of the proposed algorithm with Principal

Component Pursuit (PCP) [27] has been compared for the
reconstruction of the compromised set of PMU signals. PCP
has been selected for comparison since it represents an existing
low-rank matrix decomposition method based on principal
component analysis. Different statistical measures such as
mean error (µerror), standard deviation of the error (σerror),
µerror±σerror at each instant are calculated during reconstruc-
tion of all |V | signals. Figure 5 shows the statistical dispersion
of reconstruction error with (a) PCP and (b) proposed method.
The plots indicate higher dispersion of error with PCP as
compared to the proposed method.
Similarly, statistical measures such as average mean square

error (AMSE), average standard deviation, and maximum
mean square error (MMSE) over the reconstruction interval are
calculated and presented in Table I. These statistics indicate
better performance of the proposed algorithm as compared to
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Figure 6. Case II: Fault-resembling injection attack in signal |V40| under
ambient condition. Corruption: difference between original and corrupted
signal, Error: difference between original and reconstructed signal.

Figure 7. Case II: Estimated frequency and damping ratio from corrupted
(dark grey ‘∆’) signal is misleading. Reconstruction (black ‘o’) produces
reasonable accuracy as compared to original (light grey ‘∗’).

PCP. The reason behind this is the following. Any low-rank
matrix decomposition algorithm corrects the compromised
signals as well as the uncompromised signals over an interval.
However, the proposed algorithm first detects the compromised
signals at any instant and then corrects only those signals
through LS estimation.

Table I
CASE I: COMPARISON OF RECONSTRUCTION ERRORS BETWEEN PCP [27]

AND PROPOSED ALGORITHM

Parameter Average Standard Maximum
Attack MSE deviation MSE
PCP 3.5557e-07 4.6526e-04 2.6383e-05

Proposed method 2.4833e-07 4.2343e-04 1.3918e-05

� Case II: Fault-Resembling Injection Attack: In this case,
the attacker is assumed to inject a portion of archived transient
data following a three-phase self-clearing fault near bus 53
into the considered signals during ambient state. Due to space
restrictions, only signal ∆|V40| is shown in Fig. 6. The quality
of reconstruction is very good and is reflected in the estimated

Figure 8. Case II: Mean error (µerror) ± Standard deviation of the error
(σerror) obtained during reconstruction of |V | signals with (a) PCP [27] and
the (b) proposed method. The plots of µerror+σerror and µerror−σerror

show statistical dispersion of reconstruction error obtained over 50 seconds.

frequency and damping ratio in Fig. 7. Due to transient
signal injection, a large deviation is witnessed in all estimates
obtained from the corrupted signal.
Statistical dispersion of reconstruction error obtained from

the proposed method has been compared with PCP in Fig. 8,
which leads to similar conclusion as before. Statistical mea-
sures over the whole interval are calculated in Table II, which
show better performance of the proposed algorithm.

Table II
CASE II: COMPARISON OF RECONSTRUCTION ERRORS BETWEEN

PCP [27] AND PROPOSED ALGORITHM

Fault Injection Average Standard Maximum
Attack MSE deviation MSE
PCP 5.2163e-07 5.5586e-04 4.6135e-05

Proposed method 2.5602e-07 4.3006e-04 1.4898e-05

2) Transient Condition: A self-clearing three-phase fault
near bus 53 is considered. The first half-cycle of oscillatory
data immediately after fault is disregarded in our analysis to
avoid the effect of higher nonlinearity on the modal estimates.
This is acceptable since the accuracy of most of the mode-
metering algorithms is poor in this region. All the attacks
during transient state of the network were performed on four
signals, which are ∠V54, ∠V60, |V54|, and |V60|.

� Case III: Missing Data Attack: The effectiveness of the
proposed pre-processor in data reconstruction is shown in
Fig. 9. The error in the reconstructed signal is higher at the
beginning of the window, but is acceptable for most of the
time span.

�Case IV: Data Repetition Attack: In this case, a window
of ambient and transient data samples archived for those 4
signals is repeated in 4 signals. One of those is shown in
Fig. 11, which resembles a consecutive fault in the system.
The original and the reconstructed signals are very similar.
Modal estimation of Case III and IV are not shown due to
space restrictions.
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Figure 9. Case III: Missing data attack in signal ∠V60 under transient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

Figure 10. Case III: Mean error (µerror) ± Standard deviation of the error
(σerror) obtained during reconstruction of |V | signals with (a) PCP [27] and
the (b) proposed method. The plots of µerror+σerror and µerror−σerror

show statistical dispersion of reconstruction error obtained over 21 seconds.

Similar to the ambient case studies, the proposed approach
was compared with PCP for Case III and IV. A comparison of
different statistical measures of reconstruction errors in Tables
III and IV clearly shows superiority of the proposed method.
Also, temporal variation of the central tendency and dispersion
of this error in Figs 10 and 12 demonstrate lesser variation in
error mean and standard deviation for the proposed approach.

Table III
CASE III: COMPARISON OF RECONSTRUCTION ERRORS BETWEEN

PCP [27] AND PROPOSED ALGORITHM

Missing Data Average Standard Maximum
Attack MSE deviation MSE
PCP 2.9779e-06 0.0012 1.9120e-04

Proposed method 1.7713e-07 3.0069e-04 9.4739e-06

3) Comparison with Another Existing Method [29]: To
evaluate the effectiveness of the proposed approach, we have

Figure 11. Case IV: Data repetition attack in signal ∠V54 under transient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

Figure 12. Case IV: Mean error (µerror) ± Standard deviation of the error
(σerror) obtained during reconstruction of |V | signals with (a) PCP [27] and
the (b) proposed method. The plots of µerror+σerror and µerror−σerror

show statistical dispersion of reconstruction error obtained over 21 seconds.

compared another existing method based on low-rank Hankel
structure, which was reported in [29]. This low-rank matrix
block processing method is used for an initial estimate and
then to identify and correct bad data as well as to fill in missing
data in PMU measurements. We have shown results of the
continuously correlated corrupted signals and corresponding
reconstruction. As described in the Introduction, this method
requires several hyperparameters, which needs to be learned in
advance from historical data and tuned in real-time to improve
its detection accuracy.
Here, the comparison is made for Case II and the threshold

for each signal has been exhaustively tuned until the best
result can be obtained with uncorrupted as well as corrupted
data. The signal subspace was chosen following the procedure
mentioned in [29]. We have studied the reconstruction with the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2019.2895301

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

Table IV
CASE IV: COMPARISON OF RECONSTRUCTION ERRORS BETWEEN

PCP [27] AND PROPOSED ALGORITHM

Data Repetition Average Standard Maximum
Attack MSE deviation MSE
PCP 2.7234e-06 0.0012 1.9866e-04

Proposed method 1.5524e-07 2.9266e-04 1.4379e-05

Figure 13. Case II: Comparison of reconstruction errors with an existing
method [29] and proposed method for signal |V40|.

fault injection attack (Case II) in 2 voltage magnitude signals
|V40| and |V54| during ambient condition. Figures 13 and 14
show the plots of the original, corrupted, and reconstructed
signals using the method in [29] and the proposed method.
From Figs 13 and 14, it is evident that the proposed method
is more efficient in detection as well as reconstruction as
compared to [29] for fault resembling attacks.
We found that the threshold selection is quite challenging

for the method in [29]. In addition, error in estimation in one
instant with the Hankel matrix subspace can propagate through
inaccurate subspace calculation to future estimates. On the
contrary, the proposed approach uses only one threshold and
utilizes a subspace library obtained from off-line simulations.
The trade-off is that [29] is model-free, whereas the proposed
approach needs models for off-line simulations.

B. Test under Off-nominal Operating Conditions
The purpose of this section is to illustrate the importance

of selecting a specific subspace from the library to be used by
the algorithm at any instant according to the current operating
point of the system. This has been demonstrated by using a
set of subspaces extracted from different operating conditions
of the network. To that end, we conducted two experiments.

�Experiment I - No Corruption: This experiment has been
conducted across different conditions without any data cor-
ruption. For each condition, data reconstruction is performed
using multiple subspaces taken from the library, which corre-
spond to the following operating points:
1) Op− 1 : Nominal condition (subspace spanned by Û1).
2) Op− 2 : One of the double-circuit tie-lines connecting

buses 18− 42 out of service (Û2).

Figure 14. Case II: Comparison of reconstruction errors with an existing
method [29] and proposed method for signal |V54|.

Figure 15. (a) Angles between different subspaces spanned by Ûj used for
reconstruction of the signals, (b) AMSE as a % of maximum value obtained
from reconstruction of data with different subspaces spanned by Ûj in absence
of any corruption in the measurements.

3) Op− 3 : One of the double-circuit tie-lines connecting
buses 18− 49 out of service (Û3).

4) Op− 4 : One of the double-circuit tie-lines connecting
buses 40− 41 out of service (Û4).

5) Op− 5 : Nominal condition with a detuned PSS gain in
G9 in Fig. 2 (Û5).

6) Op− 6 : Nominal condition with PSS gain as in Op− 5
and loads increased by 20% over nominal loading (Û6).

We propose to use the angle between different subspaces as
a measure of proximity of these subspaces. Any two subspaces
represented by Ûi and Ûj consisting of a set of basis vectors
form an angle, which can be calculated as follows [41].

θ
ÛiÛj

= sin−1
(∥

∥

∥
(I − ÛiÛ

′

i)Ûj

∥

∥

∥

2

/∥

∥

∥
Ûj

∥

∥

∥

2

)

(6)

The performance of different subspaces is evaluated by
their reconstruction errors, which are the average mean square
errors (AMSEs) during reconstruction over an interval [T0, Tc],
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Figure 16. AMSE as a % of maximum value obtained from reconstruction
of data with different subspaces spanned by Ûj during different corruptions
in the transient data. The data is generated by simulating a self-clearing fault
under each condition.

and averaged over all signals (n1) considered together.

AMSE[T0,Tc](et) = [e′tet]n
−1
1 (Tc − T0 + 1)

−1 (7)

where et (n×1) denotes the ‘error’ during reconstruction at
any instant t. T0 and Tc represent the starting and ending time
instances of corruption interval, respectively. The goal is to
show that for operating condition Op− i, when reconstruction
is performed using subspace spanned by Ûj , the value of
AMSE is smaller if θ

ÛiÛj
is smaller, and vice-versa.

The data collected at any particular operating condition is
assumed to be free of corruption. This ensures that the recon-
struction error is purely caused by the choice of subspaces.
In Fig. 15, the x-axis shows the operating conditions. For

each condition Op − i, i = 1, 2, ...6; the y-axis of Fig. 15(a)
shows the angle θ

ÛiÛj
, j = 1, 2, ...6 and the y-axis of

Fig. 15(b) shows the normalized AMSE when Ûj , j = 1, 2, ...6
is used as the subspace for reconstruction. The AMSEs are
normalized with respect to the maximum AMSE for each
operating point Op− i.
At each operating condition Op− i, the AMSE is minimum

along with the corresponding angle θ
ÛiÛj

for i = j (actually,
θ
ÛiÛi

= 0) and higher when i 6= j as can be seen in Fig. 15.
Also, higher angles largely correspond to higher AMSEs.
This emphasizes the importance of selecting an appropriate
subspace at any operating point - see remark under Section
III(A).

�Experiment II - With Corruption: Figure 16 shows various
reconstruction errors for three different attacks on data during
transient state. The transient data is obtained by simulating a
self-clearing fault near bus 53. This is achieved by corrupting
the test data with missing data attack in (a), data repetition
attack in (b), and noise injection attack in (c). The corre-
sponding reconstruction errors in terms of normalized AMSEs
as a consequence of using different subspaces at each of six
operating conditions are presented. As shown, for each of the

Figure 17. Case V: Data repetition attack in signals |V54| and |V60|, for
Op− 2 following a self clearing fault near bus 53.

operating conditions Op− i in x-axis, the normalized AMSE
is minimum when the corresponding subspace spanned by Ûi

is utilized for reconstruction. The error becomes higher for
other subspaces spanned by Ûj , j 6= i.
To demonstrate the effect on modal estimation, the follow-

ing study has been conducted when the system operates under
Op − 2 and a self clearing fault is created near bus 53 to
generate transient response. The set of subspaces spanned by
Û to be tested by the algorithm are Û1 and Û2.
Data repetition attack was performed on voltage magnitude

signals |V54| and |V60| during the transient condition as shown
in Fig. 17. The resulting frequency and damping estimates
of original, corrupted, and reconstructed |V54| signal using
subspace spanned by Û1 and by Û2 are demonstrated in
Figs 18 and 19, respectively. As can be seen in Fig. 19,
the estimations from reconstructed signal closely follow those
of the original signal. This shows that the selection of an
appropriate subspace spanned by Û2 for the current operating
condition Op − 2 results in more accurate modal estimates
as compared to the other subspace spanned by Û1, which
produces inferior estimates presented in Fig. 18.

C. Impact of Parameter ‘q’ and Higher Corruption
An experiment was performed during nominal operating

condition (Op − 1) for evaluating the performance of the
algorithm for different values of threshold parameter q. In
order to choose the fraction q in ω, we have presented an ROC
analysis, which is a standard statistical method for selecting
the discrimination threshold ω for a binary classification (cor-
rupted or uncorrupted). An efficient detection can be obtained
by selection of a threshold value from the knowledge of the
data collected on true/false positive/negatives from different
experiments. Data repetition attack and noise injection attack
were performed for a corruption in 20% and 30% of the
signals for a duration of 10s. Four indices were calculated
in the corruption interval for each value of the parameter q:
0.01, 0.1, 0.2, 0.3, 0.4, and 0.5.
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Figure 18. Case V: Estimated frequency and damping ratio from origi-
nal (light grey ‘∗’), corrupted (dark grey‘∆’), and reconstructed (black ‘o’)
signal in |V54| under Op−2 following a self clearing fault. Subspace spanned
by Û1 is used for reconstruction.

Figure 19. Case V: Estimated frequency and damping ratio from origi-
nal (light grey ‘∗’), corrupted (dark grey‘∆’), and reconstructed (black ‘o’)
signal in |V54| under Op−2 following a self clearing fault. Subspace spanned
by Û2 is used for reconstruction.

• True Positive (TP): # of samples in the interval, which are
‘actually corrupted’ and ‘labeled as corrupted’ as detected
by the algorithm.

• False Positive (FP): # of samples in the interval, which
are ‘actually uncorrupted’ but ‘labeled as corrupted’ as
detected by the algorithm.

• True Negative (TN): # of samples in the interval, which
are ‘actually uncorrupted’ and ‘labeled as uncorrupted’ as
detected by the algorithm.

• False Negative (FN): # of samples in the interval, which
are ‘actually corrupted’ but ‘labeled as uncorrupted’ as
detected by the algorithm.

In order to determine how good the algorithm is in picking
out the corrupted samples, performance indicators such as
sensitivity (Sn) and specificity (Sp) are calculated for each
value of q as follows.

Figure 20. Receiver operating characteristic (ROC) curve for two attacks
during nominal operating condition of the test system (Op − 1) using the
subspace spanned by Û1.

Sn(q) = TP/(TP + FN), Sp(q) = TN/(TN + FP ) (8)

Figure 20 presents the effects of changing the threshold
parameter q graphically by using a receiver operating char-
acteristic (ROC) curve, which plots Sn on the y-axis and
(1-Sp) on the x-axis. Each point in the graph indicates a
threshold value of q used by the algorithm. ROC curves tend
to go from the bottom left corner to the top right corner
of the box as q reduces from 0.5 to 0.01. This represents
the intuitive trade-off between sensitivity (rising as we move
up) and specificity (dropping as we move right). Therefore,
higher values of q makes the algorithm more specific but
less sensitive, and vice versa. As described before, throughout
the paper, we have selected q = 0.1 at which a reasonable
sensitivity and specificity can be obtained by the proposed
algorithm for correct classification of the corrupted samples.

� Remark on Limitation with Higher Corruption: It can
also be seen that the algorithm works more efficiently when
corruption is present in 20% of the signals at any instant.
For each value of q, when the corruption is increased to
30% of the signals at any instant, it leads to lesser sensitivity
and specificity. Note that accuracy of detecting corruptions
also depends on the noise levels present in the signals. Our
present research is focused on improving the performance of
the algorithm with higher corruption.

V. CONCLUSION

In this work, detection of malicious injections in PMU
data was formulated as a LASSO problem. It was shown
that the solution to this problem can be used to reconstruct
the original data with sufficient accuracy from the corrupted
signal when corruption is present in 20% of the total number
of signals at any instant. Different types of attacks including
continuous injection of correlated corruption were studied. It
was also shown that the reconstructed signal can be used
by a mode-metering algorithm to estimate modal damping
and frequency with reasonable accuracy. Proximity between

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2019.2895301

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

different subspaces was shown using angles between those
subspaces and the effect selecting different subspaces on the
reconstruction error was demonstrated. It was observed that the
reconstruction error is minimum when an appropriate low-rank
subspace is selected by the algorithm for the reconstruction of
the data. Also the impact of choosing different threshold values
for detecting a corrupted samples was presented for evaluating
the sensitivity and specificity performances of the algorithm.
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