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Abstract—A Principal Component Pursuit (PCP)-based in-
terface is proposed between raw synchrophasor data and the
algorithms used for wide-area monitoring application to provide
resilience against malicious data corruption. The PCP method-
based preprocessor recovers a low rank matrix from the data
matrix despite gross sparse errors originating from cyber-attacks
by solving a convex program. The low-rank matrix consists
of the basis vectors obtained from the system response and
the sparse matrix represents corruption in each position of the
data matrix. An augmented Lagrangian multiplier (ALM)-based
algorithm is applied to solve the PCP problem. The low rank
matrix obtained after solving PCP represents the reconstructed
data and can be used for estimation of poorly-damped modes.
A recursive oscillation monitoring algorithm is tested to validate
the effectiveness of the proposed approach under both ambient
and transient conditions.

Index Terms—PCA, Principal Component Pursuit, Cyber At-
tack, Bad data, Wide Area Monitoring

NOMENCLATURE

[M ] Raw PMU measurements of ‘n1’ signals with ‘n2’
samples in a ‘n1xn2’ matrix.

[L] Recovered PMU measurements of ‘n1’ signals with
‘n2’ samples in a ‘n1xn2’ matrix.

[S] Estimated corruption present in PMU measurements
at the corresponding positions in a ‘n1xn2’ matrix.

U,Σ
V

Matrices containing left singular vectors, singular val-
ues, and right singular vectors, respectively obtained
from Singular Value Decomposition.

m Number of nonzero elements in the matrix S.
λ A positive regularization parameter used in the ob-

jective function of PCP.
σi ith singular value of the matrix L.
ui,vi ith left and right singular vectors associated with ith

singular value obtained after applying SVD on the
matrix L.

µ(U) Coherence parameter of a matrix U .
PU Orthogonal projection onto the subspace U .
ei ith Canonical basis vector.
TW Window size of the data matrix, M .
TPCP CPU time for processing PCP algorithm.
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I. INTRODUCTION

PHasor Measurement Units (PMUs) play a major role
in wide-area monitoring and control applications [1]–[5].

Broadly, wide-area monitoring applications can be divided into
two categories [6]:

• applications requiring a full observability of the network
— e.g. voltage instability assessment of meshed networks.

• applications not requiring an entire network observation
— e.g. oscillation monitoring and stability assessment.

The first type of application requires state estimation (SE)
using PMU data. In this paper, our focus is on the second type
of application.
Notably, the second type of application of PMU data streams

from Wide-Area Measurement Systems (WAMS) is already
operational in control centers of many utilities including Cali-
fornia ISO, PG&E, BPA [7], and TVA [8], and a corresponding
web-based version is deployed in 7 operations centers and
11 reliability coordinators in the Eastern Interconnection [7]
for quite some time. In this application, time-synchronized
PMU data is communicated to a control center and the data
samples are aligned by Phasor Data Concentrator, which in
turn is processed by oscillation monitoring algorithms (or so-
called ‘Mode Meters’ [7]–[10]) to predict modal frequency
and damping. Accurate knowledge of modal frequency and
damping ratio is important since they are vital indicators of
system stress and stability [7], [8], [11]. Naturally, errors or
corruption in PMU data will affect the accuracy of these
estimations. Errors in PMU measurement are direct conse-
quences of limited measurement precision, telecommunication
equipment noise, two-way communication systems [12], inter-
ference from devices, and cyber-attacks such as eavesdropping,
GPS spoofing, and data tampering [13].
A significant amount of work has been reported in literature

on bad data or cyber intrusion detection pertaining to state
estimation [14]–[28]. Literature on detection of bad data
originated by cyber-attacks in PMU dynamic data samples
include a common path algorithm [29], a hybrid intrusion
detection system [30], and a Bayesian-based approximation
filter proposed in [31].
Most of the work done on bad data or cyber intrusion

detection in power system is focused on state estimation appli-
cation. However, to the best of our knowledge, PMU-enabled
state estimators are yet to be integrated with the WAMS-
based oscillation monitoring application. Therefore, detection
techniques focused on state estimation cannot be applied here.
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Our goal is to detect malicious injection of anomalous PMU
data and correct the data stream for oscillation monitoring
application.
Not many papers exist that focused on cyber-attack de-

tection for the oscillation monitoring application in power
systems. Reference [31] applied a Baysian-based Approxi-
mated Filter (BAF) to extract modal damping and frequencies
from corrupted data. In contrast to [31] and prior works
focused on cyber intrusion detection in PMU data, this paper
proposes an interface layer that pre-processes a window of
data samples to detect data corruption stemming from cyber-
attack or otherwise and reconstructs the data stream for wide-
area monitoring applications. To that end, we propose to apply
Principal Component Pursuit (PCP) method [32]–[34], which
is solved using an augmented Lagrangian multiplier (ALM)-
based algorithm [35], [36].
In reference [37], Principal Component Analysis (PCA)

has been used to distinguish between fault outliers and bad
data outliers, which have similar appearance as the former.
However, the focus has only been on outlier detection.
In contrast to [37], the present work demonstrates the

effectiveness of the proposed approach when different types
of carefully designed cyber-attacks [31] corrupt PMU data.
These include (1) data repetition attack, (2) missing data
attack, (3) noise injection attack, (4) parameter manipulation
attack, and (5) fault-resembling injection attack. The attacks
on PMU data under ambient and transient condition has been
considered. We have taken into account attack on a single
stream of PMU data and multiple streams at a time, and
demonstrated the reconstruction of the original PMU data from
the corrupted data using PCP. The proposed approach allows
the reconstructed data set to be post-processed by wide-area
monitoring algorithms like Mode Meters.
Different mode metering algorithms like block-processing

algorithms [38]–[40] and recursive algorithms [11], [41] can
be applied to the reconstructed data stream. In this paper,
a simple Recursive Least Squares (RLS) [42] algorithm has
been applied as an example of mode metering technique to
estimate the modal damping ratio and frequency. Effect of
data corruption on modal estimation and the effectiveness of
the proposed data reconstruction on improving the estimation
accuracy is demonstrated using synthetic PMU data measured
from a 16-machine 68-bus New-England New-York system.

II. PROPOSED ARCHITECTURE

We propose an architecture for malicious corruption-
resilient wide-area monitoring, which is shown in Fig. 1. As
shown in this figure, the proposed architecture relies on a
data pre-processor based on the Principal Component Pursuit
(PCP) approach. Phasor Data Concentrators (PDCs) situated at
the control center align the data packets received from PMUs
located at remote buses and pass on the data streams to the data
pre-processor. We assume malicious injections through cyber-
attacks can take place before the data arrives at the control
center by overcoming communication layer security and that
the control center is secure from such attacks.
Since the power system mostly operates under quasi-static

condition, attack on the PMU data under this condition, also
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Fig. 1. Proposed architecture for malicious corruption-resilient wide-area
oscillation monitoring algorithm.

known as ‘ambient data,’ will be taken into consideration. We
consider the following types of attack under this condition -
1. Parameter manipulation attack - In this mode, attackers
inject signals with altered modal characteristics, e.g. increased
or decreased damping ratio.
2. Fault-resembling injection attack - In this mode, we assume
that attackers got access to fault recordings from archived
PMU data and injects the same in the ambient data.
3. Noise injection attack - In this mode, the attackers inject
random Gaussian noise in the ambient data.
We have also considered cyber-attack in the transient PMU

data following large disturbances. Three types of cyber-attacks
were simulated for this condition -
1. Data repetition attack - In this case, the attackers extract a
block of data from the ambient condition and repeats that in
the transient condition.
2. Missing data attack - The attackers stop data samples
from reaching the control center. Under this condition, PDC
produces the latest available data sample repeatedly unless
fresh samples appear.
3. Noise injection attack - The attack is similar to that
mentioned for ambient data.
As shown in Fig. 1, the corrupted data is passed through

the PCP-driven pre-processor, which is described next.

A. Principal Component Pursuit (PCP)-driven Preprocessor

Principal Component Analysis (PCA) [43], [44] is one of
the most effective techniques used for dimensionality reduc-
tion, which approximates a given set of data points into a
low-dimensional linear subspace. Principal components of the
data are the set of orthogonal basis vectors of this subspace.
A data matrix observed as a response from a linear system
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over time can be presented as a combination of a low-
rank matrix representing the underlying/actual subspace and
a sparse matrix representing the corruption in the data, which
is mostly noise in the measurements, any outliers, or spurious
samples affecting a fraction of signals at any instance.

� Remark on Cyber Attack: These spurious samples can
originate from cyber attacks or intrusion during the normal
system operation. It is assumed that the attackers can get
access to a fraction of PMU data streams. We believe it will
be highly difficult to get access to all PMU data streams.�
The low rank matrix mentioned above consists of the basis

vectors obtained from the system response and the sparse
matrix represents the spurious perturbation in each position of
the data matrix. In absence of corruption in the data, the best
estimate of the low rank matrix in l2 sense can be achieved by
PCA via singular value decomposition and thresholding [32].
Moreover, in presence of an independently and identically
distributed perturbations in the data matrix, PCA is able to
obtain an optimal estimate of the underlying subspace that is
stable with error bounded to be proportional to the magnitude
of the perturbation. However, this is very sensitive to grossly
corrupted observations [33].
On the contrary, Principal Component Pursuit (PCP) method

guarantees to recover a low rank matrix from the data matrix
despite gross sparse errors by solving a convex program [32].
The data matrix M can be represented as a sum of low rank
matrix, L0 and sparse matrix S0 with very few nonzero entries
at random locations. Unlike PCA, both L0 and S0 are allowed
to have arbitrary magnitude without any rank specification for
L0 or support signs of S0. The following convex optimization
problem which represents a weighted sum of the nuclear norm
of the low-rank matrix L0 and of the l1 norm of the sparse
matrix S0 is solved by PCP to recover L0 and S0 from the
data matrix M :

min
L,S

||L||∗ + λ||S||1
subject to M = L+ S

(1)

where, λ is a positive regularization parameter, which con-
trols the smoothness and sparseness of L and S, respectively.
Here, ||.||∗ and ||.||1 denote the nuclear norm, which is the
sum of singular values; and the l1 norm, which is the sum of
absolute values of the elements of the matrix, respectively.
In order to make the approach more effective, the notions of

the low rank matrix L being exactly low rank with no sparsity
and sparse component matrix S being exactly sparse with the
sparsity patterns being uniformly random are imposed in the
problem [33]. Singular value decomposition of the low rank
matrix L0 ∈ ℜn1×n2 is given by:

L0 = UΣV ∗ =
∑r

i=1 σiuiv
∗
i (2)

where ‘r’ represents the rank of the matrix L0. σ1,...σr denote
the ‘r’ singular values. The left and right singular vectors are
given by U = [u1, . . . , ur] and V = [v1, . . . , vr], respectively.
A simple PCP solution can recover the low rank and sparse

components provided the rank of the low rank matrix is not
too large and the sparse component is reasonably sparse. The
support of S0 is defined as the set of indices of the nonzero

entries of the matrix. Here, ‖S0‖ = m represents the number
of nonzero elements in the matrix. The identifiability issue of
S0 when it is a low rank matrix is avoided by the assumption
of S0 being uniformly random in being sparse among all the
possible support of size ‘m’. In this context, the PCP theorem
presented in [33] is described below.
PCP Theorem [33]: “Suppose L0 is nxn, obeys incoherency

property and that the support set of S0 is uniformly distributed
among all sets of cardinalities m. Then there is a numerical
constant c such that with probability at least 1 - cn−10 (over
the choice of support of S0), Principal Component Pursuit with
λ = 1/

√
n is exact, i.e. L̂=L0 and Ŝ=S0, provided that

rank (L0) ≤ ρrnµ
−1 (log n)

−2 (3)

m ≤ ρsn
2 (4)

Above, ρr and ρs are positive numerical constants. In the
general rectangular case where L0 is n1xn2, PCP with λ =
1/
√
n(1) succeeds with probability at least 1−cn−10

(1) , provided
that

rank (L0) ≤ ρrn(2)µ
−1

(

log n(1)

)−2 (5)

m ≤ ρsn(1)n(2) (6)

where n(1) = max(n1, n2) and n(2) = min(n1, n2)”.

� Remark on Necessary & Sufficient Conditions: The
theorem implies, given the following three conditions

• a low rank matrix L0 satisfies the incoherence property,
• a support set of S0 is uniformly distributed among all
sets of cardinality m, and

• the rank of L0 satisfies the rank constraint and corruption
is present only in a fraction of total number of elements
in the matrix (see, equations (3)-(6));

the exact L0 matrix can be recovered from their mixture
with higher probability of success (nearly 1).
However, as shown in [45] the exact recovery of the data

matrix with high probability of success is possible even if these
conditions are violated. This implies that all these conditions
are sufficient conditions, but by no means necessary conditions.
Structure of corruption in the data is always unknown in
advance and it is assumed that corruption has occurred in a
fraction of the samples in the data matrix. �

�Remark on Incoherence Property: The procedure to calcu-
late the coherence of a matrix and whether the data matrix L0

satisfies the incoherence property is mentioned below [34].
Let U be a subspace of Rn of dimension ‘r’ and PU be

the orthogonal projection onto U . Then the coherence of U is
defined as

µ (U) = n
r

max
1≤i≤n

‖PUei‖2 (7)

where PU =
∑

i∈[r]

uiu
∗
i = UU∗

µ (V ) can be calculated in a similar way and the coherence
parameters for L0 can be found as
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µ0 = max (µ (U) , µ (V )) (8)

µ1 = µ0
√
r (9)

For any subspace, the largest possible value for µ is n/r
and the smallest value that can be achieved is 1. Incoherence
condition asserts that for smaller values of µ, the singular
values are reasonably spread out. The incoherence condition
states,

max
i

‖U∗ei‖2 ≤ µ0r
n1

,max
i

‖V ∗ei‖2 ≤ µ0r
n2

, (10)

where, U and V are obtained from SVD of L0, and the
canonical basis vectors are given by ei’s. The LHS terms must
satisfy the above two conditions with some positive smaller
values of coherence parameter µ. The third condition is

‖UV ∗‖∞ ≤ µ1

√

r
n1n2

(11)

This incoherence condition implies that the maximum entry
of absolute values of the elements of the matrix UV ∗ must be
bounded by the term in the RHS. �

� Remark on Corruption & Rank Properties: Refer-
ences [33] and [45] have conducted experiments without
assuming any specific structure on the support set, which still
gave appealing results. This implies that the truth of getting
results with PCP is beyond what can be proved by assuming
a specific structure to the error [33]. Also, in real life, there is
no way to know in advance about the structure of corruption
in S0 and the uncorrupted L0, which is different based on
the type of application. Candes et-al [33] do not guarantee
that PCP will succeed with high probability of success all the
time in reconstructing the low rank matrix, but references [33]
and [45] provide enough evidence of recovering the low rank
matrix with high probability and minimum error.
In this work, we have performed extensive experiments on

the power system measurements through different corruption
patterns, which lead to similar conclusions. The caveat how-
ever is that the PCP works if the corruption is not present
in all the variables at the same time. From an engineering
perspective, if the attacks corrupt most of the data, or are
aimed at the common communication links or the control
center, the method will not reconstruct the signals efficiently.
The method works based on the fact that the original behavior
of the corrupted signals can be recovered at any instant
by accounting current behavior of the uncorrupted signals
and past behavior of all signals, via capturing the low rank
subspace for the present data window. If all the samples
considered at any instant are corrupted, there is no way to
predict the signal trajectories. This in turn demands solving
a time series prediction problem based on the past behavior
of the signals over a long of period of time. Therefore, a
complete corruption will translate the problem into time-series
prediction problem from data anomaly detection, which is
outside the scope of this paper. The attack model in this work
assumes that an attacker does not have access to all the nodes
at the same time.�

Various efficient and scalable algorithms with computational
burden no more than classical PCA have been proposed for
solving PCP. These include accelerated proximal gradient
approach [46] and iterative thresholding approach [47]. In
this work, an augmented Lagrangian multiplier (ALM)-based
algorithm [35], [36] has been utilized to solve the problem in
equation (1). The advantages of ALM include higher accuracy
in fewer iterations and applications in wide range of problem
settings without many tuning parameters. Further, the bound
on the rank of the iterates remains within the rank of L0 during
the optimization, which results in efficient computation of the
solution.
The constrained optimization problem is solved by convert-

ing it to an unconstrained optimization problem with a new
objective called the augmented Lagrangian which is given by:

l (L, S, Y ) = ‖L‖∗ + λ ‖S‖1 + 〈Y,M − L− S〉
+µ

2 ‖M − L− S‖2F
(12)

where, the Lagrange multiplier matrix is given by Y and µ
denotes the single regularization parameter associated with the
ALM formulation.
The ALM-based objective formulation for PCP problem is

given by [33]:

minimize l (L, S, Y ) = ‖L‖∗ + λ ‖S‖1 + 〈Y,M − L− S〉
+µ

2 ‖M − L− S‖2F
(13)

A generic Lagrange multiplier algorithm-based method [48]
can be used to solve the above problem in several iterations
in which each iteration consists of two steps. The subproblem
in equation (14) is solved in the first step to get Lk and Sk:

(Lk, Sk) = argminL,S l(L, S, Yk) (14)

The Lagrange multiplier matrix Yk is updated with the
residual M − L− S in the second step:

Yk+1 = Yk + µ(M − Lk − Sk) (15)

Due to the unavailability of the optimal solution for the sub-
problem in the first step, a practical and efficient optimization
method based on alternating directions is employed to find
the solutions in the first step with several interstep iterations.
The following two substeps are repeated alternatively to attain
convergence to the optimal solution. In one substep, l(L, S, Yk)
is minimized with respect to L with S fixed and in another
substep l(L, S, Yk) is minimized with respect to S with L
fixed. This assumes attaining closed form solutions for the
fixed value in each substep iterations. However, for reducing
the computational burden this can be solved once instead of re-
peating which is sufficient to converge to optimal solution [35].
This is achieved by solving the following:

argmin
S

l (L, S, Y ) = Sλµ−1

(

M − L+ µ−1Y
)

(16)

and
argmin

L

l (L, S, Y ) = Dµ−1

(

M − S + µ−1Y
)

(17)

where, Sτ : IR → IR is a shrinkage operator represented by:

Sτ [x] = sgn(x)max (|x| − τ, 0) (18)
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with the threshold value given by τ > 0. When extended to
matrices, this operator is applied to each element in the matrix
and is given by:

S∗ = argmin
S

l(L, S, Y ) = Sλ,µ−1(D − L+ µ−1Y ) (19)

and Dτ (X) is the singular value thresholding operator and is
given by

Dτ (x) = USτ (Σ)V
∗ (20)

where, X = UΣV ∗ represents the singular value decomposi-
tion of X .

L∗ = argmin
L

l(L, S, Y ) = Dµ−1(D − S + µ−1Y ) (21)

The steps of the complete algorithm [33] are as follows:
1) initialize: S0 = Y0 = 0, µ > 0
2) while not converged, do

(a) Compute Lk+1 = Dµ−1

(

M − Sk + µ−1Yk

)

;
(b) Compute Sk+1 = Sλµ−1

(

M − Lk+1 + µ−1Yk

)

;
(c) Compute Yk+1 = Yk + µ(M − Lk+1 − Sk+1) ;

3) end while
4) output: L, S
In this work, the above algorithm is utilized to solve PCP.

� Remark on [M], [L], and [S]: As shown in Fig. 1, the
input to PCP is matrix [M ] (see, eqn. (1)), which consists
of time-series voltage phasor data obtained from PMUs. The
phasor data includes n2 time-samples of voltage magnitudes
and corresponding phase angles from n1/2 buses where PMUs
are placed constituting an n1xn2 matrix. For example, the test
system described in Section IIIA, 10 PMUs are considered
with 20s window during transient case and 50s window during
ambient case. These lead to a 20x1200 and a 20x2994 element
matrices, respectively, with the assumption of PMU output at
60Hz sampling.
Note that the output of the above algorithm are the matri-

ces representing reconstructed signals [L] and the estimated
corruption in PMU data [S] - please see Fig. 1. Following
the reconstruction of the PMU signals it is analyzed by mode
metering algorithms to estimate modal frequency and damping
ratio. �

B. Modal Estimation
As described in the Introduction, different algorithms can

be used for modal estimation. In this work, we have applied
the well-known Recursive Least Squares (RLS) algorithm [42].
We use a variable forgetting factor-based algorithm [42], which
is well-known and is not repeated here.

C. Engineering Insights
The paper considers wide-area monitoring of low frequency

oscillations as the application area, which needs to estimate
the modal frequency and damping ratio in near real-time.
This gives the operators situational awareness and acts as an
early warning system for proactive re-dispatch-based control,
which is named as Modal Analysis for Grid Operations

t0 t1 t2 t3 t4 t500 1 221 2222

t = t0 , first data sample of the first window is received

t1 = (t0+TPCP), first data sample of the second window is received

t2 = (t1+TPCP), first data sample of the third window is received

complete third window was received & PCP output is 

produced for the second window, t5 = (t4+TPCP)

complete first window is received, t3 = (t0+TW)

complete second window was received & PCP output 

is produced for the first window, t4 = (t3+TPCP)

Tw second window

Fig. 2. Proposed ‘Overlapping Window’ framework.

(MANGO) [9], [10]. The MANGO scheme has been success-
fully implemented in BPA’s control room [9], [10].
The PCP algorithm is ‘Block-Processing’ in nature and

will work in an ‘Overlapping Window’ framework shown in
Fig. 2. The window size (TW seconds) can be determined as
a tradeoff between the accuracy of PCP vs the computational
burden it poses. Let us consider a case where the control
center has only one dedicated processor for executing the
PCP algorithm, which takes TPCP seconds to produce output
[L] and [S]. While the PCP algorithm is executed, the next
window will overlap with (TW - TPCP ) seconds of data from
the previous window and take into account TPCP seconds
of new data samples. This will ensure that there is always a
time lag of TPCP seconds before the data is used by modal
estimation algorithms. In Section III, we will demonstrate
the TW -vs-accuracy tradeoff and calculate the corresponding
TPCP values. We will show that a TW = 50s window produces
acceptable accuracy in reconstruction while the corresponding
time lag incurred (TPCP ) will be less than 2.0s.
Therefore, when a new data sample arrives, e.g. right after

the first window in Fig. 2, it will take TPCP seconds following
that instant to fill the second window. In addition, a further
TPCP seconds will lapse for PCP computation before the
data is ready for processing by modal estimation algorithms.
This implies that the maximum possible delay between the
instance of the incoming data sample and PCP output is
2TPCP . However, with respect to the last sample in the second
window, the delay is TPCP . Therefore, the average delay
between the instant of the incoming data samples and PCP
output is 1.5TPCP , which is less than 3.0s. This should be
reasonable for near real-time applications.
Notably, this is assuming we have only a single dedicated

processor working with one window of data at a time and
completing the task in TPCP seconds before processing the
next window. With parallel processing capability, this delay
can be further reduced. Also, lesser TW leads to slightly poorer
accuracy, but shorter delay. Figure. 2 shows this process.
If a Block-Processing modal estimation algorithm [38]–[40]

is used, it will work on the latest reconstructed data matrix [L].
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Fig. 4. Case IA: Parameter manipulation attack in signal |V40| under ambient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

On the contrary, a Recursive modal estimation technique like
RLS in this paper, will work on the new data samples of the
[L] matrix corresponding to the latest TPCP seconds.

III. CASE STUDY

A. Test System

We have considered a positive-sequence fundamental fre-
quency phasor model of the 16-machine, 5-area New England-
New York system [49] with PMUs installed at major inter-
tie buses highlighted in red, which are shown in Fig. 3. A
PMU data rate of 60Hz is assumed. Ten voltage magnitudes
and corresponding voltage angles (i.e. twenty signals) were
considered in this study and de-trending was performed on all
signals before solving PCP. The objective of the Mode Meter
is to estimate two critical inter-area modes with frequencies
0.382Hz and 0.618Hz, and corresponding damping ratios 6.5%
and 5.7%, respectively. In Appendix A, we have shown that
the uncorrupted power system measurement matrix L0 satisfies
the incoherence property described in equations (10) and (11).

Fig. 5. Case IA: Estimated frequency and damping ratio from corrupted
(‘∆’) signal is misleading. Reconstruction (‘o’) produces reasonable accuracy
as compared to original (grey ‘∗’).

We have considered cyber-attacks on PMU data under (1)
ambient condition, and (2) transient condition, which are
described below.
1) Ambient Condition: To simulate the ambient condition,

band-limited zero-mean gaussian noise was injected in load
terminals of the power system. Next, the effectiveness of the
proposed approach is demonstrated with different cases of
cyber-attacks.

�Case IA: Parameter Manipulation Attack on One Signal:
First, we consider attack on one variable. Figure 4 shows
the parameter manipulation attack in signal |V40|. Unless
otherwise stated, only deviation in the signals from nominal
condition are shown. The attack model uses the weighted sum
of three damped sinusoids with frequencies equal to 0.382Hz,
0.55Hz, and 0.618Hz. The damping ratios are chosen to be
8.0%, 4.4%, and 5.7%, respectively. Figure 4(c) compares the
degree of malicious injection in the signal and the quality of
reconstruction. These are measured by the difference between
the original and the corrupted signal denoted by ‘corruption,’
and the difference between original and reconstructed signal
denoted by ‘error.’ The error is close to zero, which shows
good quality of reconstruction.
Figure 5 shows that the modal damping and frequency

estimated by RLS algorithm from original signal (grey ‘∗’)
and the reconstructed signal (‘o’) closely follow the values ob-
tained from linear analysis. It also shows that a small window
of corrupted data (Fig. 4(a)) can jeopardize the estimates (‘∆’)
and give out misleading information. It is well-known that the
RLS algorithm is sensitive to corruption in the signal and it has
a prolonged effect, especially on the damping estimates – see
for example [41]. The error in estimates prolong well beyond
the disappearance of the corruption, since the RLS algorithm
is ‘Recursive’ in nature, i.e. its estimated parameter vector in
the kth sample is updated based on the (k − 1)th sample.
Table I shows CPU time (TPCP ) vs accuracy trade-off of

PCP algorithm with different window sizes (TW ) for Case
IA. The proposed measure of accuracy is defined as the
average of the RMS values of the error in each reconstructed
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TABLE I
CASE IA: CPU TIME (TPCP ) VS ACCURACY TRADE-OFF OF PCP

ALGORITHM WITH DIFFERENT WINDOW SIZE (TW )

TW TPCP Avg RMS Error Avg RMS Error
in in in p.u. in 10 in rad in 10

seconds seconds (|V |) signals (∠V ) signals
50 1.7764 2.0916e-04 0.0033
40 1.4545 2.1893e-04 0.0035
30 1.1573 2.1957e-04 0.0036
20 0.8703 2.1458e-04 0.0038
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Fig. 6. Case IB: Parameter manipulation attack in signal |V54| under ambient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

signal. For example, the estimation error in signal ∆|V40| is
shown in Fig. 4(c). The average values of the RMS error for
the reconstructed voltage magnitudes, |V |, and phase angles,
∠V are presented separately in Table I. All the codes are
executed in MATLAB R2016 environment using Intel Core
i7 processor with 16 GB RAM. The CPU time, TPCP and
error are calculated for window sizes of 50s, 30s, 40s, and
10s. As shown in Table I, TPCP decreases with a decrease in
window size, TW . However, the average RMS error increases
with decreasing window size. Therefore, a reasonable decision
would be to keep the window size higher, such as 50 seconds
for ambient cases. Note that, a TW = 50s window produces
acceptable accuracy in reconstruction while the corresponding
time lag incurred (TPCP ) is less than 2.0s, which should be
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Fig. 7. Case IB: Parameter manipulation attack in signal |V60| under ambient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

reasonable for near real-time applications.
TABLE II

CASE IB: CPU TIME (TPCP ) VS ACCURACY TRADE-OFF OF PCP
ALGORITHM WITH DIFFERENT WINDOW SIZE (TW )

TW TPCP Avg RMS Error Avg RMS Error
in in in p.u. in 10 in rad in 10

seconds seconds (|V |) signals (∠V ) signals
50 1.7768 2.1365e-04 0.0033
40 1.4466 2.2510e-04 0.0034
30 1.1739 2.3648e-04 0.0035
20 0.8788 2.8860e-04 0.0037

�Case IB: Parameter Manipulation Attack on Multiple
Signals: We consider parameter manipulation attack simulta-
neously on 3 signals - |V40|, |V54|, and |V60|. Figures 6 and 7
show two of those signals, which highlight acceptable accuracy
of the reconstructed signals as viewed from Figs 6(c) and 7(c).
Figure 8 shows that estimated damping and frequency from

the reconstructed signals are quite accurate. Modal frequency
and damping ratios estimated from each corrupted signal
deviates from the actual values and if used, the hackers could
be successful in convincing operators that the system damping
has improved (Figs 8(d), (e), (f)).
Table II shows the CPU time (TPCP ) vs accuracy trade-

off of PCP algorithm with different window sizes (TW ) for

Fig. 8. Case IB: Estimated frequency and damping ratio from corrupted (‘∆’) signal is misleading. Reconstruction (‘o’) produces reasonable accuracy as
compared to original (grey ‘∗’).
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Fig. 9. Case II: Fault-resembling injection attack in signal |V40| under
ambient condition. Corruption: difference between original and corrupted
signal, Error: difference between original and reconstructed signal.
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Fig. 10. Case II: Fault-resembling injection attack in signal |V54| under
ambient condition. Corruption: difference between original and corrupted
signal, Error: difference between original and reconstructed signal.

the case of parameter manipulation attack on multiple signals
during ambient condition. The trend observed is consistent
with the previous case.

� Case II: Fault-Resembling Injection Attack on Multiple
Signals: In this case, the attacker is assumed to inject a portion
of archived transient data following a three-phase self-clearing

TABLE III
CASE II: CPU TIME (TPCP ) VS ACCURACY TRADE-OFF OF PCP

ALGORITHM WITH DIFFERENT WINDOW SIZE (TW )

TW TPCP Avg RMS Error Avg RMS Error
in in in p.u. in 10 in rad in 10

seconds seconds (|V |) signals (∠V ) signals
50 1.7836 2.7513e-04 0.0033
40 1.4405 2.9730e-04 0.0034
30 1.1686 3.1385e-04 0.0035
20 0.8758 3.7680e-04 0.0037

TABLE IV
CASE III: CPU TIME (TPCP ) VS ACCURACY TRADE-OFF OF PCP

ALGORITHM WITH DIFFERENT WINDOW SIZE (TW )

TW TPCP Avg RMS Error Avg RMS Error
in in in p.u. in 10 in rad in 10

seconds seconds (|V |) signals (∠V ) signals
50 1.7437 2.2931e-04 0.0033
40 1.4423 2.5575e-04 0.0035
30 1.1691 3.2689e-04 0.0036
20 0.9258 4.4798e-04 0.0038

fault near bus 53 into three signals |V40|, |V54|, and |V60|.
Due to space restriction, two of these injections are shown in
Figs 9 and 10. The quality of reconstruction is very good and
is reflected in the estimated frequency and damping ratios in
Fig. 11. Since the injected signals are actual transient response
from the system, estimates from the corrupted signals finally
tend to converge to original values. However, due to transient
signal injection, a large deviation is witnessed in all estimates
obtained from corrupted signals.
Table III shows the CPU time and average RMS error in

the recovered signals after execution of PCP algorithm for the
case of fault-resembling injection attack on multiple signals
during ambient condition. The trend observed in CPU time
and error is consistent with the previous cases.

� Case III: Noise Injection Attack on Multiple Signals: A
noise injection attack is simulated by replacing data samples
with zero mean Gaussian white noise on 3 signals - only
one is shown in Fig. 12. Figure 13 shows that the damping
and frequency estimation from the reconstructed data is quite
accurate.
Table IV shows the CPU time and average RMS error in the

recovered signals after execution of PCP algorithm for the case
of noise injection attack on multiple signals during ambient

Fig. 11. Case II: Estimated frequency and damping ratio from corrupted (‘∆’) signal is misleading. Reconstruction (‘o’) produces reasonable accuracy as
compared to original (grey ‘∗’).
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Fig. 12. Case III: Noise injection attack in signal |V60| under ambient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

condition. Similar observations can be made as before.
2) Transient Condition: Figure 14 shows the system re-

sponse following a self-clearing three-phase fault near bus 53
- only four signals out of twenty are shown here. We will
disregard the first half-cycle of oscillatory data immediately
after fault to avoid the effect of higher nonlinearity and initiate
the window following that for application of PCP. This is
acceptable since the accuracy of most of the mode-metering
algorithms is poor in this region.

� Case IV: Noise Injection Attack on One Signal: Similar
to Case III, Gaussian noise injection attack following the
transient event is considered on one signal. As shown in
Fig. 15 the error in the reconstructed signal is higher at the
beginning of the window. However, it is acceptable in most of
the portion of the window. This can be attributed to a higher
degree of nonlinearity in the temporal proximity of the fault
event.
Figure 16 shows the estimated modal frequency and damp-

ing ratio from the original, corrupted, and reconstructed sig-
nals. The corruption in the signal leads to a frequency estimate,
which is lower than the actual frequency. More importantly,
the damping ratio estimation from the corrupted signal leads
us to believe that the system is better damped. The estimates
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Fig. 14. Typical voltage magnitude signals following a self-clearing fault near
bus 53.
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Fig. 15. Case IV: Noise injection attack attack in signal |V60| under transient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

obtained from the reconstructed signal very closely resembles
the estimates obtained from the original signal (15(b)).

� Case V: Missing Data Attack on Multiple Signals: We
consider a missing data attack on 3 PMU signals - |V54|, |V60|,
|V61|. The effectiveness of the proposed pre-processor in data
reconstruction is shown for two of those signals in Figs 17
and 18. Figure 19 compares the estimated values of frequency
and damping ratio obtained from the original, corrupted, and

Fig. 13. Case III: Estimated frequency and damping ratio from corrupted (‘∆’) signal is misleading. Reconstruction (‘o’) produces reasonable accuracy as
compared to original (grey ‘∗’).
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Fig. 16. Case IV: Estimated frequency and damping ratio from corrupted
(‘∆’) signal is misleading. Reconstruction (‘o’) produces reasonable accuracy
as compared to original (grey ‘∗’).
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Fig. 17. Case V: Missing data attack in signal |V54| under transient condition.
Corruption: difference between original and corrupted signal, Error: difference
between original and reconstructed signal.

reconstructed signals. It can be seen that the corruption did not
affect the estimates to a great extent. The estimates obtained
from reconstructed data is pretty close to those obtained from
the original signals.

�Case VI: Data Repetition Attack on Multiple Signals: In
this case a window of ambient data is repeated in the transient
condition in 3 signals - |V54|, |V60|, and |V61|. Figure 20 shows
one of these signals. Like previous cases, the error in the
reconstructed signal is higher at the beginning of the window,
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Fig. 18. Case V: Missing data attack in signal |V61| under transient condition.
Corruption: difference between original and corrupted signal, Error: difference
between original and reconstructed signal.
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Fig. 20. Case VI: Data repetition attack attack in signal |V61| under transient
condition. Corruption: difference between original and corrupted signal, Error:
difference between original and reconstructed signal.

TABLE V
CASE IV: CPU TIME (TPCP ) AND ACCURACY OF PCP ALGORITHM WITH

20S WINDOW SIZE (TW )

TW TPCP Avg RMS Error Avg RMS Error
in in in p.u. in 10 in rad in 10

seconds seconds (|V |) signals (∠V ) signals
20 0.8760 5.7029e-04 0.0125

Fig. 19. Case V: Estimated frequency and damping ratio from original (grey ‘∗’), corrupted (‘∆’), and reconstructed (‘o’) signals.
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Fig. 21. Case VI: Estimated frequency and damping ratio from original (grey ‘∗’), corrupted (‘∆’), and reconstructed (‘o’) signals.

but is acceptable for most of the time span. It can be seen
from Fig. 21 that the corruption in data consistently led to an
increase in estimated damping ratio. The frequency and the
damping estimates from the reconstructed signals appear to
reasonably follow those obtained from the original signals.
Table V, Table VI, and Table VII show the CPU time and

average RMS error in the recovered signals after execution
of PCP algorithm for different cases of attacks during tran-
sient condition. A window size of 20 seconds is considered
reasonable for recovering signals during transient condition.

TABLE VI
CASE V: CPU TIME (TPCP ) AND ACCURACY OF PCP ALGORITHM WITH

20S WINDOW SIZE (TW )

TW TPCP Avg RMS Error Avg RMS Error
in in in p.u. in 10 in rad in 10

seconds seconds (|V |) signals (∠V ) signals
20 0.8924 5.6413e-04 0.0125

TABLE VII
CASE VI: CPU TIME (TPCP ) AND ACCURACY OF PCP ALGORITHM WITH

20S WINDOW SIZE (TW )

TW TPCP Avg RMS Error Avg RMS Error
in in in p.u. in 10 in rad in 10

seconds seconds (|V |) signals (∠V ) signals
20 0.9152 5.6622e-04 0.0125

IV. CONCLUSION

Different types of malicious data corruption stemming from
cyber-attack can jeopardize the estimation of damping ratios
and frequencies of electromechanical modes. In this paper an
approach for wide-area oscillation monitoring was presented,
which is resilient to corruption in PMU data due to cyber-
attack or otherwise. To that end, a Principal Component
Pursuit (PCP)-driven interface was proposed between raw
synchrophasor data and the algorithms used for wide-area
monitoring application. It was shown that the PCP-based
pre-processor can successfully detect the data corruption and
reconstruct the original signal with acceptable accuracy, which
in turn led to improved estimation of poorly-damped modes.
A recursive oscillation monitoring algorithm was tested to
validate the effectiveness of the proposed approach under both
ambient and transient conditions.

APPENDIX

A. Incoherence property assumption of power system measure-
ment matrix, L0

We now show that the uncorrupted power system measure-
ment matrix L0 considered in the paper satisfies the incoher-
ence property. The incoherence property has been tested for
the data matrix used for applying PCP during transient and
during ambient conditions.
Ambient: The data matrix of size 20(n1)x2994(n2) is

considered, which resulted in the following µ values:
µ0 = max {µ (U) = 1, µ (V ) = 22.6129}
These are much smaller as compared to the maximum value

of n/r = 149.7. Other values for testing the incoherence
property are as follows:

µ0=22.6129, µ1=101.1281, maxi ‖U∗ei‖2=1,
maxi ‖V ∗ei‖2=0.1511, ‖UV ∗‖∞=0.3261, µ1

√

r
n1n2

=1.8482
These satisfy the conditions mentioned in equations (10)

and (11).
Transient: The data matrix of size 20(n1)x1200(n2) is

considered, which resulted in the following µ values:
µ0 = max {µ (U) = 1, µ (V ) = 9.7370}
These are much smaller as compared to the maximum value

of n/r = 60. Other values for testing the incoherence property
are as follows:

µ0=9.7370, µ1=43.5451, maxi ‖U∗ei‖2=1,
maxi ‖V ∗ei‖2=0.1623, ‖UV ∗‖∞=0.2212, µ1

√

r
n1n2

=1.2570
These satisfy the conditions mentioned in equations (10)

and (11).
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