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Abstract—This paper proposes an improvement on the stan-
dalone robust principal component analysis (R-PCA)-based ap-
proach for recovering clean signals from corrupted synchropha-
sor measurements. The contributions of this paper are twofold.
First, a kernel principal component analysis (K-PCA)-based
metric is proposed for detecting and differentiating event-induced
outliers from spurious outliers in data, which is then used as an
indicator to suspend R-PCA in the event window to minimize the
overall error in signal recovery. Second, a formal approach based
on the recursive Bayesian framework is proposed for selecting
the most appropriate subspace from a library of subspaces to
be used by R-PCA. The paper combines the ideas of robust
signal recovery, corruption-resilient event outlier detection, and
stochastic subspace selection into a composite approach for
correcting anomalies in synchrophasor data. The effectiveness of
the proposed methodology is validated on simulated data from
IEEE 16−machine, 5−area test system.

Index Terms—PMU Data Quality, Anomaly Correction, Robust
PCA, Kernel PCA, Recursive Bayesian Estimation.

NOMENCLATURE

r Sample number (and window number)
p Number of PMU channels (measurements)
x(r) Vector of PMU measurements− observed

signal values at the rth sample
`(r) True measurements− uncorrupted signal

values at the rth sample
δ(r) Vector of additive signal corruptions

δ̂
(r)

Estimated value of the signal corruptions
ˆ̀(r)

Reconstructed signal− clean measurements
recovered from x(r)

φ(x(r)) Mapping of x(r) in feature space
N Number of samples in a data window
Φ(r) rth data window mapped in feature space
C(r) Covariance matrix corresponding to Φ(r)

λ
(r)
j ,v

(r)
j jth eigenpair associated with C(r)

K(r) Kernel matrix corresponding to Φ(r)

Nλ
(r)
j ,α

(r)
j jth eigenpair associated with K(r)

ζ
(r)
j Norm of principal component (PC) score

of the window Φ(r) along direction vj

q Degree of the polynomial kernel
Si ith low-dimensional subspace in the library
Ns Total number of subspaces in the library
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ρ Dimension of each subspace in the library
Ui Matrix of ρ orthonormal bases spanning Si

Z(r) Set of observations {x(r0) . . .x(r−1),x(r)}
from end of an event till any rth sample

m Random variable (r.v.) indicating the choice
of a subspace

mi Value of the r.v. for choice of Si

IP(mi|Z(r)) Probability that Si is the true subspace
given the observation set Z(r)

IP(x(r)|mi) Likelihood that x(r) lies in the span of Si

I. INTRODUCTION

H IGH precision time-synchronized data from Phasor
Measurement Units (PMUs) have enhanced situational

awareness and decision-making in modern power systems
[1]. However, reliability of these applications is dependent
on the quality of the sensor data and the security of the
cyber-infrastructure relaying them. Often data packets are
lost or delayed in transit, and measurements are corrupted
with colored noise, spurious outliers, and non-zero biases [2].
Moreover, as outlined in [3] and [4], a dedicated intranet-
based communication network in NASPInet architecture is not
immune to cyber attacks. Attackers with malicious intent can
breach the security in the cyber infrastructure and corrupt the
data streams with erroneous inputs [5].

There exists extensive literature on detection of anomalies in
PMU data including [6]–[11] and references therein. Detection
methods include Bayesian approximation-based approaches
[6], Kalman filter-based approaches [7], maximum likelihood
estimation methods [8], principal component analysis (PCA)-
based approaches [9], and ensemble learning methods [11]
among others. However, challenge remains in recovering clean
measurements from corruptions with strong spatio-temporal
correlation.

To that end, the low-rank property of a time-window
of correlated measurements has been exploited in [12]–[14]
for estimating missing data samples. A density-based spatial
clustering approach has been proposed in [15] for online
attack detection, classification, and recovery of clean data from
corrupted measurements. In [16] recovery of missing data
samples is posed as a low-rank matrix completion problem,
and is solved using alternating direction method of multipliers
(ADMM). Extending the nature of anomalies beyond missing
samples and spurious outliers, authors in [17] have used a prin-
cipal component pursuit (PCP)-based approach for correcting
corruptions involving parameter manipulation, noise injection,
and fault replay attacks. However, these block-processing
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techniques are less suitable for real-time applications since
they require finite waiting time in filling a data window.

In our recent work [10], a robust principal component analy-
sis (R-PCA)-based vector-processing approach is proposed for
recovering clean signals from online streaming of corrupted
measurements. Building on the theory of compressed sensing
[18]–[20], the proposed algorithm in [10] identifies the cor-
rupted channels and reconstructs clean samples by solving a
sparse recovery problem using a library of low-rank subspaces
derived offline from simulated data.

Although the proposed approach in [10] is successful in
correcting anomalies in PMU data, few challenges remain.
It fails to distinguish between outliers due to bad data and
those induced by power system events. As a consequence, it
is prone to false positives in an event window. In this context,
we define an event as the onset of a disturbance, and the
time-window capturing the event-induced outlier as an event
window, as shown in Fig. 1. Also, reliable signal recovery
in the post-event oscillatory period and estimation of system
modes following an event is dependent on the right choice
of subspaces. It is possible for the post-event subspace to
be radically different from the pre-event subspace. Therefore,
there remains a challenge in accurately updating the low-rank
subspace following the occurrence of an event, which induces
a change in network topology or operating condition. Next,
we describe these challenges in more detail, identify the gaps
in literature, and highlight the contributions of the paper.

II. CHALLENGES, GAPS, AND CONTRIBUTIONS

1) Separation of event outliers from bad data

Onset of a disturbance like a fault or tripping of a line or a
generator might induce outliers in the system response (hence-
forth, referred to as ‘event outliers’) that do not belong to the
low-dimensional pre-event subspace. Therefore, a standalone
R-PCA-based signal recovery algorithm [10] using the pre-
event subspace may wrongly classify the event-induced out-
liers as bad data and attempt to correct them. It will be shown
in Section IV that this can result in incorrect reconstruction
of voltage sag during fault, leading to potential errors in event
localization. In this regard, we suggest to integrate an event
outlier detector in the signal recovery framework. Following
the detection of an event outlier, we propose to suspend signal
reconstruction and use raw PMU data until the end of the event
window. However, it is also important to ensure that the event
outlier detection is itself immune to bad data and should not
wrongly stop the signal recovery algorithm at spurious outliers.

Extensive literature exists on use of multivariate statistical
methods for event detection and localization in power sys-
tems including [21]–[24] and references therein. In [21], [22]
authors have combined the classical PCA with T 2 and Q
statistics to capture the occurrence of an event and to separate
it from normal operating conditions. A major limitation of
PCA-based methods is in the assumption of linear relationship
between the measured variables. With the inherent nonlinearity
in the system, such assumptions may lead to inaccurate results
[25]. Improvements on this have been suggested in [23] and
[24] using a kernel PCA (K-PCA)-based nonlinear technique.

Fig. 1: Pre-event ambient duration, event window, and post-event transient
duration. Inset: signal with different pre-event and post-event equilibriums.

However, these use large data windows in detection, which
increases the computational requirements. When adapted to
smaller windows, the metrics used in detection are sensitive
to noise and data anomalies, and therefore cannot be used here.

Contribution: In this paper, we extend the K-PCA frame-
work to formulate a corruption-resilient event detection metric.
We propose that with an appropriate choice of a kernel
function, the difference between the largest eigenvalues of the
kernel matrices derived from two successive data windows can
be used in detecting event-induced outliers and the onset of
an event window. Unlike the T 2 and Q statistics presented
in literature [22], [23], the proposed method is insensitive to
noise, corruption, and spurious outliers. Since eigenvalue cal-
culation is computationally intensive, our focus has also been
on reducing the computational burden without compromising
the detector selectivity. We derive an upper bound on the
difference of the eigenvalues as a closed form expression of the
data samples without performing eigen-decomposition on the
kernel matrices. Further, it is shown that the bound itself can
act as a detector, thereby significantly reducing computation in
real-time. In addition, a rank-based measure has been proposed
for detecting the end of an event window (see, Fig. 1) and the
transition to post-event transients. These detection metrics are
then used to suspend signal recovery in the event window and
eliminate the error due to inaccurate reconstruction of event
outliers.

In [26], a PMU data recovery approach is proposed which
exploits the Hankel structure derived from a window of mea-
surements in detection and correction of spurious anomalies.
The algorithm in [26] has a subroutine designed for detection
of events, which is based on the count of channels with
steady mismatch between the reported and reconstructed signal
values over a time window. The detection, therefore, is not
instantaneous and has to wait for a window of samples to
decide whether the mismatch is due to an event or bad data.
In contrast, the K-PCA-based metric proposed in this paper
detects the event at the instant of its onset, and thus is more
suited for online applications. Moreover, the event detection
method in [26] places complete trust on the reported samples
and ignores the results of reconstruction in the period of
mismatch, including the duration of post-event oscillations
following the event-outlier. In this context we would like to
highlight that most wide-area monitoring applications rely on
accurate recovery of these transients for inferring the stability
of the post-event system. Therefore, in this paper, we limit
our trust on the data beyond the window containing the
event outlier. The recovery of post-event transients using the
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proposed approach is discussed next.

2) Subspace selection and recovery of post-event transients

As mentioned previously, the post-event operating condition
could be different from the condition preceding the event,
and therefore, reliable signal recovery during the post-event
transient (see, Fig. 1) is contingent upon fast and accurate
estimation of the new subspace. In [26] the subspace is
formed from the incoming data samples. However, in the initial
duration following an event with only a few samples observed,
the subspace estimation from a short window of data can be
challenging due to the sensitivity of singular vectors to noise
and nonlinearity. As we shall show later in Section IV (see,
ST approach) this error can propagate during reconstruction
of samples over time. To resolve this, in [10] it was assumed
that the network connectivity information from the topology
processor of SCADA EMS is available and can be used in
selecting a suitable subspace from a library of pre-computed
subspaces. In this paper, we would like to limit our reliance
on the data from the Network Topology Processor as SCADA
is more prone to attacks and has a much slower polling rate
compared to PMUs.

Contributions: We adopt a data-driven recursive Bayesian
framework for selecting the most appropriate subspace from
the library for use in post-event signal recovery. Following
the occurrence of an event, the proposed method derives the
likelihoods of all subspaces in the library from the PMU
measurements at each instant, and recursively computes their
probabilities of being the true subspace. The subspace with
probability approaching 1 is chosen for signal recovery. We use
an efficient termination criteria for accelerating the selection
process. It is also shown that the proposed selection method-
ology is robust to random missing samples and uncorrelated
spurious outliers. However, to avoid error due to choice of
incorrect subspace, signal reconstruction is suspended during
the selection process.

Note that as opposed to ignoring the anomaly correction
for a significant duration in the post-event transient window,
in our proposed approach we suspend signal recovery only in
the window of the event outlier and in the duration of subspace
selection tB , a much lesser time span, as shown in Fig. 1.

The rest of this paper is organized as follows. In Section
III, the proposed approach for robust anomaly correction
is presented, which combines the attributes of corruption-
resilient event detection, stochastic subspace selection, and
robust signal recovery. To that end, the K-PCA-based approach
for detecting event outliers and the Bayesian approach for
subspace selection are described in detail. Finally in Section
IV, case studies are presented to highlight the efficacy of the
proposed approach, followed by conclusions in Section V.

Notations: Matrices are denoted by bold uppercase, vectors
by bold lowercase, and scalars by normal font. Exponent (r)
denotes the the window number when used on matrix, and the
sample number when used on a vector or scalar. For example,
X(r) is a matrix derived from the rth window, x(r) is a vector
denoting the rth sample, and x(r) is a scalar computed at the
rth instant. φ(·) is a vector function, and φT (x(r)) denotes
transpose of the function value.

III. PROPOSED ROBUST ANOMALY CORRECTION
APPROACH

Addressing the challenges highlighted in the previous sec-
tion, we propose a coordinated approach for correcting anoma-
lies in PMU data. As discussed, it has three main functionali-
ties − (A) Corruption-resilient detection of event-induced out-
liers − identifying the onset of an event and suspending signal
recovery in event window, (B) Stochastic subspace selection
− choosing a subspace from library that best approximates the
post-event transient condition, and (C) Robust signal recovery
− anomaly detection and signal reconstruction in the post-
event duration using the selected subspace. A brief overview
of the proposed approach described in Fig. 2 is discussed next.

At any instant, the incoming data sample is first passed
through the K-PCA-based event detection algorithm to check
for event outliers. If an event outlier is detected, the event
sign flag ES and the subspace estimation flagM are set to 1,
signalling the onset of event window. In this duration (region
(b) of Fig. 1) signal recovery is suspended and the incoming
data samples are passed without processing. At the end of
event window (detected using rank-based measure, discussed
later), the flag ES toggles back to 0 with M still at 1. This
marks the transition to post-event event transients and initiates
the subspace selection process. In this duration, the incoming
data samples are used to update the posterior probabilities of
the library subspaces using the recursive Bayesian approach.
Eventually one of these subspaces is selected at the end of
duration tB (see, Fig. 1), and flag M returns to 0. For every
data sample thereafter, this subspace is used in signal recovery.

If an event outlier is not detected in the incoming data
sample (implying that the data is from the regions (a) or (c)
of Fig. 1) and if a subspace has already been selected at a
prior instant, signal recovery is performed using that subspace.
Note that in Fig. 2 we initialize flags as ES = 0, M = 1,
this is to ensure that at the very beginning the algorithm has
a subspace selected from the library before it proceeds with
signal recovery. The action of the algorithm on different signal
regions with respective flag statuses have been outlined in
Tables I and II.

TABLE I: FLAG STATUS AND SIGNAL RECOVERY

Flag Status Duration (see, Fig. 1) Signal Recovery

ES = 0, M = 0
Pre-event or

post-event duration beyond tB
YES

ES = 1, M = 1 Event window NO

ES = 0, M = 1
Subspace selection

duration tB
NO

TABLE II: FLAG STATUS AND ACTIONS IN THE ALGORITHM

Flag Status Actions

ES = 0, M = 0
Perform K-PCA-based event outlier detection

Perform R-PCA-based signal recovery

ES = 1, M = 1
Perform incremental rank computation

to detect end of event window

ES = 0, M = 1
Perform recursive Bayesian estimation

Perform K-PCA-based event outlier detection

Assumptions and justifications: We make the following as-
sumptions in the paper regarding the nature of data anomalies
and availability of subspaces in library.
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START
r = N + 1

N : Length of initial buffer

Initialize flags,
ES = 0, M = 1

Present Sample No. = r
Input: x(r)

Raw PMU Data

Perform (A)
Event-Outlier Detection

Output: ES and M

Check if
ES = 1

Check if
M = 1

Perform (B)
Recursive Bayesian Estimation

for subspace selection

Check for
termination

Fix the working subspace
Update, M = 0

Perform (C)
Robust PCA (RPCA)

for anomaly detection and
signal recovery

Output: y(r) = x(r)

Raw PMU Data

Output: y(r) = ˆ̀(r)

Reconstructed Data

Update,
r = r + 1

No

Yes

Yes

No

No

Yes

1

Present Sample No. = r
Input: x(r)

Raw PMU Data

Check if
ES = 0

Perform Kernel PCA
to obtain detection metric

λ1(E)

Check if
λ1(E) > threshold

Update,
ES = 1

Compute Rank of
event window

Check for
increment in Rank

Update,
M = 1

Update, ES = 0

Update,
ES = 0

No

Yes

Yes No

Yes

No

(A) Event-Outlier Detection

ES, M

2

Fig. 2: (left) Flowchart describing the proposed robust anomaly correction approach. (right) Expanded view of the event outlier detection approach.

(1) We assume that at any given instant of time the corruption
in data is limited to only a small fraction of the total
number of available PMU channels. We believe this
to be a realistic assumption for wide-area monitoring
applications, since PMUs are spread across wide geogra-
phies and therefore, coordinated corruption and correlated
anomaly in a large fraction of channels is improbable.

(2) We assume the availability of close-by subspaces (from
N − 1 contingency studies). Ideally, this requires an
exhaustive library with subspaces corresponding to each
N − 1 condition. Our assertion is if subspaces in the
library are exhaustive enough in capturing possible post-
contingency modal signatures − that should be adequate.
Fortunately, for a realistic meshed bulk power system,
such a set of subspaces should be a reasonably small
subset of subspaces corresponding to all N − 1 contin-
gencies. Thus, it is realistic to assume that the library will
have subspaces close to all post-event conditions.

The detailed approaches for event detection, subspace se-
lection, and signal recovery outlined as (A), (B), and (C) in
the flowchart of Fig. 2 are discussed next.

A. Corruption-resilient Detection of Event-induced Outliers:
Kernel PCA-based Approach

Kernel principal component analysis [27] is a generalization
of PCA for nonlinear dimensionality reduction. It is a two-step
process: 1) Mapping the input data to a higher dimensional
feature space (where data points are linearly separable), and
2) Using PCA in feature space for dimensionality reduction.
K-PCA does not explicitly compute the mapping to the higher
dimensional feature space, but uses a function of the measured
data to encode the mapping information. The choice of this
function (called ‘kernel’) thus decides the efficacy of the
mapping and the analysis that follows in the feature space.

Overview of the kernel method: Let x(r) be the vector of
p PMU measurements at the rth sampling instant. Consider
a moving window of N such vectors. At each sampling
instant the vector of the latest observations is added to the

window as the last column and the oldest observations from
the first column are discarded. Detrending is performed to
ensure that each PMU signal has zero mean and unit variance
in consecutive overlapping windows, pairwise taken at a time.
Let x̃(r) be obtained after detrending x(r) in the windows r
and r+1 taken together, and φ(x̃(r)) be the mapping of x̃(r) in
a high-dimensional feature space. Without loss of generality,
let us assume that the data in feature space is centered.

Let (λ(r)
j ,v

(r)
j ) be any jth eigenpair of the covariance matrix

C(r), corresponding to the rth window of data mapped in
feature space. Therefore, for this window we can write,

C(r)v
(r)
j =

1

N

N−1∑
i=0

φ(x̃(r+i))φT (x̃(r+i))v
(r)
j = λ

(r)
j v

(r)
j (1)

v
(r)
j =

N−1∑
i=0

φ(x̃(r+i))
{φT (x̃(r+i))v

(r)
j

Nλ
(r)
j

}
∆
=

N−1∑
i=0

φ(x̃(r+i))α
(r)
ji

(2)
Eigenvectors v

(r)
j are the principal directions in feature space.

Substituting (2) in (1) and pre-multiplying by φT (x(r+l)),
N−1∑
i=0

{
φT (x̃(r+l))φ(x̃(r+i))

N−1∑
n=0

φT (x̃(r+i))φ(x̃(r+n))α
(r)
jn

}
= Nλ

(r)
j

N−1∑
n=0

φT (x̃(r+l))φ(x̃(r+n))α
(r)
jn

(3)
Let Φ(r) ∆

= [ φ(x̃(r)) . . . φ(x̃(r+N−1)) ], and K(r) ∆
=

Φ(r)T Φ(r) be the inner product matrix in feature space with
ki,j as the (i, j)th element. Then (3) can be rewritten as,

N−1∑
i=0

k
(r)
l+1,i+1

N−1∑
n=0

k
(r)
i+1,n+1α

(r)
jn+1

= Nλ
(r)
j

N−1∑
n=0

k
(r)
l+1,n+1α

(r)
jn+1

(4)
Concatenating the expression in (4) for l = 0, 1, . . . N − 1,

(K(r))2α
(r)
j = Nλ

(r)
j K(r)α

(r)
j =⇒ K(r)α

(r)
j = Nλ

(r)
j α

(r)
j

(5)
where, α(r)

j
∆
= [ α

(r)
j1

. . . α
(r)
jN

]T .
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(x̃(r)T x̃(r))q (x̃(r)T x̃(r+1))q . . . (x̃(r)T x̃(r+N−1))q

(x̃(r+1)T x̃(r))q (x̃(r+1)T x̃(r+1))q . . . (x̃(r+1)T x̃(r+N−1))q (x̃(r+1)T x̃(r+N))q

...
...

. . .
...

...

(x̃(r+N−1)T x̃(r))q (x̃(r+N−1)T x̃(r+1))q . . . (x̃(r+N−1)T x̃(r+N−1))q (x̃(r+N−1)T x̃(r+N))q

(x̃(r+N)T x̃(r+1)T )q . . . (x̃(r+N)T x̃(r+N−1))q (x̃(r+N)T x̃(r+N))q

K(r) ∆
=

 a cT

c A






 A b

bT d

 ∆
= K(r+1)

3

Fig. 3: Kernel matrices for rth and (r + 1)th windows of detrended PMU data

From (5), (Nλ(r)
j ,α

(r)
j ) is an eigenpair of K(r) in the

window of interest. Further, since C(r) is real symmetric, the
eigenvectors can be ensured to be orthonormal if,

v
(r)T

j v
(r)
j = (α

(r)
j )TK(r)α

(r)
j = 1 =⇒

∥∥∥α(r)
j

∥∥∥
2

=
1√
Nλ

(r)
j

The reproducing kernel Hilbert space property allows the
inner product φT (x̃(i))φ(x̃(j)) in feature space to be expressed
as a positive definite symmetric function of pre-images in input
space. This is commonly referred to as the ‘kernel trick’, and
the positive definite symmetric function K is called a kernel.
Some commonly used kernels include Gaussian kernel, linear
kernel, polynomial kernel, etc [27]. In this paper, we use the
polynomial kernel described in (6). For a polynomial kernel
the entries of the inner product matrix K(r), also called the
kernel matrix, can be expressed as,

k
(r)
i+1,j+1 = φT (x̃(r+i))φ(x̃(r+j)) = K(x̃(r+i), x̃(r+j))

= (x̃(r+i)T x̃(r+j))q ∀q ≥ 1, ∀i, j ∈ {0, 1, ... N − 1}
(6)

Hence, the kernel matrix corresponding to the rth window
K(r), and the (r+1)th window K(r+1) can be written as shown
in Fig. 3. If the mapped data in feature space is not centered,
one can alternatively center the kernel matrix as described in
[27]. The analysis hereafter shall consider centered kernels.

Onset of an event window: We detect events, which induce
outliers at its onset. As described previously, these outliers
can challenge the accuracy of R-PCA-based signal recovery.
We propose that the occurrence of an event is captured in the
projection of Φ(r) along the direction of maximum variance in
feature space. The magnitude of this quantity is same as the
norm of the PC score along the first principal direction v1.
The PC score norm ζ

(r)
1 of a window of mapped data along

v
(r)
1 can be computed as,

ζ
(r)
1 = ||v(r)T

1 Φ(r)||2 = Nλ
(r)
1 ||α

(r)T

1 ||2 =

√
Nλ

(r)
1

(7)

We define a metric, that uses the difference in PC score norms
between two consecutive time-windows to detect the onset of
an event. The norm of the projection, as in (7), is also the
square root of the largest eigenvalue of the kernel matrix K(r)

corresponding to the rth window. With a suitable choice of
kernel function it can be ensured that the largest eigenvalue
corresponding to a window with an incoming event outlier
is significantly higher compared to the windows containing
ambient data, and thus can be used in detecting the onset of
an event. However, this requires an eigen-decomposition to be
performed on the matrix K(r) of size N ×N . To circumvent
this, we derive an upper bound on the change in (ζ

(r)
1 )2

between successive time-windows in terms of inner products
on data samples, and show that the bound can itself act as a
detector, thereby reducing computation in real-time.

Referring to Fig. 3, let PrK
(r)Pc =

[
A c
cT a

]
∆
= B

where, Pr =

[
0(N−1)×1 I(N−1)×(N−1)

1 01×(N−1)

]
and Pc = Pr

−1

From (5), the eigen-decomposition of K(r) can be written as,

K(r)αj = Nλ
(r)
j α

(r)
j

=⇒ PrK
(r)Pcα̂

(r)
j = Nλ

(r)
j PrPcα̂

(r)
j = Nλ

(r)
j α̂

(r)
j

(8)

=⇒ K(r) and PrK
(r)Pc have same eigenvalues.

From Fig. 3, K(r+1)=

[
A b

bT d

]
∆
= B+E , where E is the

perturbation in the kernel with respect to the previous window.

E =

[
0(N−1)×(N−1) b− c

(b− c)T d− a

]
(9)

Using the classical perturbation bound [28] between two
successive windows, the absolute value of the difference in
the square of PC score norms along v1 can be expressed as,

∆(ζ1)2 = |(ζ(r+1)
1 )2 − (ζ

(r)
1 )2| = |Nλ(r+1)

1 −Nλ(r)
1 |

= |λ1(K(r+1))− λ1(K(r))| = |λ1(B + E)− λ1(B)|
≤‖E‖2 = λ1(E)

(10)
where, λ1(E) denotes the largest eigenvalue of E given by,

λ1(E) =
1

2

{
(d−a)+

√
(d− a)2 + 4(b− c)T (b− c)

}
(11)

∆(ζ1)2, and its bound λ1(E) are our proposed metrics for
detecting event outliers. Between two successive windows r
and r+1, the term d−a equals to ||x̃(r+N)||2q2 −||x̃(r)||2q2 and
each entry in the vector b− c equals to (x̃(l+1)T x̃(r+N))q −
(x̃(l+1)T x̃(r))q , for l = r, . . . (r+N−1). If both the windows
are from ambient condition, then the difference between the
outgoing data vector x̃(r) and the incoming vector x̃(r+N)

is small – only source of difference being the ambient noise
and minor variations about equilibrium. However, if x̃(r+N)

corresponds to an event outlier, the difference would be
significantly larger compared to the previous case.

Detection threshold: Let us consider a simple case with
1 p.u. pre-fault voltage magnitude at all p channels and
that each voltage dips to 0 at the fault instant. For any
ith signal (channel), the measurement row in the overlap-
ping windows r and r + 1 (taken together) can then be
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expressed as, xi = [11×N 0]. The sample mean and
standard deviation of the signal in these combined win-
dows are N

N+1 and 1√
N+1

, respectively. Therefore, on de-
trending, x̃i = [ 1√

N+1
11×N

−N√
N+1

]. Since the fault is
assumed to be observable in all p signals in same extent,
x̃(r+N) = −N√

N+1
1p×1 and x̃(r+i) = 1√

N+1
1p×1,∀i ∈

{0, 1, . . . N − 1}. Therefore, from (7), a = ( p
N+1 )q , d =

( N2p
N+1 )q = aN2q , b = a(−N)q1(N−1)×1, and c =
a1(N−1)×1. Substituting these in (11), λ1(E) = {a(N2q −
1) +

√
a2(N2q − 1)2 + 4a2(N − 1)(−1 + (−N)q)2}/2. For

sufficiently large q, λ1(E) → O(aN2q) = O
(
(pN)q

)
. This

gives the order of magnitude of λ1(E) for an event outlier.
In most realistic cases, the extent of the fault would not be

same in all signals. We express this empirically by introducing
a correction factor β1 ∈ (0, 1) to p in the expression of
λ1(E). The choice of β1 shall decide the threshold (β1pN)q ,
in detecting the event outlier. λ1(E) exceeding this predefined
threshold, indicates the onset of an event window.

If x̃(r+N) corresponds to a bad data or malicious corruption,
assuming only a small fraction of PMUs can be corrupted
simultaneously, we can write λ1(E) → O

(
(β2pN)q

)
. Here,

β2 (< β1) captures the effect of number of affected channels
and degree of corruption. Since β2 < β1 < 1, for large values
of q, (β2pN)q << (β1pN)q .

Comments on choice of polynomial kernel: For under-
standing why a polynomial kernel works on our data set,
let us refer to the discussions in Appendix B.1 of [27]. It
explains that for a map resulting from a polynomial kernel of
degree q, the terms corresponding to qth order correlations are
weighed with an extra factor

√
q! compared to the self-terms.

Therefore, K-PCA with polynomial kernels should mainly pick
up variance for qth order correlations. In our case, this is of
merit because PMU measurements from multiple channels are
correlated for event-induced outliers as opposed to anomalies
and corruptions appearing only in a small fraction of channels.
Therefore, event outliers would get separated from other data
classes in the direction of the qth order correlation in feature
space. Moreover, higher the degree of the polynomial, higher
is the weighing factor and therefore, greater is the separation
in feature space. Hence, we recommend using higher order
polynomial kernels in event outlier detection.

End of an event window: In this approach, we prefer voltage
magnitude and frequency signals for detection of onset and end
of event window. Following the event outlier detection, we ini-
tiate a progressively increasing event window that accumulates
new data samples at each time-step. We compute the rank of
this matrix at each instant. As long as the event persists, the
numerical rank of this window would be 1. The instant when
the event ends (e.g. fault is cleared) and a measurement vector
from the post-event system enters the window, the numerical
rank would increase to 2. The increment in rank indicates the
end of an event window. At this point, the stochastic subspace
selection is initiated, which is described next.

B. Stochastic Subspace Selection: Bayesian Approach
As mentioned previously, the R-PCA-based algorithm needs

a subspace representing the present operating condition, which

is selected from a subspace library. Such a library consists of
a large number of low-rank subspaces computed from offline
planning simulations and archived data, considering plausible
nominal and off-nominal scenarios in the operating envelop.

Let us assume that there are Ns subspaces in the library. We
propose a probabilistic framework based on recursive Bayesian
approach for selecting the most appropriate subspace.

Let Z(r) ∆
= {x(r0) . . .x(r−1),x(r)} be the set of PMU

observations, starting at the rth
0 sample at the end of event

window till any rth instant (r > r0). Let IP(mi|Z(r)) be the
posterior probability that subspace Si is the true subspace,
given the observation set Z(r). Then, following the framework
of recursive Bayesian estimation [29], the posterior probability
of subspace Si at the rth instant can be written as,

IP(mi|Z(r)) =
IP(x(r)|mi)IP(mi|Z(r−1))

Ns∑
j=1

IP(x(r)|mj)IP(mj |Z(r−1))
(12)

where, IP(x(r)|mi) is the likelihood that x(r) lies in the span
of Si. The likelihood can be assumed to be a normal distribu-
tion in e(r)

i , where e(r)
i is defined as the distance [20] between

the observation span containing x(r) and the subspace Si. Let
Ui be the matrix of ρ−orthonormal bases spanning Si. Then,
e

(r)
i = ||(I − UiUi

T )Z(r)||2, with Z(r) = [x(r0) . . . x(r) ].
The closer the span to the subspace, the higher is the likelihood
of x(r) belonging to Si. Eqn (12) can then be expressed as,

IP(mi|Z(r)) =
exp{− 1

2Cf (e
(r)
i )2}IP(mi|Z(r−1))

Ns∑
j=1

exp{− 1
2Cf (e

(r)
j )2}IP(mj |Z(r−1))

(13)

At r = r0, all subspaces are initialized with equal probabil-
ities, IP(mi|Z(r0)) = 1

Ns
,∀i ∈ {1, 2, .., Ns}. The likelihoods

are computed at each time-step and the posterior probabilities
are updated recursively. Since the likelihood IP(x(r)|mi) for
the true subspace is expected to take high values consistently at
every time-step, the corresponding posterior probability would
eventually approach 1. All other subspaces would be rejected
as their probabilities converge to 0. The rate of convergence
depends on the value of Cf .

In case the subspace exactly matching the operating condi-
tion is not present in the library, the proposed approach selects
the subspace that best approximates the operating condition.
However, the process might take finitely many iterations for
the corresponding probability to approach 1. Any attack on
PMU data in this duration might jeopardize the selection
process. Hence, the subspace selection mechanism must be
accelerated and the desired subspace should be chosen in the
least possible time-steps. The termination criteria as derived
in [30] is used to stop the Bayesian estimation and identify
the desired subspace much before the probability reaches 1.

Termination criteria: As in [30], if we assume that the like-
lihoods vary little about their expected values, then, for simpli-
fying the analytical deductions we may replace IP(x(r)|mi) by
its expected value Li. The difference in probabilities between
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two successive time-steps can then be expressed as,

IP(mi|Z(r+1))− IP(mi|Z(r))

=

IP(mi|Z(r))
{
Li −

Ns∑
j=1

LjIP(mj |Z(r))
}

Ns∑
j=1

LjIP(mj |Z(r))

(14)

Further, we define the denominator in (14) as the weighted
likelihood, L(r)

w . With assumptions of minor variations in
likelihoods, it is derived in [30] that L(r)

w is monotonically
non-decreasing. Thus, subspaces for which Li < L

(r)
w , it

is implied that IP(mi|Z(r+1)) < IP(mi|Z(r)), and hence,
their posterior probabilities would monotonically decrease to 0
[30]. Although nothing can be said about subspaces for which
Li > L

(r)
w . However, from the theory of recursive Bayesian

estimation we know that there can be only one subspace for
which the posterior probability would approach one. There-
fore, if at any point in time there is only one subspace for
which Li > L

(r)
w , it can be identified as the true subspace and

the process can be terminated [30]. The respective probabilities
for all other subspaces would eventually converge to 0.

Remark: The proposed approach is robust to single or mul-
tiple uncorrelated outliers and missing data values. However,
coordinated attacks like fault injections with strong spatio-
temporal correlation can jeopardize the selection process. In
this paper, we shall assume that no attack happens while the
posterior probabilities are estimated. This is a weak assump-
tion, since high values of Cf can ensure that termination
is achieved in less than a second of end of event window.
However, it is not desirable to keep Cf so high that termination
is achieved before the likelihoods have settled around their
expected values. That would violate the assumptions made in
deriving the termination criteria.

Once, the Bayesian estimation is terminated, flagM toggles
back to 0 (see, Fig. 2), and the subspace selected from the
library is used in the robust signal recovery discussed next.

C. Robust Signal Recovery: Robust PCA-based Approach

As shown in Fig. 2, robust recovery is performed on the
data vector x(r) when flags ES and M are both 0. The idea
is to decompose x(r) into vectors `(r) and δ(r), such that `(r)

is in the low-rank subspace spanned by true measurements and
δ(r)is the vector of additive signal corruptions, x(r) = `(r) +
δ(r). Since, we have assumed at any instant the corruption is
limited to a small fraction of channels, δ(r) is sparse.

Corresponding to the present operating condition, let Si be
the subspace selected from library by the Bayesian approach
(see, Section III-B). Next, x(r) is projected onto the subspace
orthogonal to Si as in (15)

γ(r) = Qx(r) = Q(`(r) + δ(r)) = Qδ(r) + ν(r) (15)

where, Q = I −UiU
T
i and γ(r) is the projection of x(r) in

the span normal to Si. Since `(r) ∈ Si, the projection ensures
that the contribution of `(r) is nullified while preserving that
of δ(r). However, because of noise and due to approximations

in limiting the dimension of the subspace to ρ, the term Q`(r)

is not exactly zero, but negligibly small as captured in ν(r).
The recovery of the sparse corruption vector δ(r) from x(r)

can be posed as an optimization problem [19] shown in (16).

min
w(r)

∥∥∥w(r)
∥∥∥

1
s.t.

∥∥∥γ(r) −Qw(r)
∥∥∥

2
≤ η(r) (16)

The optimal solution to (16),w∗(r) is an estimate of corruption
in the measurement vector, δ̂

(r)
= w∗(r). The estimated clean

signal can then be obtained as, ˆ̀(r)
= x(r) − δ̂

(r)
. The

thresholding term η(r) in (16) is updated in every time-step as,
η(r) = ||Qˆ̀(r−1)

||2. Henceforth, in this paper we shall refer
to ˆ̀(r)

as the reconstructed PMU data at the rth instant, which
is the output of this algorithm.

Algorithm 1 Robust Anomaly Correction

Input: x(r), p, N , q, β1, Cf

Output: y(r)

Initialization : ES ← 0, M← 1, r0 ← 1
1: for r = N + 1, N + 2, . . . do
2: if ES = 0 then
3: Calculate λ1(E) from eqn. (11)
4: if λ1(E) > (β1pN)q then
5: ES ← 1, M← 1, re ← r, y(r) ← x(r)

6: end if
7: if M = 1 and ES = 0 then
8: Z(r) ← [x(r0) . . . x(r) ]
9: for j = 1, 2, . . . Ns do

10: e
(r)
j ← ||(I−UjUj

T )Z(r)||2
11: IP(x(r)|mj)← exp{− 1

2
Cf (e

(r)
j )2}

12: end for
13: for i = 1, 2, . . . Ns do
14: IP(mi|Z(r))← IP(x(r)|mi)IP(mi|Z(r−1))

Ns∑
j=1

IP(x(r)|mj)IP(mj |Z(r−1))

15: end for
16: L

(r)
w ←

Ns∑
j=1

IP(x(r)|mj)IP(mj |Z(r))

17: T ← ∅
18: for j = 1, 2, . . . Ns do
19: if IP(x(r)|mj) > L

(r)
w then

20: T ← T ∪ {j}
21: end if
22: end for
23: if |T | = 1 then
24: M← 0, U ← Uj : j ∈ T
25: else
26: y(r) ← x(r)

27: end if
28: else if M = 0 and ES = 0 then
29: Q← I−UUT , γ(r) ← Qx(r), η(r) ← ||Qy(r−1)||2
30: δ̂

(r)← argmin
w(r)

||w(r)||1 s.t. ||γ(r) −Qw(r)||2 ≤ η(r)

31: ˆ̀(r) ← x(r) − δ̂(r), y(r) ← ˆ̀(r)

32: end if
33: else if ES = 1 then
34: y(r) ← x(r)

35: Compute numerical rank of [x(re) . . .x(r) ] with tol.
36: if rank > 1 then
37: ES ← 0, r0 ← r, IP(mi|Z(r0))← 1

Ns
,∀1 ≤ i ≤ Ns

38: end if
39: end if
40: end for
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The proposed anomaly correction approach combining the
attributes of event outlier detection, subspace selection, and
R-PCA-based signal recovery is summarized in Algorithm 1.

IV. CASE STUDIES

Test system: The positive-sequence fundamental-frequency
phasor model of the IEEE 16-machine, 5-area New England
- New York system [31] is considered. Voltage magnitude
signals from PMUs installed at 10 major inter-tie buses as
highlighted in red, in Fig. 4 are used in the analysis. The
reporting rate of the PMUs is assumed to be 60 Hz.
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Fig. 4: Single-line diagram of 16-machine, 5−area New England - New York
system with PMUs installed at major inter-tie buses highlighted in red.

Subspace library: The library shown in Table I contains
subspace information corresponding to 5 different network
configurations. SVD [28] was performed on a 40 s window
following a self-clearing fault on each of these network config-
urations. For each subspace Si, singular vectors corresponding
to the three largest singular values are stored in the library.

TABLE III: SUBSPACE LIBRARY

S1 S2 S3 S4 S5

18− 42
out1

18− 49
out1

40− 41
out1

53− 54
out1

Nominal
Condition

1one of the double circuit lines in Fig. 4 is out

Corruption model: We consider following types of anoma-
lies in PMU data−
(1) Fault resembling attack: We simulate bus fault at the
desired location, and then record and replay that time series
data including the fault outlier and the post-fault oscillations
at multiple PMU channels to fool the operator into believing
that it is an actual fault,
(2) Noise injection attack: We replace successive samples
of measurement data from multiple locations using white
Gaussian noise with a constant mean. In simulation, the mean
value is set equal to the magnitude of the last correctly received
data sample, and
(3) Missing data attack: We assume no data is received from
multiple PMUs for consecutive instants. For blocks of missing
samples, we use the last received sample and define corruption
as the difference between the original data and the latest

recorded sample. At any instant, let Ω be the index set of
channels with missing data, and IΩ be the submatrix of the
identity matrix I with columns indexed by Ω. Therefore, for
a missing sample,

x(r) = (I− IΩ ITΩ) `(r) + IΩ ITΩ x(r−1) = `(r) + δ(r)

(17)
where, signal corruption, δ(r) = IΩ ITΩ (x(r−1) − `(r)).

Note that the case of signal recovery from random spurious
outliers is the same as signal recovery from the fault outlier
in the fault replay attack described above, and therefore is not
studied separately. Also, at any instant we assume that data
from only a fraction of PMUs is corrupted.

A. Case I: Signal recovery without event detection

First, we consider the standalone R-PCA algorithm working
with the nominal subspace S5 in absence of the proposed
event detection method. A three-phase self-clearing fault is
simulated at bus 18 in Fig. 4. The outliers in the voltage
magnitudes induced by the fault do not belong to S5, and
when projected onto the orthogonal subspace (see, eqn. (15))
produce sufficiently large γ(r) to get mistaken as data anomaly.
As evident from Fig. 5, the standalone signal recovery algo-
rithm is unable to trace the voltage sags in the selected signals.

Fig. 5: Case I: Original voltage magnitudes during a fault − (1), and its
reconstruction with a standalone R-PCA algorithm [10] using ST − (2), and
using a fixed pre-fault subspace − (3).

We have also studied an approach where the subspace is de-
rived online and updated dynamically from the reconstruction
of a moving window of incoming data samples. We refer to
this as the subspace tracking (ST) approach. Fig. 5 shows that
ST produces similar error in reconstruction compared to the
case with fixed subspace S5. This is because in absence of an
event detector, the window of data forming the subspace has
measurements from both the fault and the pre-fault conditions.

B. Event detection and comparison with PCA-based approach

In this study, we demonstrate the ability of the proposed K-
PCA-based metric (see, Section III-A) to detect event outliers
and the onset of an event window using the voltage signals
from 10 PMU locations shown in Fig. 4. We simulate two in-
stances of three-phase fault near bus 18 and a fault resembling
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attack as shown in Fig 6. The fault at t = 5 s near bus 18
is cleared by opening line 18-42, while fault at t = 25 s is
self-clearing in nature. The recorded fault data from t = 25
s is replayed at t = 45 s at buses 18 and 42. The analysis
was performed on a moving window of 25 samples for both
PCA and K-PCA. In addition for K-PCA, q was set to 10.
It can be seen from the Fig. 6 that the PCA-based T 2 event
detection metric not only fails to differentiate between events
(fault at 5 s and 25 s) and attack (at 45 s). However, when
λ(E) is used as a metric for detection, it clearly identifies the
event and does not have a false triggering during the attack.
Henceforth, we use this K-PCA-based metric to identify event
outliers and suspend signal recovery in event window.

Fig. 6: Corruption-resilient detection of faults using the proposed K-PCA-
based metric and comparison with PCA-based T 2 metric, using a window of
25 samples and with q = 10.

C. Case II: Signal recovery using the proposed approach with
the exact subspace in library

Here, we study the effectiveness of the anomaly correction
approach proposed in Section III, to recover clean signals
from measurements containing both event-induced outliers and
malicious corruption. A three-phase fault is simulated near bus
18 at t = 16.67 s and cleared at t = 16.75 s, by opening
one of the double circuit lines connecting buses 18− 42. It is
assumed that there is an intelligent attacker in the system with
the capability of recording PMU outputs at selected locations
and injecting that in the data stream at a later time. In this
simulation, 400 samples of voltage magnitude data recorded
following the fault at t = 16.67 s is replayed at bus locations
18 and 49 at t = 21.67 s, as shown in Figs. 7 (a)-(b). The
challenge here is to identify the fault replay attack as a data
anomaly and correct it while preserving the signature of the
actual fault.

The K-PCA-based approach is applied on the incoming
voltage data from the 10 PMU locations in Fig. 4, for detec-
tion of event-induced outliers. In each time-step K-PCA was
performed on a moving window of 20 samples. The degree
of the polynomial kernel q was taken as 10, and the detection

Fig. 7: (a)-(b): Case II: Fault resembling attack on signals |V18| and |V49|.
Signal recovery using the proposed approach is compared with ST approach.
(c): K-PCA-based metrics for detection of event-induced outliers.

threshold was set at 1020 (assumed, in the worst case at any
instant, not more than 50% of the channels are corrupted,
therefore, β1 = 0.5 =⇒ threshold = (0.5 · 10 · 20)10 = 1020,
see Section III-A). The metrics ∆(ζ1)2 and λ1(E) as plotted
in Fig. 7 (c), are able to detect and distinguish the onset of
the fault from the attack. Further, the instant of fault clearing
was identified at t = 16.75 s, by progressively computing the
numerical rank of the event window at each time-step. The
flag ES is 1 in this duration, and recovery is suspended.

Fig. 8: Case II: (a) Likelihoods and (b) posterior probabilities of all 5
subspaces as obtained from recursive Bayesian estimation.

The Bayesian estimation for subspace selection is initiated

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSG.2019.2961561

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

at the instant of fault clearing, with Cf = 10. The likelihoods
at each iteration, and the corresponding posterior probabilities
for all 5 subspaces from the library are plotted in Fig. 8.
As seen from Fig. 8 (a), beyond t = 17.6 s there is only
one subspace S1 with likelihood above the weighted value
Lw. And hence, following the arguments in Section III-B,
termination is achieved at t = 17.6 s, and S1 is selected.

The effectiveness of the termination criteria can be validated
from the probability plot in Fig. 8 (b). Had the estimation
not been terminated, the posterior probability for S1 would
have settled at 1 after finitely many iterations, with all others
converging to 0. Choice of S1 is also consistent with our
knowledge that the fault in the simulation was cleared by
opening a double circuit line connecting 18− 42.

The recovery of signals |V18| and |V49|, using the proposed
approach is shown in Figs. 7 (a)-(b).

Robustness of subspace selection to missing data: In the
case above, it took 51 samples (t = 16.75 s − 17.6 s) to
converge to the desired subspace S1. Now, we study the impact
of missing data on subspace selection and termination time.
Two scenarios of data loss are considered in which a block
of consecutive data samples are missed in signals |V18|, |V49|,
and |V60| − (1) towards the beginning of subspace estimation
− after 5 samples from initiation, and (2) after accumulation
of few samples − after 15 samples from initiation. The
termination time for these are presented in Table IV.

TABLE IV: IMPACT OF MISSING SAMPLES ON TERMINATION TIME

Missing data scenario tB (in samples)

missed 10 samples starting at 5th sample
(t = 16.83 s) 57

missed 10 samples starting at 15th sample
(t = 17 s) 52

missed 20 samples starting at 15th sample
(t = 17 s) 53

As demonstrated, the approach is fairly robust to missing
samples. The robustness can be attributed to the following.
First, in calculating the likelihoods in eqn. (13) the span of x(r)

is considered, which includes previously observed samples,
and second, upon missing a sample we use the latest available
data value.

D. Case III: Signal recovery using the proposed approach in
absence of the exact subspace

1) Fault resembling attack: The study here is similar to
Case II, except that S1 is removed and the library now contains
subspaces S2−S5. The subspace selection process is illustrated
in the likelihood and the probability plots of Fig. 9. The
Bayesian estimation is terminated at t = 17.2 s, and S2 is
chosen for signal recovery. This can be justified from the
argument that in absence of the exact post-fault subspace S1,
the selection approach chooses the subspace that is nearest to
it. The angle θij , as computed from (18), can be used as a
measure of proximity between two subspaces Si and Sj [32].

θij = sin−1
{∥∥∥(I−UiU

T
i )Uj

∥∥∥
2

/∥∥Uj

∥∥
2

}
(18)

TABLE V:
ANGLE BETWEEN S1 AND OTHER SUBSPACES, in rads.

θ21 θ31 θ41 θ51

0.17 0.29 1.26 1.24

Using the measure in (18), the angle between S1 and all
other subspaces are computed, see Table V. It is evident that
S2 is closest to S1, and thus best approximates the post-fault
condition in absence of S1. The recovery of signals |V18| and
|V49| using S2 as the reference subspace is shown in Fig. 10.

Fig. 9: Case III (1): (a) Likelihoods and (b) posterior probabilities of remaining
4 subspaces as obtained from recursive Bayesian estimation.

Fig. 10: Case III (1): (a)-(b): Fault resembling attack on signals |V18| and
|V49|. Signal recovery using the proposed approach in absence of exact
subspace compared with ST approach.

TABLE VI: COMPARISON OF RECONSTRUCTION ERRORS

Fault Resembling Attack Average Average Maximum
(20% Corruption: 18, 49) MSE Std. Dev. MSE

Case I (3): using
pre-fault subspace 4.6e− 3 7.8e− 4 1.14

Case I (2): using
ST approach 1.55e− 4 2.28e− 4 6.1e− 3

Case II: Proposed
using exact subspace S1

2.39e− 6 4.54e− 6 2.38e− 4

Case III: Proposed
using subspace S2

1.24e− 5 2.18e− 5 6.69e− 4

The statistical dispersion of the error in reconstruction (as
defined in [10]) of all 10 signals, during t = 16− 30 s for the
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three cases discussed above, are presented in Table VI. The
effectiveness of the proposed method is evident.

2) Noise injection attack: We have also studied the effec-
tiveness of the proposed signal recovery approach under noise
injection attack. Following the fault near bus 18 at t = 16.67
s, 400 samples of constant mean white Gaussian noise is
injected in signals |V45| and |V60| at t = 21.67 s replacing the
actual measurements. The signal-to-noise ratio (SNR) in the
attack duration is 40 dB. In defining SNR, the constant mean
represents the signal amplitude. It is assumed that the exact
post-fault subspace S1 is not available, and thus, the Bayesian
framework selects S2 for signal recovery. The corrupted and
reconstructed signals are shown in Fig. 11.

Fig. 11: Case III (2): (a)-(b): Noise injection attack on signals |V45| and |V60|.
Signal recovery using the proposed approach in absence of exact subspace
compared with ST approach.

3) Missing data attack: We demonstrate the ability of the
proposed approach in recovering measurements from missing
data samples. In this study, following a fault near bus 18 at
t = 16.67 s, we perform missing data attack on signals |V18|,
|V49|, and |V60| for 400 consecutive samples. In absense of the
exact post-fault subspace S1, the Bayesian framework selects
S2 for signal recovery. The corrupted and reconstructed signals
are shown in Fig. 12.
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Fig. 12: Case III (3): (a)-(c): Missing data attack on signals |V18|, |V45|,
and |V60|. Signal recovery using the proposed approach in absence of exact
subspace compared with ST approach.

4) Robustness to corruption in multiple channels: Finally,
we demonstrate the robustness of the proposed approach
by varying the fraction of corrupted channels. As described
before, we assume that the exact subspace S1 is not present
in the library, and thus, signal reconstruction is performed with
a close by subspace S2. For each of two attack types − fault
replay and missing data, we study 5 cases with number of
corrupted signals at each instant ranging from 20% to 50%.
The statistical dispersion of the errors in signal recovery for
these cases are presented in Tables VII and VIII.

TABLE VII: RECONSTRUCTION ERRORS IN ABSENCE OF S1 WITH
VARYING PERCENTAGE OF CORRUPTION: FAULT REPLAY ATTACK

% Channels Signals Average Average Maximum
Corrupted (Bus No.s) MSE Std. Dev. MSE

20% 18, 49 1.24e− 5 2.18e− 5 6.69e− 4
30% 18, 27, 61 1.25e− 5 2.19e− 5 6.69e− 4
30% 18, 27, 54 1.27e− 5 2.22e− 5 6.69e− 4

40%
18, 27,
54, 60

1.69e− 5 2.55e− 5 6.69e− 4

50%
18, 27, 54
60, 61

1.75e− 5 2.61e− 5 6.69e− 4

50%
18, 27, 53
54, 60

1.78e− 5 2.64e− 5 6.69e− 4

TABLE VIII: RECONSTRUCTION ERRORS IN ABSENCE OF S1 WITH
VARYING PERCENTAGE OF CORRUPTION: MISSING DATA ATTACK

% Channels Signals Average Average Maximum
Corrupted (Bus No.s) MSE Std. Dev. MSE

20% 18, 40 1.24e− 5 2.17e− 5 6.69e− 4
30% 18, 27, 61 1.25e− 5 2.18e− 5 6.69e− 4
30% 18, 27, 54 1.30e− 5 2.22e− 5 6.69e− 4

40%
18, 27,
54, 60

1.78e− 5 2.55e− 5 6.69e− 4

50%
18, 27, 54
60, 61

1.78e− 5 2.59e− 5 6.69e− 4

50%
18, 27, 53
54, 60

1.78e− 5 2.60e− 5 6.69e− 4

V. CONCLUSIONS

A standalone R-PCA-based signal recovery algorithm might
mistake an event-induced outlier as a data anomaly, thereby
producing erroneous signal reconstruction. To solve this, a
corruption-resilient K-PCA-based metric was proposed, which
suspends the R-PCA algorithm upon event detection. A re-
cursive Bayesian framework was proposed for autonomous
selection of appropriate subspace from a library, to be used
in signal reconstruction. A termination criterion for accel-
erating the subspace search was also discussed. The ideas
of corruption-resilient event outlier detection and stochastic
subspace selection following a change in topology augments
the traditional R-PCA to robustify PMU data recovery.
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