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Abstract—Multiple strategies have been proposed to exchange
frequency support amongst asynchronous AC areas through
Multiterminal DC (MTDC) grid. Majority of these strategies
rely on basic droop control mechanisms involving either inertial
or primary frequency droop, or both. This paper addresses the
requirements on those droop coefficients, which ensure small-
signal stability. To that end, a stability criterion is hypothesized
based on certain observations. Using a reduced Nth-order model,
the hypothesis is analytically proved for the cases when either
inertial droop or primary frequency droop control is active.
Moreover, implication of this hypothesis on a recently proposed
ratio-based frequency support method is analyzed to derive new
stability constraints over and above the existing performance
requirements. To support the stability hypothesis, numerically
constructed stability boundaries in the droop coefficient space
are studied. The stability boundary obtained from small-signal
analysis of the full-order nonlinear model is shown to approxi-
mately match the boundary obtained from the Nth-order model,
which further strengthens the hypothesis. Finally, various time-
domain simulation studies are performed on full-order model to
validate the stability hypothesis.

Index Terms—MTDC, Stability, Droop, HVDC, Inertial Sup-
port, Frequency Support, Stability Boundary

I. INTRODUCTION

IN 2019, two near-simultaneous outages of a generating
unit and a wind farm in the UK caused a significant drop

in frequency, which activated under-frequency load shedding
and eventually caused a blackout that left almost a million
homes across the country in the dark and has seriously affected
the transportation network. Provision of frequency support
from the continental European grid and Ireland through a
Multiterminal DC (MTDC) grid has the potential to prevent
such blackouts. Therefore, it is important to study the process
of exchange of frequency support through MTDC grid. Despite
the existence of quite a few techniques and strategies to provide
frequency support through MTDC in the literature, traditional
droop-based controllers are the most popular in industry due
to their simplicity. However, to the best of our knowledge,
analytical stability constraints and fundamental understanding
of stability aspects of such an interconnected AC-DC system
with frequency droop control has not been reported. To bridge
that gap, this paper focuses on stability of AC-DC system that
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are equipped with traditional droop-based inertial and primary
frequency controllers.

Various control strategies present in literature can be broadly
divided into two types, (i) centralized and distributed mod-
ern controllers and (ii) traditional droop-based controllers.
References [1]–[7] have proposed strategies that fall into
the prior category. Papers [1] and [2] proposed two similar
consensus-based controllers and analytically proved system
stability with identical asynchronous AC system assumption.
Building on these, [3], [4] proposed a distributed proportional-
integral controller and a distributed model predictive control
(MPC), respectively. References, [5], [6] proposed distributed
controllers for secondary frequency support. In these papers
[3]–[6], small-signal stability of the closed-loop system was
analytically proved. On the other hand, [7] proposed MPC
for AGC action, albeit, did not perform any stability analysis.
Instead, parameters were designed by trial and error to get a
stable and damped response.

The concept of using droop control to provide frequency
support through MTDC grid was first proposed in [8]. The idea
of providing such support from offshore wind farms (OWFs) is
reported in [9]. Inspired by [8], [9], various droop-based control
techniques were proposed in literature [10]–[24]. However, in
contrast to the previously mentioned modern control techniques,
despite the simplicity and widespread use of droop control,
none of the works [8]–[24] on droop-based frequency support
through MTDC grid have analytically established stability with
respect to the choice of inertial or primary frequency droop
coefficients. Only reference [6] proved the stability of power-
frequency-voltage (DC-side voltage) droop, which is obtained
as a special case of the distributed controller that the paper
proposed. On the other hand, references [11], [12], [20], [24]
have performed rootlocus-based numerical small-signal stability
analysis, which is not comparable to analytical proof of stability
that holds across multiple operating points. The current state
of stability analysis performed in literature on controllers that
provide frequency support is summarized in Table I.

Recently, a frequency support method was proposed in [22]–
[24], which aims to achieve a prescribed ratio among the fre-
quency deviations of participating areas. This requirement was
first introduced in the context of steady-state deviations in [22].
In [23], the criterion was extended by imposing a prescribed
ratio among the frequency deviations of the asynchronous areas
even during the dynamic conditions. In addition, this paper
presented a provision for ‘selective’ participation of converters
in frequency support service. Reference [24] achieved the ratio-
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TABLE I
STABILITY ANALYSIS ON VARIOUS CONTROLLERS IN LITERATURE THAT PROVIDE FREQUENCY SUPPORT THROUGH MTDC GRIDS

Literature Controller Description Stability Analysis

Modern Centralized and
Distributed Controllers

[1], [2] Consensus-based controllers Analytically proved for a special case
[3] Distributed proportional-integral control Analytically proved
[4] Distributed MPC Analytically proved

[5], [6]
Distributed controllers for

secondary frequency support Analytically proved

[7] MPC for AGC action Designed by trial and error

Traditional Droop-based
Controllers

[8]
First proposed droop to provide

frequency support in MTDC No stability analysis

[9] Droop to extract support from OWFs No stability analysis

[8]–[24] Various droop-based controls
Only [11], [12], [20], [24] have

performed numerical rootlocus analysis

based criterion for all time after the disturbance in a reduced
Nth-order system and extended the strategy to incorporate
OWFs. Such a performance requirement could be vital in
view of the future market mechanisms. However, constraints
guaranteeing AC-DC system stability in conjunction with the
performance requirement have not been derived in these papers.
To fill this gap, this paper presents a small-signal stability
criterion for inertial and primary frequency droop control in
MTDC grids and examines its implications on the ratio-based
control proposed in [22]–[24].

The paper is organized as follows. First, the reduced Nth-
order model proposed in [23], which captures frequency
dynamics of a generic N-asynchronous AC system is reviewed.
Next, modes of operation of droop controls, along with certain
observations with respect to the choice of droop coefficients are
presented. The observations lead to the ‘stability hypothesis,’
which is later analytically proved for two modes of operation. In
Section IV, the recently-proposed ratio-based frequency support
method is reviewed and implications of ‘stability hypothesis’
on it are presented in Section V. To validate the stability
hypothesis, numerically constructed stability boundaries in the
droop coefficient space are studied and are compared with
stability boundary obtained from small-signal analysis of full-
order nonlinear model in Section VI. Finally, various time-
domain simulation studies are performed on full-order model
to support the stability hypothesis.

II. NTH-ORDER MODEL OF A GENERIC N-ASYNCHRONOUS
AC AREA SYSTEM

Figure 1(a) represents a generic N-asynchronous AC area
system connected through a meshed MTDC grid. Each con-
verter station connected to an AC area is equipped with a
power-frequency-inertial-voltage droop controller as shown in
Fig. 1(b). This controller ensures that power injected into AC
Area #i through the converter station from MTDC grid, PCi is
given by (1), when dynamics of the PI controller in Fig. 1(b)
is neglected, i.e., instantaneous tracking is assumed.

PCi = Prefi + kfi∆fi − 2hifiḟi

+kvi(V
2
DCcom − V 2

DCref )/4
(1)

Here, ∆fi = f0 − fi denotes the frequency deviation from
nominal value f0, and Prefi denotes the total reference power
of converters in ith area. The parameters kfi, hi, and kvi
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Fig. 1. Representation of (a) a generic N-asynchronous AC area system
connected through meshed MTDC network and (b) the power-frequency-
inertial-voltage droop controller in ith AC area.

represent the primary frequency, inertial, and DC voltage
droop coefficients, respectively. Henceforth, the term ‘frequency
droop’ will imply ‘primary frequency droop’ in this paper, and
vice-versa. In this work, voltage measured from a common
node, VDCcom in the DC grid is communicated to all the
converters for autonomous power sharing [25] with VDCref

as its reference.
The objective of the Nth-order model is to capture the

frequency dynamics in N-asynchronous AC area system through
a simplified reduced-order model. This model was derived in
[24], and is briefly reviewed here for the sake of completeness.
In reference [24], the following simplifying assumptions were
made,

1) Every AC area in Fig. 1(a) is represented with a load,
PLi and a lossless synchronous generator (power input,
PMi and inertial constant, HGi), which is equipped with
a governor (inverse droop coefficient, kgovi).

2) Dynamics and losses in the DC lines are neglected and
only the power-sharing effect of DC voltage droop control
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is considered.
3) Control loop dynamics in the converter stations are

neglected and instantaneous tracking is assumed enabling
the use of equation (1).

With these assumptions, the equations governing the frequency
dynamics of the Nth-order model can be derived as,

2[HGi + (1− k̄vi)hi]f0ḟi − k̄vi(
N∑
k 6=i

2hkf0ḟk)

= [kgovi + (1− k̄vi)kfi]∆fi − k̄vi(
N∑
k 6=i

kfk∆fk) + ∆Pi

(2)

where, i varies from 1 to N ; k̄vi = kvi/
∑N

k kvk is the
normalized voltage-droop coefficient, and ∆Pi is given by,

∆Pi = PMi − PLi + Prefi − k̄vi(
N∑
k

Prefk) (3)

The set of N equations in (2) can be represented in a matrix-
vector form as follows, (note that ∆fi = f0 − fi implies,
ḟi = −∆ḟi )

2f0HN∆ḟ = −KN∆f −∆P (4)

Here, the ith elements of vectors ∆P and ∆f are ∆Pi and
∆fi, respectively. The matrices HN and KN have similar
structures and their elements are given by,

HN (i, j) =

{
HGi + (1− k̄vi)hi if i = j
−k̄vihj if i 6= j

KN (i, j) =

{
kgovi + (1− k̄vi)kfi if i = j
−k̄vikfj if i 6= j

(5)

III. STABILITY HYPOTHESIS FOR NTH-ORDER MODEL

The main objective of this paper is to analytically determine
the constraints on inertial and frequency droop coefficients
(hi and kfi), for which the linear system (4) is small-signal
stable. In order to achieve that objective, a stability criterion is
hypothesized based on certain observations. However, before
explaining the observations leading to the hypothesis, various
modes of operation of the inertial-frequency droop control are
presented in the following section.

A. Modes of Operation and Requirement for Stability:

Three modes of frequency support and respective constraints
that each needs to satisfy to ensure small-signal stability are
described next.

(i) Mode I: Only primary frequency support: The inertial
droop coefficients are set to zero in equation (4). Therefore,
frequency dynamics is governed by, 2f0 HN|hi=0:∀i ∆ḟ =
−KN∆f−∆P. This is the most common form of droop-based
frequency support found in literature. For this system to be
small-signal stable, the real part of eigenvalues of system matrix
should be negative. Using the fact that for any square matrix
A, eig(−A) = − eig(A), the stability condition is simplified
to obtain constraint (6) as follows,

<(eig(K̂N)) > 0 (6)

Here, K̂N = (HN|hi=0:∀i)
−1KN.

(ii) Mode II: Only inertial support: Similar to Mode I,
frequency droop coefficients are set to zero in equation
(4). Therefore, the frequency dynamics is governed by,
2f0HN∆ḟ = − KN|kfi=0:∀i ∆f −∆P. For this system to
be stable, constraint (7) has to be satisfied.

<(eig(ĤN)) > 0 (7)

Similar to Mode I, here, ĤN = (KN|kfi=0:∀i)
−1HN.

(iii) Mode III: Both Inertial and primary frequency support:
During this mode the frequency dynamics is governed by (4).
Therefore, for this system to be stable, constraint (8) has to
be satisfied.

<(eig((HN)−1KN)) > 0 (8)

Clearly, the choice of droop coefficients affects the stability
in all three modes. The aim is to determine the inertial and
frequency droop coefficients that satisfy either one of the three
constraints (6) – (8) depending on the mode of operation. Note
that Mode I and Mode II are two special cases of a more general
case, Mode III. Therefore, the frequency and inertial droop
coefficients, which satisfy (6) and (7), do not necessarily satisfy
(8). Nevertheless, the stability hypothesis is formulated for all
three modes by observing droop coefficients that satisfy (6)
and (7). Moreover, the formal analytical proof of the stability
hypothesis is performed only for Modes I and II. However,
nonlinear time-domain simulations build the confidence in the
accuracy of the same stability hypothesis for Mode III.

B. Observations Leading to Stability Hypothesis:

As mentioned above, all the observations leading to the
formulation of the stability hypothesis are made from con-
straints (6) and (7). In fact, the matrices in these constraints
can be represented by a generic matrix, X̂N, which makes
the analysis easier. The structure of X̂N and definitions of
the generic variables in the matrix are presented in equation
(9). Next, eigenvalues of this matrix are determined for some
specific values of xi.

1) Observation-I: Substituting xi = −Ci ∀ i, we get,

X̂N|(xi=−Ci) = k̂D

[
C1 · · · CN

]
(10)

where, k̂D = [k̄v1/D1, · · · , k̄vN/DN ]T . This implies that the
above matrix has N − 1 zero eigenvalues and one positive real
eigenvalue, which is given by

∑N
k=1 k̄vkCk/Dk. Therefore, for

this set of droop coefficients, the system is marginally stable.
2) Observation-II: Substituting xi = −Ci +pDi ∀ i, where

p > 0 is some positive real constant, we get,

X̂N|(xi=−Ci+pDi) = pIN + k̂D

[
C1 − pD1 · · · CN − pDN

]
(11)

where, IN stands for identity matrix of size N . There are
N − 1 positive-real eigenvalues – each of value p and the
remaining eigenvalue λ1 is given by,

λ1 = p+

N∑
k=1

k̄vk(Ck − pDk)/Dk

= p− p
( N∑
k=1

k̄vk
)

+

N∑
k=1

k̄vkCk/Dk

(12)
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X̂N =


[C1 + (1− k̄v1)x1]/D1 −k̄v1x2/D1 · · · −k̄v1xN/D1

−k̄v2x1/D2 [C2 + (1− k̄v2)x2]/D2 · · · −k̄v2xN/D2

...
...

. . .
...

−k̄vNx1/DN −k̄vNx2/DN · · · [CN + (1− k̄vN )xN ]/DN

 =


ĤN

if, (xi, Ci, Di)
= (hi, HGi, kgovi)

K̂N
if, (xi, Ci, Di)

= (kfi, kgovi, HGi)
(9)

Since, k̄vk is the normalized voltage-droop coefficient, we have,∑N
k=1 k̄vk = 1. This implies, λ1 =

∑N
k=1 k̄vkCk/Dk, which

is the same as the one positive eigenvalue from Observation-
I. Therefore, for this set of droop coefficients, the system is
stable.

3) Observation-III: Substituting x1 = x10 > −Ci and xi =
−Ci ∀ i 6= 1, we get,

X̂N|(xi=−Ci,∀i6=1;x1=x10) = ((C1 + x10)/D1)ê1êT
1

+k̂D

[
−x10 C2 · · · CN

] (13)

here, êi is a used as a standard notion to represent unit vector
along the ith direction. In order to determine the eigenvalues of
the above matrix, we can arrive at the following characteristic
polynomial through some algebraic manipulations,

λN−2

[
λ2 −

(C1 + (1− k̄v1)x10
D1

+

Nr∑
k=2

k̄vk
Ck

Dk

)
λ

+
(C1 + x10

D1

)( N∑
k=2

k̄vk
Ck

Dk

)]
= 0

(14)

There are N − 2 zero eigenvalues and the remaining two non-
zero eigenvalues say, λ1 and λ2, can be obtained by solving the
quadratic polynomial part in the above equation. Nonetheless,
it is sufficient to know the sum and the product of these two
non-zero eigenvalues, which are given by,

λ1 + λ2 =
C1 + (1− k̄v1)x10

D1
+

Nr∑
k=2

k̄vk
Ck

Dk

λ1λ2 =
(C1 + x10

D1

)( N∑
k=2

k̄vk
Ck

Dk

) (15)

Observe that both the sum and product of the eigenvalues are
positive, i.e., λ1 + λ2 > 0 and λ1λ2 > 0 (recall that k̄v1 < 1
and x10 > −Ci). This implies that both the eigenvalues are
positive when real or have a positive real part when they
are a complex conjugate pair. Either way, the system will be
marginally stable with these droop coefficients.

4) Observation-IV: Substituting x1 = x10 + pD1 and xi =
−Ci + pDi ∀ i 6= 1, where x10 > −C1 and p > 0 is some
positive real constant, we get,

X̂N|(xi=−Ci+pDi,∀i6=1;x1=x10+pD1) = ((C1 + x10)/D1)ê1êT
1

+pIN + k̂D

[
−x10 − pD1 C2 − pD2 · · · CN − pDN

] (16)

Using the similar arguments as that of Observation-III, it can
be concluded that there are N − 2 positive-real eigenvalues,
each of whose value is p, and two eigenvalues λ1 and λ2

satisfying,

λ1 + λ2 =
C1 + (1− k̄v1)x10

D1
+

N∑
k=2

k̄vk
Ck

Dk
+ p

λ1λ2 =
(C1 + x10

D1

)( N∑
k=2

k̄vk
Ck

Dk

)
+ p
( N∑

k=1

k̄vk
Ck

Dk

) (17)

Similar to Observation-III, we have sum and product of λ1
and λ2 to be positive. This implies that real parts of these
eigenvalues are positive. Therefore, this choice of droop
coefficients renders the system stable. Going forward, the
results from these observations will be summarized, which
enables us to hypothesize a stability criterion for the droop
coefficients.

C. Statement of Stability Hypothesis:

If we construct a coordinate system in the droop coefficient
space with origin at xi = −Ci ∀ i and assign the unit vectors
êis as the basis vectors, then the choice of droop coefficient
in observations made above indicate the following,

1) The origin xi = −Ci ∀ i and points along any positive
axis result in a marginally stable system.

2) Starting from any of the above-stated marginally stable
points, moving in the direction of vector [D1, · · · , DN ]T

into the positive quadrant of the constructed coordinate
system makes the system stable.

Building on the above-made observations, the ‘stability hypoth-
esis’ is presented next.

Stability Hypothesis: Choosing the inertial and frequency
droop coefficients such that, hi = −HGi + ui and kfi =
−kgovi + vi (i.e., xi = −Ci + pi), where ui > 0 and vi > 0
(i.e., pi > 0) ∀ i, ensures the system is small-signal stable, i.e.,
constraints (6) − (8) will be satisfied.

In other words, starting from the marginally stable points,
i.e., origin xi = −Ci ∀ i or the points on any positive axis and
moving into the positive quadrant of the constructed coordinate
system (not just along the vector [D1, · · · , DN ]T ) makes the
system asymptotically stable.

D. Formal Proof of the Hypothesis for Mode I and Mode II:

Based on a lemma, which is supported by continuity
arguments, a formal proof of the proposed hypothesis is
presented for Mode I and Mode II. Next, the lemma is stated
and proved.
Lemma-I: Given a matrix, M(τ ) such that, all its elements
are continuous functions of parameter τ ∈ Rn

(
i.e, M(τ ) =

[mij(τ )], where mij is continuous w.r.t. τ ∀ i, j
)
, then

<(eig(M(τ ))) < 0 ∀ τ ∈ S ⊆ Rn, if the region S satisfies
the following conditions,

1) S is connected,
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2) ∃ at least one τ∗ ∈ S s.t. <(eig(M(τ∗))) < 0, and
3) @ τ ∈ S, s.t. at least one eigenvalue of M(τ ) has zero

real part.
Remark-I: Before presenting the proof of this lemma, an
important consequence of matrix elements being continuous
functions of parameter τ ∈ Rn should be understood. In [26]
it is established that zeros of a polynomial are continuous
w.r.t. to its coefficients, which implies that eigenvalues of a
matrix are continuous w.r.t. its elements. Consequently, the
eigenvalues, specifically the real part of the eigenvalues of the
matrix M(τ ) are continuous w.r.t. τ .
Proof: For the sake of contradiction, assume that ∃ τ̄ ∈ S
s.t. at least one eigenvalue of M(τ̄ ) has a positive real part.
From condition (2), ∃ τ∗ ∈ S s.t. <(eig(M(τ∗))) < 0. Since
τ∗, τ̄ ∈ S , which is a connected region in Rn, we can construct
a path, P between τ∗ and τ̄ s.t. P ⊆ S . The real part of the
eigenvalues should continuously change as we vary τ along
the path, P from τ∗ to τ̄ . This implies that ∃ τ0 ∈ P ⊆ S s.t.
at least one eigenvalue of M(τ0) has zero real part. However,
this contradicts condition (3). Hence, by contradiction we have
<(eig(M(τ ))) < 0 ∀ τ ∈ S.
Theorem-I: Given the matrix X̂N, which has the structure
shown in (9) with Ci, Di, k̄vi > 0 ∀ i and

∑N
k=1 k̄vk = 0;

then the matrix satisfies, <(eig(X̂N)) > 0, if xi > −Ci ∀ i.
Proof: Let x ∈ RN s.t. its ith entry is xi. The elements of
matrix −X̂N are continuous function of x. In fact they are
linear in x. Let us define region Sx , {x | xi > −Ci ∀ i}. In
order to prove that <(eig(X̂N)) > 0 ⇐⇒ <(eig(−X̂N)) <
0 ∀ x ∈ Sx ⊆ RN , Lemma-I can be used if region Sx
satisfies the three conditions. Clearly, by definition, region Sx
is connected. From Observation-II and Observation-IV, we have
multiple x∗ ∈ Sx, s.t. <(eig(X̂N(x∗))) > 0. For condition
(3), if we assume that ∃ v ∈ RN , s.t. X̂Nv =

√
−1λimv for

some λim ∈ R and ∀ x ∈ Sx, then it can be shown that v has
to be 0. Therefore, ∀ x ∈ Sx, we have <(eig(X̂N)) > 0.

Thus, from Theorem-I we formally proved the stability
hypothesis for modes I and II. Numerical validation of the
hypothesis for Mode III is presented in Section VII. Next,
the focus is shifted onto reviewing the ratio-based frequency
support and discussing the implications of this hypothesis on
it. Note that we continue calling this a ‘stability hypothesis’
instead of a ‘stability theorem,’ since the formal proof for
Mode III could not be established in this paper.

IV. REVIEW OF RATIO-BASED FREQUENCY SUPPORT

This section summarizes the concept of ratio-based frequency
support introduced in references [23] and [24].

A. Objective:
The objective of the ratio-based frequency support is to

achieve a prescribed ratio among frequency deviations of the
participating areas at all time after the disturbance, while there
is no frequency deviation in non-participating areas. In general,
this ratio can be prescribed by system operators based on
economics and operational constraints. Let Nr be the number of
participating areas and let the prescribed ratio be r1 : r2 : · · · :
rNr. Without loss of generality, the indexing of areas is done
such that the area with AC disturbance is indexed as Area#1

(∆P1 6= 0) and that the non-participating areas are concatenated
to the end. Therefore, the desired post-disturbance frequency
deviations at any time after disturbance can be represented as,

∆f =

 r1∆f∗ r2∆f∗ · · · rNr∆f∗︸ ︷︷ ︸
1×Nr

0 · · · 0︸ ︷︷ ︸
1×(N−Nr)


T

(18)
Here, the variable f∗ is the ‘base frequency’ and ∆f∗ is the
deviation in base frequency from its nominal value f0, given
by ∆f∗ = f0 − f∗.

B. Proposed Solution:
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Fig. 2. Representation of aggregated power-frequency-inertial-voltage droop
controller in the ith AC area. Inertial-frequency droop (in light pink) is
activated when an AC area requests frequency support through distress signal.

The solution [24] to meet the above stated objective is
summarized here. In pre-disturbance period, only common-
mode DC voltage droop is kept active. Following an AC
disturbance, a distress signal is sent from the affected area,
see Fig. 2. The converter of other areas receive the distress
signal and, based on the area that is seeking help, the non-
participating areas would hold their power-levels to the pre-
disturbance values. The participating areas on the other hand,
will activate the frequency control with inertial and frequency-
droop coefficients that satisfy certain performance constraints.
In [24], these constraints were derived to ensure that the above-
stated ratio-based objective is achieved in the Nth-order model.
However, for the sake of completeness, a short proof is added
in Appendix B. The constraints are as follows:

KNr

[
r1 · · · rNr

]T
= (

Nr∑
k

rkkgovk)ê1 (19)

HNr

[
r1 · · · rNr

]T
= (

Nr∑
k

rkHGk)ê1 (20)

The matrices HNr and KNr are same as HN and KN

described in (5), except for N , which is replaced by Nr and
k̄vi is adjusted based on participating areas. The vector ê1,
stands for unit vector along the 1st dimension. Constraint
(19) independently ensures that the post-disturbance steady-
state frequency deviations are in the prescribed ratio (Mode-
I : Primary frequency support). Similarly, constraint (20)
involving inertial-droop coefficients independently ensures that
the prescribed ratio is maintained among the initial slopes
of the frequencies (Mode-II : Inertial frequency support).
However, to satisfy the prescribed ratio-based criterion for the
entire duration of the post-disturbance period, both constraints
(19) and (20) have to be met (Mode-III : Both primary and
inertial frequency support). It is shown in [24] that since these
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XNr =


C1 + (1− k̄v1)x1 −k̄v1x2 · · · −k̄v1xNr

−k̄v2x1 C2 + (1− k̄v2)x2 · · · −k̄v2xNr

...
...

. . .
...

−k̄vNrx1 −k̄vNrx2 · · · CNr + (1− k̄vNr)xNr

 =


HNr

if, (xi, Ci)
= (hi, HGi)

KNr
if, (xi, Ci)

= (kfi, kgovi)

(21)

constraints are derived using an Nth-order model, the resulting
droop coefficients approximately deliver the desired response
in full-order model.

The constraints (19) and (20) can be considered as per-
formance criteria of the system. However, they are derived
under the assumption that the closed-loop Nth-order system
is stable. In the next section, these performance constraints
are combined with the stability constraints obtained from the
stability hypothesis.

V. IMPLICATIONS OF STABILITY HYPOTHESIS ON
RATIO-BASED FREQUENCY SUPPORT

In this section, first a generalized solution to the performance
constraints (19) and (20) is derived. On the derived generalized
solution, stability requirement from the hypothesis is imposed to
determine the droop coefficients that ensure both performance
as well as stability.

A. General Solution to the Ratio-based Frequency Performance
Constraints:

As shown in (5), matrices HNr and KNr have the same
structure. Therefore, similar to X̂N they can be represented by
a generic matrix XNr, which is presented in (21). Therefore,
performance constraints (19) and (20) can be rearranged and
expressed by a generic constraint (22). There are multiple
solutions to constraint (22) since it has Nr unknowns (x1, x2,
· · · , xNr) and (Nr − 1) independent equations. Now, we shall
determine the generic form for this solution set.


r1k̄v2 −r2(1− k̄v2) · · · rNr k̄v2
r1k̄v3 r2k̄v3 · · · rNr k̄v3

...
...

. . .
...

r1k̄vNr r2k̄vNr · · · −rNr (1− k̄vNr)




x1
x2
...

xNr


=
[
r2C2 r3C3 · · · rNrCNr

]T
(22)

Let us define a vector ~x ∈ RNr, whose ith component is
xi. The solution set of the jth equation in constraint (22)
represents a hyperplane Hj ⊂ RNr, where j = 2, · · · , Nr.

The intersection of these sets, L =
Nr⋂
j=2

Hj denotes the solution

set satisfying constraint (22). This set L represents a line
in Nr-dimensional space, which lives on all those (Nr − 1)
hyperplanes. From geometry, we know that the parametric
equation of this line can be expressed as,

L , {~x = ~x0 + t~a1 | t ∈ R} (23)

where, ~x0 is any point that is on the line and ~a1 is any vector
parallel to this line. Thus, finding any point ~x0 that satisfies
constraint (22) and any vector ~a1 that is parallel to the line
gives us the parametric representation of the set of solutions
to the constraint (22).

From linear algebra we know that the vector ~a1 is perpen-
dicular to all the normals to the respective hyperplanes. This
means vector ~a1 should satisfy,

r1k̄v2 −r2(1− k̄v2) · · · rNr k̄v2
r1k̄v3 r2k̄v3 · · · rNr k̄v3

...
...

. . .
...

r1k̄vNr r2k̄vNr · · · −rNr (1− k̄vNr)

~a1 = 0

(24)
It can be shown that the following vector,

~a1 =
[
k̄v1/r1 k̄v2/r2 · · · k̄vNr/rNr

]T
(25)

satisfies (24). Notice that the vector direction depends both on
the desired ratio and DC voltage-droop coefficients, but not on
AC-side parameters like, kgovi or HGi.

B. Unification of Generalized Performance Solution and Sta-
bility Hypothesis:

From Observation-III, we know that the point of the form,
x1 = x10 > −Ci and xi = −Ci ∀ i 6= 1 is marginally stable.
Substituting these xi values in equation (22) reveals that this
point qualifies as ~x0, if and only if x10 =

∑Nr

k=2 rkCk/r1.
Thus, ~x0 shown below results in a marginally stable system,

~x0 =
[ ∑Nr

k=2 rkCk/r1 −C2 · · · −CNr

]T
(26)

Theorem-II: (Unification Theorem) Given ~a1 and ~x0 of the
form (25) and (26), respectively, with ri > 0, the subset Ls to
the solution set L defined as

Ls , {~x = ~x0 + t~a1 | t ∈ R and t > 0} ⊂ L (27)

ensures both performance and stability in the Nth-order system.
Proof: This result is quite straightforward and builds upon the
prior knowledge. First, since Ls is a subset of L, which satisfies
(22), performance is guaranteed in Nth-order system. Next,
since the components of ~a1 are all positive, any ith component
of the points in Ls can be written as, xi = −Ci + pi with
pi > 0. Therefore, from the stability hypothesis, all points in
Ls guarantee stability of the Nth-order model.

VI. VALIDATION THROUGH NUMERICAL CONSTRUCTION
OF STABILITY BOUNDARIES FOR STUDY SYSTEM

To further strengthen the stability hypothesis, we will
now numerically build surfaces that represent the stability
boundary. For this study, test system presented in Fig. 3 is
considered. Area#3 in Fig. 3 is operated as a non-participating
area throughout this study, i.e., as explained in Section IV
it does not contribute to frequency support by holding its
power to the pre-disturbance value. In this configuration, the
effective inverse governor droops of the participating areas
are, (kgov1, kgov2, kgov4) = (212.20, 53.05, 53.05) MW/Hz.
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Fig. 3. Study System: Schematic of the bipolar MTDC grid with metallic
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Fig. 4. Stability boundary constructed using the Nth-order model in the kfi
space with hi = 0 ∀ i: (a) The boundary as viewed from stable region, (b)
top view (X-Y view) and (c) side view (X-Z view).

Similarly, the effective inertia constants are (HG1, HG2, HG4)
= (228.15, 185.25, 74.10) s−1 (defined on system, 100 MVA
base). Henceforth, frequency and inertial droop coefficients in
plots will use MW/Hz and s−1 as units.

First, the stability boundary is constructed using the Nth-
order model of the test system in Fig. 3 for Modes I and
III. The unification theorem (Theorem-II) is then tested by
overlapping several performance lines (of the form (23)) on
the stability boundary plot, where each of the lines correspond
to a particular prescribed ratio. Next, the stability boundary of
the Nth-order model is compared with that of the full-order
model, which is a realistic representation of the system.

A. Stability Boundary Obtained from Nth-order Model:
Figure 4(a) illustrates the view of stability boundary obtained

from the Nth-order model as seen from the stable region.

Fig. 5. Shifted stability boundary of Nth-order model due to loss of generation
(green) compared against stability boundary of the nominal Nth-order model
of the test system (colormap) with hi = 0 ∀ i.

Fig. 6. Stability boundary constructed using the Nth-order model in the kfi
space with hi > −HGi, hi 6= 0 ∀ i: (a) The boundary as viewed from stable
region, (b) top view (X-Y view) and (c) side view (X-Z view).

Figures 4(b) and (c) present the top and side view of the
same, respectively. The X, Y, and Z axes represent various
values assumed by kf1, kf2, and kf4, respectively. The entire
stability boundary has a concave 3-petal flower like structure,
wherein the stable region is on the concave side. The three
petals emerge from three rays highlighted by solid lines in Fig.
4. These rays originate from the point (−kgov1,−kgov2,−kgov4)
and are arranged such that each of them is parallel to X or Y
or Z axis. From Observations I and III, we know that all points
on the highlighted three rays are marginally stable. Therefore,
consistently, these rays belong to the numerically generated
stability boundary.

Figure 5 shows the impact of loss of generation in Area#1
(∆kgov1 = 100 and ∆HG1 = 70) on the stability boundary of
Nth-order model. Since, the stability constraint is kfi > −kgovi,
the marginal stability axis is shifted by ∆kgov1 as highlighted
in Fig. 5. Despite the changes in other regions, the region of
interest, i.e., quadrant formed by the three rays is stable.
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Fig. 7. Stability boundary constructed using the Nth-order model in the hi

space with kfi > −kgovi, kfi 6= 0 ∀ i: (a) The boundary as viewed from
stable region, (b) top view (X-Y view) and (c) side view (X-Z view).
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Fig. 8. Performance lines overlapped over the Nth-order model’s stability
boundary. The lines are plotted for AC disturbances occurring in (a) Area#1
and (b) Area#4, where each line corresponds to a particular prescribed ratio.

The stability boundary for Mode III with 3 participating
areas lives in a 6 dimensional space, which is hard to visualize.
In order to numerically validate the stability hypothesis for
Mode III, two 3D stability boundaries, one in kfi space, and the
other in hi space are presented. Figure 6 illustrates the stability
boundary in the kfi space for a random choice of inertia
droop coefficients (h1, h2, h4) = (−178.15,−55.25,−14.10)
(s.t., hi > −HGi ∀ i 6= 3). Similarly, Fig. 7 illustrates the
stability boundary in the hi space for a random choice of inertia
droop coefficients (kf1, kf2, kf4) = (−92.21, 36.95, 26.95) (s.t.,
kfi > −kgovi ∀ i 6= 3).
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Fig. 9. Stability boundary obtained from small-signal stability analysis of the
full-order model (green) compared against stability boundary constructed from
the Nth-order model (colormap).

Figure 8 shows the performance lines intersecting the surface
plot of the Nth-order model’s stability boundary. Two kinds of
disturbances are considered – Fig. 8(a) presents cases when
AC disturbances occur in Area#1 and Fig. 8(b) presents cases
when AC disturbances occur in Area#4. In each plot, several
performance lines are considered, where each line corresponds
to a particular prescribed ratio among the three participating
areas’ steady state frequency deviation. On each performance
line of the form (23), the points for which t ≥ 0 are marked
by green and the points for which t < 0 are marked by red.
Clearly, in both kind of disturbances, from Fig. 8(a) and (b),
we see that the points on any performance line corresponding
to t > 0 fall into the concave side of the stability boundary,
which belongs to the stable region. On the other hand, points
corresponding to t < 0 fall into the unstable region.

B. Stability Boundary Obtained from Full-order Model:

The Nth-order model is a representation that tries to capture
the frequency dynamics of the realistic and detailed full-order
model. The full-order nonlinear model consists of standard
representation of the AC system, where all the generators
are represented by sixth-order sub transient models equipped
with type DC-1A excitation systems and detailed models of
governors (with a ±36 mHz dead band). The DC lines are
modeled as one pi-section and the converters have standard
vector control strategy with inner current-controllers. Thus
far, the mathematical proof of the stability hypothesis, the
unification theorem, and the validation through numerically
constructed stability boundary – are all achieved based upon the
Nth-order model. However, now small-signal stability analysis
on the full-order model is used to numerically produce a closer-
to-reality stability boundary, which is compared with that of
the Nth-order model’s stability boundary.

Figure 9 shows the stability boundary of the full-order model
in green overlaid on the Nth-order model’s stability boundary
in colormap. Notice that both the boundaries have similar
shapes and are closely matching with each other. Especially,
near the regions of the three bold axes originating from
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Fig. 10. Flow chart illustrating the proposed process following a disturbance in
AC Area #j, in order to achieve the prescribed ratio and small-signal stability.

(−kgov1,−kgov2,−kgov4) the boundaries are most accurate.
Since the performance lines are of the form (23) and since ~a1
has all positive components, we know that all points on the
performance line with t > 0 lie inside the quadrant formed
by the bold axes. On the other hand, the petals of both the
stability boundaries are expanding away from the quadrant.
Therefore, the stability hypothesis can be seamlessly extended
to the full-order model.

VII. NONLINEAR TIME-DOMAIN SIMULATION STUDIES

Fig. 11. Frequency dynamics following a 10% step reduction in generation of
AC Area #4, when implemented in full-order nonlinear model with a prescribed
ratio of 1 : 1.5 : NP : 2, where NP stands for non-participating.

Figure 10 illustrates how the ratios and droop coefficients
are chosen following a disturbance. Due to simplicity of the

equations, it is possible to compute the droop coefficients in real
time with minimal information. In order to validate the stability
hypothesis for Mode-III, time-domain simulation studies are
performed on the full-order nonlinear model for two cases. An
AC-side disturbance of 10% step reduction in generation of AC
Area #4 is considered in both cases. Additionally, in both cases,
inertial and frequency droop coefficients are designed to satisfy
constraint (22). However, Case-I corresponds to frequency
droop coefficients that are all greater than −kgovi, i.e, they
belong to Ls of Theorem-II. Case-II on the other hand, does not
satisfy the criterion from stability hypothesis. The parameters
chosen for these cases are shown in the Appendix A. Figures 11
(a) and (b) validate the approximate ratio-tracking performance
and stability in Case-I, while instability is observed in Figs 11
(c) and (d), which corresponds to Case-II.

VIII. CONCLUSION

The requirement on inertial and frequency droop coefficients
to ensure small-signal stability in asynchronous AC-MTDC
system was determined. To that end, using a reduced Nth-
order model, a ‘stability hypothesis’ was formulated based on
certain observations. The hypothesis was analytically proved
for the cases when either one of the droops, primary frequency
or inertial droop control is active. Moreover, implication
of this hypothesis on a recently-proposed ratio-based fre-
quency support method was analyzed by unifying stability
and generalized performance criterion. The stability hypothesis
was validated by studying numerically constructed stability
boundaries in the frequency droop coefficient space. The
stability boundary obtained from small-signal analysis of full-
order nonlinear model was shown to approximately match the
boundary obtained by the Nth-order model, which further
strengthened the hypothesis. Finally, various time-domain
simulation studies performed on full-order model supported
the stability hypothesis.

APPENDIX A

System parameters: kgov1 = 212.20 MW/Hz, and kgov2 = kgov3
= kgov4 = 50.05 MW/Hz; HG1 = 228.15 s, HG2 = 185.25 s,
and HG3 = HG4 = 74.1 s.

Inertial and frequency droop coefficients:
Area Number #1 #2 #4

Case-I hi (s) 271.85 -18.58 378.01
kfi (MW/Hz) 287.79 113.62 270.89

Case-II hi (s) 271.85 -18.58 378.01
kfi (MW/Hz) -362.21 -103.05 108.39

Note that HGis and his are on a 100 MVA base.

APPENDIX B

Theorem-III: Given that disturbance occurred in Area#1 at
t = 0, if matrices KNr and HNr satisfy the stability constraint
(8) and the performance constraints (19) and (20), respectively,
then the frequency deviation in participating areas ∆fi, i from
1 to Nr will be of the ratio r1 : · · · : rNr ∀ t > 0 in the
Nth-order model.
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Proof: Consider the following differential equation,

2f0(

Nr∑
k

rkHGk)∆ḟ∗ = −(

Nr∑
k

rkkgovk)∆f∗ −∆P1 (28)

The above system is clearly small-signal stable, due to positive
summations on either side of equality. If constraints (19) and
(20) are true then, by multiplying either side of (28) by ê1,
we get,

2f0HNr

[
r1 · · · rNr

]T
∆ḟ∗ =

−KNr

[
r1 · · · rNr

]T
∆f∗ −∆P1ê1

(29)

We know that following the disturbance in Area#1, from (4),
the dynamics in the AC-DC system are governed by,

2f0HNr

[
∆ḟ1 · · · ∆ḟNr

]T
=

−KNr

[
∆f1 · · · ∆fNr

]T −∆P1ê1

(30)

Subtracting (29) from (30), and defining ∆fi− ri∆f∗ as ∆Fi

and ∆F as a vector with ∆Fi as its ith entry, we get,

2f0HNr∆Ḟ = −KNr∆F (31)

Initially, due to steady state, we have ∆Fi(0) = 0 ∀ i. Since
the disturbance term, ∆P1 is eliminated in (31), following
the disturbance, if the stability constraint (8) is satisfied, then
∆Fi(t) will remain at zero ∀ i, t > 0. From the definition, this
implies that ∆fi(t) = ri∆f

∗(t) ∀ i, t > 0.
Remark-II: The state, ∆f∗ follows the frequency dynamics of
a single machine whose inertia and inverse governor droop are
(
∑Nr

k rkHGk) and (
∑Nr

k rkkgovk), respectively, and is always
small-signal stable. If constraint (8) is not satisfied then ∆Fi(t)
and ∆fi(t) diverge from 0 and ri∆f∗(t), respectively.
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