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Signal Selection for Oscillation Monitoring with
Guarantees on Data Recovery under Corruption
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Abstract—Insights are developed into grouping PMU signals
for guaranteeing data recovery under sparse corruption. Analyt-
ical relations are derived to express the denseness of the subspace
spanned by a measurement window in terms of the modal
observabilities of its constituent signals. It is shown that grouping
signals by minimizing variation in phase angles and amplitudes
of observabilities for each poorly-damped mode minimizes the
numerical-rank of the measurement window, enhances denseness
of the subspace, and helps in attaining the sufficiency condition
guaranteeing exact recovery using Robust Principal Component
Analysis-based signal reconstruction methods. These insights are
structured into lemmas and propositions for signal selection and
are validated on synthetic data from IEEE test systems, as well
as field PMU data from a US utility.

Index Terms—Commpressive Sensing, Robust PCA, Oscillation
Monitoring, PMU Signal Recovery, Denseness, RIC.

I. INTRODUCTION

MONITORING low-frequency oscillations is important
in ensuring stability and security of large power net-

works. If not adequately damped, these oscillations can grow
and eventually cause large-scale outages – as observed in the
North American blackout of August 1996. Ever since, major
utilities around the world have invested extensively in building
their networks of Phasor Measurement Units (PMUs). This has
enabled monitoring of the oscillatory modes owing to time-
synchronization and higher reporting rates of these devices [1].

However, due to variation in modal energy among the
measurements, the locations of the PMUs (and the choice
of signals from installed PMUs) are critical in monitoring
these oscillations. Several methods have been proposed in
literature, which use relative modal observabilities [2] and
participation ratios [3] obtained from the linearized system
model in deciding the signals of interest. There also exist
measurement-driven approaches that derive metrics from the
power spectral density (PSD) of a time-series data for the
selection of candidate signals [4]. The objective of these
approaches is to choose the signals that are rich in information
of the critical modes.

The accuracy of oscillation monitoring algorithms however,
is contingent upon the control center receiving error-free PMU
measurements. Missing data samples, spurious outliers, and
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malicious injections from cyber attacks can lead to erroneous
estimates of damping ratios, modal frequencies, and mode-
shapes. Ideally, bad data detection and correction can be done
using power system state estimators in control centers, but this
requires full observability of the system with PMUs and an
accurate knowledge of system topology – a review of literature
in this area can be found in [5]–[9]. However, at present
most systems have a limited number of PMUs, which may
not ensure full observability of the system.

On the other hand, several measurement-driven data-
preprocessing approaches have been proposed in [10]–[17]
that neither require full observability with PMUs, nor need the
network topology information. These works exploit the spatio-
temporal correlation in measurements to solve low-rank matrix
completion problems for recovering clean measurements from
corrupted PMU data. However, as one understands, this re-
quires careful selection of signals to ensure correlation and
low-rankness of the measurement window. In this context, we
ask the following research question − can we intelligently
locate the PMUs and/or group signals from installed PMUs
such that the resulting combinations guarantee data recovery
from corruption while capturing every information necessary
to estimate the critical modes.

We argue that a group of signals best suited for estimation
of modes might not be the ideal choice for corruption-resilient
signal recovery. Implying that, a set of signals selected purely
based on the maximum relative modal observability criterion
might fail in the accurate recovery of the individual signals
corrupted by anomalies. This can affect the overall accuracy
of the modal estimation. To solve this, we make propositions
about grouping candidate signals to increase denseness of
the subspace spanned by the measurement window, thereby,
enhancing the chances of exact data recovery under corruption.

We make the following contributions− first, we show that
the denseness of a subspace derived from a measurement
window can be bounded by denseness of the observability
submatrix obtained from the small-signal model corresponding
to the poorly-damped modes in the system − under the weak
assumption that other modes are sufficiently damped in the
window and/or sufficiently unobservable. Second, using these
deductions, we draw insights into grouping of signals to en-
hance the denseness of the observability submatrix to meet the
sufficiency condition for guaranteed exact data recovery [18].
Further, we quantify the perturbation in the denseness values
for small variations in the magnitudes of modal observabilities
within a signal group. And finally, we extend these insights
onto recommendations for grouping signals directly from
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PMU data in absence of a small-signal model. We demonstrate
the applicability of our proposed method on synthetic data
obtained from IEEE 4-machine and 16-machine systems, as
well as field PMU measurements obtained from New York
Power Authority.

Notations: Matrices are denoted by bold uppercase, vectors
by bold lowercase, and scalars by normal font. Superscript H
denotes Hermitian of a matrix. For any matrix Y, range(Y)
denotes the subspace spanned by its columns, and basis(Y)
denotes the orthonormal basis matrix whose columns span the
same subspace as range(Y).

II. PRELIMINARIES

A. Small-signal Model and Modal Observability

The linearized state-space model of a power system can be
described as,

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (1)

where, x(t) ∈ <m×1 , y(t) ∈ <n×1, and u(t) ∈ <p×1 are
respectively the vectors of state, output, and input variables
capturing the perturbations from their respective equilibria.

Assuming A is diagonalizable, consider the transformation
P−1x(t) = x̃(t) where, P is the matrix of right eigenvectors
of A. The equations in (1) can then be re-written as,

˙̃x(t) = P−1APx̃(t) + P−1Bu(t) = Λx̃(t) + B̃u(t)

y(t) = CPx̃(t) = Ψx̃(t)
(2)

where, Λ ∈ <m×m is the diagonal matrix of the eigenvalues of
A. Henceforth, in this paper, we shall refer to each complex-
conjugate eigenvalue pair of Λ as a mode, and Ψ ∈ <n×m as
the matrix of relative modal observabilities [19] mapping the
extent to which each mode is visible in the output variables
measured by the PMUs.

B. Corruption Model

Owing to the chances of corruption − missing data, spurious
outliers, and malicious injections mentioned before, let the
measurements observed at the control center be different from
y(t). We model this as,

z(t) = y(t) + e(t) (3)

where, e(t) is the vector of additive signal corruptions. In this
paper, we consider that the corruptions are limited to only a
fraction of all signals. This is a realistic assumption for wide-
area monitoring applications, since PMUs are spread across
wide geographies and thus, coordinated corruption in a large
number of channels is improbable. Therefore, e(t) is a sparse
vector with most entries as zeros. In this context, note that a
vector is called s−sparse if it has at most s non-zero entries.

C. Robust Signal Recovery

The objective of the data pre-processor is to recover the ac-
tual measurements y(t) from the corrupted observations z(t).
To that end, we shall use robust principal component analysis
(R-PCA)-based anomaly correction approach from [15]–[17].
Building on the theory of compressive sensing [20]–[22], the
algorithms in [15]–[17] solve sparse optimization problems

to estimate the signal corruption ê(t), which can then be
subtracted from z(t) to recover ŷ(t). Henceforth, we shall
refer to ŷ(t) as the recovered signal vector at time t. The
recovery framework is summarised below.

Let Y ∈ <n×N be the matrix representing the time-window
of recovered samples till the latest instant.

Y =
[

ŷ(t−Nτ) . . . ŷ(t− τ)
]

(4)

where, τ is the reporting interval between two successive PMU
samples. In a large interconnected system, the matrix Y is low-
rank, and thus, can be spanned by a few basis vectors. Let these
bases be obtained from singular value decomposition of the
window. Hence, Y ≈ ÛΣ̂V̂H , where columns of Û are the
singular vectors corresponding to r dominant singular values.

The basic idea behind the recovery is to decompose z(t)
into vectors ŷ(t) and ê(t), such that ŷ(t) is in the low-rank
subspace spanned by Û and ê(t) is a sparse vector of estimated
signal corruptions. To do so, z(t) is projected onto the space
orthogonal to the span of Û as shown,

γ(t) = Φz(t) = Φ(y(t) + e(t)) = Φe(t) + ν(t) (5)

where, Φ = I−ÛÛH . Ideally, y(t) belongs to the span of Û,
and therefore, the projection ensures that the contribution of
y(t) is nullified. However, because of noise in the measure-
ments and due to approximations in limiting the dimension
of Û to r columns, the term Φy(t) is not exactly zero, but
negligibly small as captured in ν(t). The estimation of the
sparse corruption vector e(t) from z(t) can then be posed
as an optimization problem [23] shown in (6) that ensures
maximal sparsity of the corruption estimate.

min
e(t)

∥∥e(t)∥∥
0

s.t.
∥∥γ(t)−Φe(t)

∥∥
2
≤ η(t) (6)

However, minimizing l0−norm in eqn. (6) is non-convex and
a hard combinatorial problem. Through convex relaxation, this
is posed as an l1−norm minimization problem [23].

min
e(t)

∥∥e(t)∥∥
1

s.t.
∥∥γ(t)−Φe(t)

∥∥
2
≤ η(t) (7)

The solution ê(t) to eqn. (7), is an estimate of corruption. The
clean signal can then be recovered as, ŷ(t) = z(t)− ê(t). The
thresholding term η(t) in (7) is updated in every time-step
as, η(t) = ||Φŷ(t − τ)||2. Initialization of the thresholding
term can done by setting η(0) to a small value estimated by
projecting a sample from the archived measurements onto Φ.
In our problem, assuming the first sample is uncorrupted, η(t)
is initialized by ||Φy(0)||2 − as described in [16].

D. Guarantees for Exact Signal Recovery

Although the relaxation ensures a solution in polynomial
time, it does not guarantee a sparse solution, implying that
the recovery using eqn. (7) may not be accurate. It is only
for some special structures of the projection matrix Φ that
the solutions of eqn. (7) and eqn. (6) coincide. We call this
the l0 − l1 equivalence. This equivalence is achieved and the
formulation in eqn. (7) is guaranteed to return a s−sparse
solution if the s−restricted isometry constant δs(Φ) is below
a desired threshold [22].
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Candés in [22] proved that for δ2s(Φ) <
√
2−1, the l0 and

l1 problems are equivalent. However, this is conservative and
several other upper bounds [18], [24], [25] have subsequently
been derived, which have relaxed the requirement on δ2s(Φ).
Notable of these, is the proposition from Cai et.al in [18]
that guarantees s−sparse recovery for δs(Φ) < 0.307. In this
paper, we shall refer to this bound from [18] as the sufficiency
condition for guaranteeing exact recovery of corrupted signals.

In [26], authors relate δs(Φ) to the denseness of Û. Dense-
ness coefficient κs [26] for any matrix Y is defined as,

κs(Y) = κs(range(Y)) = max
|T |≤s

∥∥∥(IT )H basis(Y)
∥∥∥

2
(8)

where, IT is the submatrix of the identity matrix I containing
the columns with indices in set T .

Maximum value that κs can attain is 1. Lower the value
of κs, higher is the denseness of the range space. For any
r−rank Y, the minimum value κ1(Y) can achieve is

√
r/n.

The minimum value is attained when Y is spanned by basis
vectors whose entries all have magnitude

√
1/n.

As derived in [26], for a basis matrix Û,

δs(Φ) = δs(I− ÛÛH) = κs(Û)2 (9)

Therefore, attaining the sufficiency condition,

δs(Φ) < 0.307 =⇒ κs(Y) = κs(Û) < 0.554 = κ∗ (10)

Going forward, we ask how can one ensure that κs(Û) < κ∗.
Intuitively, different choices of signals (both the size of the
set and the individual constituents) would alter the singular
vectors spanning Y, thereby changing the denseness coeffi-
cient. Thus motivated, next in this paper, we develop analytical
insights on to grouping signals to minimize κs(Y).

III. INSIGHTS INTO SIGNAL SELECTION

Lemma 1. κs(Y) ≤ κs(Ψ) = max|T |≤s
∥∥(IT )H ΨΨ†

∥∥
2

Proof. Referring to eqns (2) and (4),

Y = Ψ
[

x̃(t−Nτ) . . . x̃(t− τ)
] ∆
= ΨX̃ (11)

Therefore, range(Y) ⊆ range(Ψ) =⇒ κs(Y) ≤ κs(Ψ).
Equality is attained when X̃ is full row rank.

Next, let ÛΨ be the matrix of singular vectors spanning the
range of Ψ. Therefore, following the definition of denseness,

κs(Ψ) = max
|T |≤s

∥∥∥(IT )H ÛΨ

∥∥∥
2
= max
|T |≤s

∥∥∥(IT )H ÛΨÛH
Ψ

∥∥∥
2

(12)
Moreover, the range-spaces of ÛΨ and Ψ being the

same, the orthogonal projection matrices onto this space can
be equated as follows: ÛΨÛH

Ψ = ΨΨ†, where Ψ† =
(ΨHΨ)−1ΨH . Substituting this in eqn. (12) we get,

κs(Ψ) = max
|T |≤s

∥∥∥(IT )H ÛΨÛH
Ψ

∥∥∥
2
= max
|T |≤s

∥∥∥(IT )H ΨΨ†
∥∥∥

2

Corollary: Consider a data window Y exhibiting oscillatory
response due to k poorly-damped modes. Under the weak
assumption that the rest of the modes are sufficiently damped
and/or sufficiently unobservable in the data window, we can
write κs(Y) ≤ κs(Ψ̂) where, Ψ̂ =

[
Ψ̂1 Ψ̂2 · · · Ψ̂k

]

is the submatrix of Ψ containing the complex conjugate
column-pairs corresponding to the poorly-damped modes of
interest, implying each Ψ̂j =

[
ψψψj ψψψj

]
for j = 1, 2, . . . , k.

Remarks: Assuming that only k poorly-damped modes are
observable in the signals, the data matrix may be approximated
as Y ≈ Ψ̂X̃. Therefore, it can be inferred that, the numerical-
rank(Y) ≤ rank(Ψ̂) ≤ 2k.

A. Selection of Signals with Same Phase Relationship

As discussed, for a r−rank Ψ̂, the minimum value that
κ1(Ψ̂) can achieve is

√
r/n. Therefore, to achieve a low

κ1(Ψ̂) it is reasonable to select signals in a way that Ψ̂ has
rank 1. To that end, following lemmas are presented.

Lemma 2. For a unimodal case, if the complex entries in ψψψ1

have same phase angle then, rank(Ψ̂) is 1.

Proof. Let ψψψ1 =
[
|ψ11| θ . . . |ψ1i| θ . . . |ψ1n| θ

]T
and

therefore, ψψψ1 =
[
|ψ11| −θ . . . |ψ1i| −θ . . . |ψ1n| −θ

]T
.

Next, we perform Gram-Schmidt orthonormalization to find
the bases spanning the columns of Ψ̂1. Let the orthonormal
bases be û1 and û2, such that, û1 = u1

‖u1‖2
= ψψψ1

‖ψψψ1‖2
, and

û2 = u2

‖u2‖2
where, u2 = ψψψ1 −

〈ψψψ1,ψψψ1〉
〈ψψψ1,ψψψ1〉ψψψ1. Since 〈ψψψ1,ψψψ1〉 =

‖ψψψ1‖22 −2θ, we can express any ith entry of u2 as,

u2i = |ψ1i| −θ −
‖ψψψ1‖22 −2θ
‖ψψψ1‖22

|ψ1i| θ = 0 (13)

This implies û2 = 0, and therefore, rank(Ψ̂) is 1.
Corollary: The rank 1 property ensures that κ1(Ψ̂) = κ1(ψψψ1).
This simplifies the problem as the analysis now reduces to
calculating the denseness of a column vector.

Lemma 3. For a unimodal case, the minimum value of κ1(Ψ̂)
is attained when signals are selected from a coherent group
with minimum variance in the magnitudes of relative modal
observabilities.

Proof. Signals selected from a single coherent group oscillate
in unison, and hence, it can be inferred that their modal
observabilities have same phase. Therefore, following Lemma
2, rank(Ψ̂) is 1.

Next, let {e1, . . . ei, . . . en} be the set of standard basis
vectors. The denseness κ1 can then be calculated as,

κ1(Ψ̂) = κ1(ψψψ1) = max
i

∥∥∥eHi û1

∥∥∥
2
=‖û1‖∞ =

‖ψψψ1‖∞
‖ψψψ1‖2

=
|ψ1i|max√∑n
i=1 |ψ1i|2

≥ 1√
n

(14)
The minimum value

√
1/n is attained when |ψ1i|-s are equal.

Since this is an idealistic scenario, next we investigate how
denseness changes with variation in the magnitudes of modal
observabilities, especially in presence of a large-magnitude
outlier in the observability vector. For this, we divide the signal
set into two groups− (1) the signal with index imax having
the highest magnitude of observability |ψ1i|max, and (2) the
remaining n− 1 signals with observability magnitudes |ψ1i|-s
dispersed with mean µ and standard deviation σ.
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The mean and variance in the observability magnitudes for
the group of n− 1 signals can be computed as

µ =
1

n− 1

n∑
i=1, i 6=imax

|ψ1i| (15)

σ2 =
1

n− 1

n∑
i=1, i6=imax

(|ψ1i| − µ)2

=⇒ (n− 1)σ2 =
n∑

i=1, i 6=imax

|ψ1i|2 +
n∑

i=1, i 6=imax

µ2 − 2µ
n∑

i=1, i 6=imax

|ψ1i|

(16)
Substituting eqn. (15) in eqn. (16)

=⇒ (n− 1)σ2 =
n∑

i=1, i 6=imax

|ψ1i|2 + (n− 1)µ2 − 2(n− 1)µ2

=⇒
n∑

i=1, i6=imax

|ψ1i|2 = (n− 1)(µ2 + σ2)

(17)
As |ψ1i|max ≥ |ψ1i| ∀ i, we can write |ψ1i|max = µ+ ρσ

for some ρ ≥ 1. The parameter ρ controls the extent to which
the signal with the highest observability magnitude deviates
from the remaining. Therefore,

n∑
i=1

|ψ1i|2 = |ψ1i|2max +
n∑

i=1, i 6=imax

|ψ1i|2

= (µ+ ρσ)2 + (n− 1)(µ2 + σ2)

(18)

Substituting this in eqn. (14),

κ1(ψψψ1) =
|ψ1i|max√∑n
i=1 |ψ1i|2

=
µ+ ρσ√

(µ+ ρσ)2 + (n− 1)(µ2 + σ2)

=⇒ κ1(Ψ̂) = κ1(ψψψ1) =
1√

1 + (n−1)(µ2+σ2)
(µ+ρσ)2

(19)
From eqn. (19) it is evident that κ1(Ψ̂) is an increasing
function of ρ and a decreasing function of n. Therefore, one
obvious way to decrease κ1(Ψ̂) is to increase the number
of signals in the selected set. However, this might lead to
other challenges− first, it may not be easy to obtain a large
number of signal variables with observabilities in same phase,
and second, even if obtained, it is difficult to ensure minimal
variation in their observability magnitudes. Moreover, if n is
increased such that a signal with large obervability magnitude
(outlier) compared to the rest appears in the set, it would lead
to a high ρ and in turn a high κ1(Ψ̂). This is demonstrated in
the example below.

G1 G3

G4G2

TCSC

1

2

3

4

5

6
7 8 9

10
11

Fig. 1: 2−area 4−machine test system with TCSC

Example 1: Consider the fundamental-frequency phasor
model of the 4−machine, 2−area system from [19] as shown

in Fig. 1. Under nominal loading condition, it has one poorly-
damped inter-area mode with frequency 0.628 Hz and damping
ratio 0.012. We consider real power flows in lines 4−10, 3−11,
and 11− 10 as a signal set. The relative observabilities of the
mode in these signals are listed in Table I. Following eqn.
(19), κ1(Ψ̂) is calculated as 0.6053 and from nonlinear time-
domain simulations we obtain κ1(Y) = 0.6051. Although the
denseness values are reasonable, they are still above κ∗.

TABLE I: SIGNALS AND RELATIVE MODAL OBSERVABILITIES

Signals P4−10 P3−11 P11−10 P10−9

|ψ1i| 0.5922 0.6935 0.6935 1.2621

∠ψ1i ∠90◦ ∠91◦ ∠91◦ ∠90◦

If we add one more signal− real power flow in line 10− 9
to the set, which has a high |ψ1i| relative to the rest (and
thus, ideal for modal estimation), κ1(Ψ̂) and κ1(Y) increase
to 0.7405 and 0.7404, respectively. Thus, instead of aiding
to resilience the added signal worsens the chances of data
recovery.

From this, we conclude that for guaranteed signal recovery,
it is not enough to increase the number of signals – care should
be taken to minimize variance in observability magnitudes and
avoid outliers. This could mean sacrificing the best signal (hav-
ing the highest |ψ1i| among all signals) for another signal with
relatively lower |ψ1i|. This is in conflict with our conventional
wisdom of signal selection for modal estimation.

Next, considering the recommendations above, let signals
be grouped with variance in |ψ1i| minimized, such that we
can assume µ

σ >> 1 and ρ in the neighborhood of 1. Under
these conditions, we can approximate eqn. (19) as follows.

κ1(Ψ̂) = κ1(ψψψ1) =
ρ+ µ

σ√
(ρ+ µ

σ )
2 + (n− 1)(1 + µ2

σ2 )

≈
ρ+ µ

σ√
nµσ

=
1√
n

(
1 +

ρσ

µ

) (20)

Eqn. (20) shows that for sets sufficiently dense, κ1 increases
linearly with ρ and σ from its minimum (and ideal) value 1√

n
.

Next, we validate our proposition using the following ex-
ample from the system in Fig. 1.

Example 2: First, consider signals P6−7, P7−8, P8−9,
P9−10, and θ7−θ9 as a set. Refer to Table II for the ψ1i values.
Clearly, θ7 − θ9 appears as an outlier in the set considering
the |ψ1i| values. Therefore, the set is expected to have a high
κ1(Ψ̂). Note that, the phase angles ∠ψ1i-s are not exactly
equal but the difference is small enough to ensure Y has only 1
dominant singular value with the corresponding singular vector
capturing 95% variance in data (largest singular value: 24.04,
second largest: 0.65), and thus, for all practical purposes this
can be analyzed as a rank 1 case.

TABLE II: SIGNALS AND RELATIVE MODAL OBSERVABILITIES

Signals P6−7 P7−8 P8−9 P9−10 θ7 − θ9
|ψ1i| 0.4554 0.4997 0.5064 1.2621 5.0733

∠ψ1i ∠−74◦ ∠−83◦ ∠−83◦ ∠−90◦ ∠−84◦

Using eqn. (19), we obtain κ1(Ψ̂) = 0.9580, which is
significantly higher than κ∗. Therefore, when measurement
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θ7 − θ9 is corrupted by maliciously injecting a signal with
negative damping at t = 23 s as shown in Fig. 2 – the signal
recovery is not guaranteed. Figure 2(a) shows that the recovery
using the framework in eqn. (7) failed.

This implies modal estimation on the reconstructed signals
would result in erroneous estimates of damping ratio and
frequency for the oscillation. This is seen in the damping ratio
estimation plots of Fig. 3(a). In this example, we use multi-
channel Prony analysis [27] on the signal set in Table II with
a moving window of 150 samples for estimation of damping.

TABLE III: SIGNALS AND RELATIVE MODAL OBSERVABILITIES

Signals P6−7 P7−8 P8−9 P10−4 θ4 − θ11
|ψ1i| 0.4554 0.4997 0.5064 0.5922 0.4500

∠ψ1i ∠−74◦ ∠−83◦ ∠−83◦ ∠−90◦ ∠−84◦

Fig. 2: (a) Incorrect 1−sparse recovery of ∆(θ7 − θ9) from signals in Table
II and (b) exact 1−sparse recovery of ∆(θ4− θ11) from signals in Table III.

Fig. 3: (a) Damping ratio estimation using multi-channel Prony from incorrect
1−sparse recovery of ∆(θ7 − θ9) from signals in Table II and (b) exact
1−sparse recovery of ∆(θ4 − θ11) from signals in Table III.

TABLE IV: FROM LINEARIZED MODEL OF THE SYSTEM IN FIG. 1

Damp. ratio ζ : 0.0121 Modal freq. f (Hz) : 0.628

Next, adhering to our recommendations on minimizing
variance in |ψ1i|-s we replace signals P9−10 and θ7 − θ9 by
P10−4 and θ4− θ11. The relative modal observabilities for the
new signal set is listed in Table III. For this set, σ = 0.025,
µ = 0.447 and ρ = 4.51, and therefore, from eqn. (19),
κ1(Ψ̂) = 0.5262. This is less than κ∗ and therefore, guarantees
exact recovery under all 1−sparse corruptions. To verify that,
we corrupt signal θ4 − θ11 and as shown in Fig. 2(b), the
reconstruction is accurate. And therefore, the damping ratio
estimation from the recovered signals (see Fig. 3(b)) matches
that of the linear model in Table IV.

Also, in this case, µσ = 18.83 >> ρ, and therefore, we can
use the expression in eqn. (20) as an approximate estimate of
denseness. Substituting the values of ρ, σ, µ and n in eqn.
(20), we get 1√

n

(
1 + ρσ

µ

)
= 0.554, which is a reasonable

approximation of κ1(Ψ̂) for this case.
Next, we demonstrate the robustness of the proposed ap-

proach to measurement noise. White Gaussian noise is added
to all five signals in each of the two groups in Tables II and III

Fig. 4: (a) Incorrect 1−sparse recovery of ∆(θ7 − θ9) from noisy signals
in Table II and (b) correct 1−sparse recovery of ∆(θ4 − θ11) from noisy
signals in Table III under missing data attack. SNR in simulation is 40 dB.

to achieve a desired signal-to-noise ratio (SNR). It is assumed
that there happens a missing data attack in signals θ7−θ9 and
θ4 − θ11 for a period of 9 s (between t = 19 and 28 s, see
Fig. 4). Following the recovery framework in Section II-C as
before, these signals are then reconstructed from the remaining
signals in their respective groups. Signal reconstruction for an
SNR of 40 dB is shown in Fig. 4. It is seen that the recovery of
θ7−θ9 from the signals in Table II has failed and the recovery
of θ4− θ11 from signals in Table III has succeeded as before.
This reinforces our claim.

To study the effects of the quality of data recovery on
oscillation monitoring, we next perform modal estimation for
both the signal sets using multi-channel Prony analysis [27] on
the 15 s measurement window shown in Fig. 4. This is repeated
for SNRs 50 and 60 dBs, and in each case 100 simulations
are performed with uncorrelated noise being added each time.
Statistical dispersion of the estimated damping ratio ζ and
oscillation frequency f for each of the three noise levels and
the respective signal sets are listed in Tables V and VI.

TABLE V: MODAL ESTIMATION USING MULTI-CHANNEL PRONY
ON NOISY SIGNALS IN TABLE II WITH MISSING DATA ATTACK ON
∆(θ7−θ9) AND AFTER RECOVERY FOR DIFFERENT NOISE LEVELS

SNR

(dB)

With Corruption After Recovery

mean ζ

± std. dev.

mean f (Hz)

± std. dev.

mean ζ

± std. dev.

mean f (Hz)

± std. dev.

60 0.0630
± 0.0012

0.627
± 0.0047

0.0610
± 0.0017

0.625
± 0.0086

50 0.0677
± 0.0011

0.624
± 0.0080

0.0626
± 0.0036

0.625
± 0.0053

40 0.0640
± 0.0007

0.625
± 0.0051

0.0621
± 0.0019

0.625
± 0.0073

TABLE VI: MODAL ESTIMATION USING MULTI-CHANNEL PRONY
ON NOISY SIGNALS IN TABLE III WITH MISSING DATA ATTACK ON
∆(θ4−θ11) AND AFTER RECOVERY FOR DIFFERENT NOISE LEVELS

SNR
(dB)

With Corruption After Recovery
mean ζ
± std. dev.

mean f (Hz)
± std. dev.

mean ζ
± std. dev.

mean f (Hz)
± std. dev.

60 0.0277
± 0.0017

0.633
± 0.0068

0.0127
± 0.0011

0.628
± 0.0032

50 0.0274
± 0.0020

0.637
± 0.0055

0.0128
± 0.0014

0.628
± 0.0022

40 0.0260
± 0.0027

0.632
± 0.0088

0.0121
± 0.0016

0.629
± 0.0062
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As we can see from Table V, an incorrect signal recovery
during an attack can lead to erroneous estimation of system
modes. In this particular case, during a missing data attack
the estimated values of damping ratio from the recovered
signals in Table II could lead to a false judgement that the
inter-area mode is better damped. In contrast, if the signals
in Table III are used for oscillation monitoring, the damping
ratio and oscillation frequency can be estimated accurately
from the recovered signals. This underscores the merit of our
proposition.

B. Generic Signal Selection for Unimodal Case

So far, we considered a group of signals with same phase-
relationship in observabilities that lead to a rank-1 Ψ̂ matrix.
We now study a generic case of selecting signals with varying
observability magnitudes and angles. This would mean the
rank of Ψ̂ would now be 2, and therefore, the minimum
attainable value for denseness would be

√
2/n.

We ask under what conditions can we achieve κ1(Ψ̂) close
to
√

2/n. This is challenging, because the denseness calcu-
lation now involves two orthonormal vectors, which although
derived from complex conjugate column-pairs, do not have any
structural similarities. However, with some special conditions
imposed on signal selection, we show that denseness of Ψ̂ can
be expressed as a multiple of the denseness of its column ψψψ1.
This allows us to build on our previously gained insights on
minimizing denseness of a column vector to minimize κ(Ψ̂).
This is presented in the following lemma.

Lemma 4. If the entries in ψψψ1 are such that 〈ψψψ1,ψψψ1〉 = 0,
then κ1(Ψ̂) =

√
2 κ1(ψψψ1).

Proof. Let ψψψ1 =
[
|ψ11| θ1 . . . |ψ1i| θi . . . |ψ1n| θn

]T
and

ψψψ1 =
[
|ψ11| −θ1 . . . |ψ1i| −θi . . . |ψ1n| −θn

]T
.

Following Gram-Schmidt orthonormalization as before,
û1 = u1

‖u1‖2
= ψψψ1

‖ψψψ1‖2
, and û2 = u2

‖u2‖2
where, u2 =

ψψψ1 −
〈ψψψ1,ψψψ1〉
〈ψψψ1,ψψψ1〉ψψψ1. If the complex inner product 〈ψψψ1,ψψψ1〉 =

n∑
i=1

|ψ1i|2 −2θi = 0, then
[
û1 û2

]
=
[

ψψψ1

‖ψψψ1‖2
ψψψ1

‖ψψψ1‖2

]
. So,

κ1(Ψ̂) = κ1(
[
û1 û2

]
) =

1

‖ψψψ1‖2
max
i

∥∥∥∥e∗i [ψψψ1 ψψψ1

]∥∥∥∥
2

=
maxi

√
|ψ1i|2 + |ψ1i|2
‖ψψψ1‖2

=

√
2|ψ1i|max√∑n
i=1 |ψ1i|2

=
√
2 κ1(ψψψ1)

Lemma 4 presents an useful insight towards achieving the
minimum value of κ1(Ψ̂) for the generic signal selection case.
In addition to minimizing the variance in |ψ1i| s as prescribed
before, if we can ensure the inner product 〈ψψψ1,ψψψ1〉 = 0, then

κ1(Ψ̂) =

√
2

n

(
1 +

ρσ

µ

)
(21)

This follows from our previous results. Since the variance in
observability magnitudes is small (small σ, and ρ in neighbor-
hood of 1), κ1(ψψψ1) can be approximated to 1√

n

(
1+ ρσ

µ

)
. Next,

with the condition imposed on the complex inner product, we
arrive at the expression in eqn. (21) using Lemma 4. Note,
that this is also consistent with our understanding that the
minimum value

√
2/n is attained for σ = 0.

Although Lemma 4 provides useful insights on attain-
ing lower values for denseness, finding signals to achieve
〈ψψψ1,ψψψ1〉 = 0 in practice can be quite challenging. Therefore,
instead of making it exactly zero, we look for the implications
of small but non-zero inner products on the denseness κ1(Ψ̂).
This is summarized in the lemma below.

Lemma 5. If signals are selected such that the variation in
observability magnitudes is small (µσ >> ρ) and the absolute
value of the inner product |〈ψψψ1,ψψψ1〉| ≤ ε for some small ε,
then

κ1(Ψ̂) ≤
√

2

n

(
1 +

ρσ

µ

)(
1 +

ε

2 ‖ψψψ1‖22

)
Proof. Let 〈ψψψ1,ψψψ1〉 = ε φ, then following Gram-Schmidt
orthonormalization as before,

û1 =
u1

‖u1‖2
=

ψψψ1

‖ψψψ1‖2
and û2 =

u2

‖u2‖2
,

where, u2 = ψψψ1 −
〈ψψψ1,ψψψ1〉
〈ψψψ1,ψψψ1〉

ψψψ1 = ψψψ1 −
ε φ

‖ψψψ1‖22
ψψψ1

Therefore, any ith entry of u2 can be expressed as,

u2i = |ψ1i| −θi −
ε |ψ1i|
‖ψψψ1‖2

θi + φ

We calculate |u2i|2, and ε being small, neglect the term ε2

‖ψψψ1‖42
hereafter. Therefore,

|u2i|2 ≈ |ψ1i|2
{
1− 2 ε

‖ψψψ1‖22
cos(2θi + φ)

}
(22)

The norm ‖u2‖2 can then be calculated as,

‖u2‖22 =

n∑
i=1

|u2i|2 =

n∑
i=1

|ψ1i|2+
2 ε

‖ψψψ1‖22

n∑
i=1

|ψ1i|2 cos(2θi+φ)

(23)

Now, 〈ψψψ1,ψψψ1〉 = ε φ =⇒
n∑
i=1

|ψ1i|2 −2θi = ε φ (24)

If each phasor |ψ1i|2 −2θi in the summation is rotated by
angle φ counter-clockwise, the resultant phasor also gets
rotated in same amount.

This implies,
n∑
i=1

|ψ1i|2 −2θi − φ = ε φ− φ = ε (25)

Substituting the real part of (25) in eqn. (23),

‖u2‖22 = ‖ψψψ1‖22 +
2 ε2

‖ψψψ1‖22
= ‖ψψψ1‖22

(
1 +

2 ε2

‖ψψψ1‖42

)
≈ ‖ψψψ1‖22

(26)
Therefore, following the definition of denseness,

κ1(Ψ̂) = κ1(
[
û1 û2

]
) =

1

‖ψψψ1‖2
max
i

∥∥∥[ u1i u2i

]∥∥∥
2

=
1

‖ψψψ1‖2
max
i

{
|ψ1i|2 + |ψ1i|2

{
1− 2 ε

‖ψψψ1‖22
cos(2θi + φ)

}} 1
2

≤
√
2 |ψ1i|max
‖ψψψ1‖2

max
i

{
1− ε

‖ψψψ1‖22
cos(2θi + φ)

} 1
2

≤
√
2 |ψ1i|max
‖ψψψ1‖2

{
1 +

ε

‖ψψψ1‖22
)
} 1

2

=
√
2κ1(ψψψ1)

{
1 +

ε

‖ψψψ1‖22
)
} 1

2

(27)
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Finally for small ε, we can say ε
‖ψψψ1‖22

<< 1, and therefore,
we apply binomial expansion to write,

κ1(Ψ̂) ≤
√

2

n

(
1 +

ρσ

µ

)(
1 +

ε

2 ‖ψψψ1‖22

)
(28)

This is demonstrated in the example below.
Example 3: In addition to two power flow signals P3−11 and

P11−10 as before, consider two frequency difference signals
f1 − f3 and f2 − f3, and the angle difference signal θ3 − θ11

from the system in Fig. 1. The relative modal observabilities
are listed in Table VII. Firstly, owing to difference in phases,
the rank of Ψ̂ is 2. This is also reflected in the two dominant
singular values of Y. Following the definition of denseness,
the actual values of κ1(Ψ̂) and κ1(Y) for this case is
calculated as 0.7385 and 0.7377, respectively. Next, we study
the validity of our approximations stated in Lemma 4.

TABLE VII: SIGNALS AND RELATIVE MODAL OBSERVABILITIES

Signals θ3 − θ11 P3−11 P11−10 f1 − f3 f2 − f3
|ψ1i| 0.6340 0.6935 0.6935 0.8231 0.7501

∠ψ1i ∠84.1◦ ∠91◦ ∠91◦ ∠3.5◦ ∠3.8◦

In this case, |〈ψψψ1,ψψψ1〉| = ε = 0.138, also ε2

‖ψψψ1‖42
=

0.0028 << 1 and thus, can be neglected. From the variation
in magnitudes of |ψ1i|s, we obtain µ = 0.693, σ = 0.041
and ρ = 3.19. Substituting these in eqn. (28) we get,
κ1(Ψ̂) < 0.7711. This validates our proposition on the upper
bound on denseness due to a small non-zero perturbation in
inner product.

It can be seen from Table VII that there are two distinct
groups with phases approximately in quadrature. Also, the
signals are selected such that the vector norms of |ψ1i| in each
group are nearly equal. These two conditions together achieve
a small inner product, and therefore, a reasonably accurate
estimate of κ1(Ψ̂).

C. Selection of Signals with Multiple Modes

Next, we extend these insights on minimizing κs to signal
sets with multiple poorly-damped modes. Building on the
notion that a signal with multiple modes can be decomposed
into its constituent frequencies, we seek to enhance denseness
for each of these mono-frequency components. For a set of
candidate signals, ensuring minimal variation in observability
phase angle and magnitudes for each mode results in a Y
with numerical-rank approximately 1, since the basis vector
corresponding to the largest singular value captures most of
the variance in data. As we show next, this can be used to
contain κs(Y) below κ∗.

Example 4: We consider the positive-sequence fundamental-
frequency model of the IEEE 5−area, 16−machine New
England − New York test system [28] shown in Fig. 5.
Eigen-analysis of the system under nominal loading indicates
presence of 4 poorly-damped modes with frequencies− 0.51
Hz, 0.39 Hz, 0.62 Hz and 0.79 Hz, and settling times− 28.8
s, 25.7 s, 18.1 s and 16.1 s, respectively. We assume that all
generator buses are equipped with PMUs.

We study two signal selection scenarios to compare the
denseness of the respective signal subspaces and its impli-
cation in recovering clean signals corrupted with malicious
injections. We first consider voltage magnitude signals at the
terminals of generators− 1, 6, 7, and 8. The relative observ-
abilities of each of the 4 modes in these signals is listed in
Table VIII. The denseness κ1 of the observability submatrix
for each of the 4 modes is listed in Table IX. Clearly, none
of the κ1(Ψ̂i)-s are below the desired κ∗, and therefore,
recovery of any of these signals for neither of the modes
can be guaranteed. Moreover, κ1(Ψ̂4) is very high and nearly
approximates 1. This can be attributed to the fact that the
relative observability of 0.79 Hz mode in |V1| is significantly
higher as compared to remaining 3 signals.
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Fig. 5: IEEE 5−area 16-machine New England - New York test system.

TABLE VIII: SIGNALS AND RELATIVE MODAL OBSERVABILITIES

Signals |ψ1i|∠ψ1i |ψ2i|∠ψ2i |ψ3i|∠ψ3i |ψ4i|∠ψ4i

(0.51 Hz) (0.39 Hz) (0.62 Hz) (0.79 Hz)

|V1|
0.0013

∠−58.8◦
0.0032
∠98.4◦

0.0048
∠−159.7◦

0.0025
∠101.5◦

|V8|
0.0079

∠−84.6◦
0.0044

∠−74.6◦
0.0095

∠−168.7◦
0.0004

∠−142.6◦

|V6|
0.0075

∠−85.4◦
0.0046

∠−79.7◦
0.0089

∠−169.2◦
0.0008

∠−124.5◦

|V7|
0.0075

∠−85.3◦
0.0046

∠−80.2◦
0.0089

∠−169.1◦
0.0008

∠−122.4◦

|V4|
0.0063

∠−85.5◦
0.0039

∠−80.9◦
0.0074

∠−168.4◦
0.0007

∠−125.7◦

|V5|
0.0078

∠−85.0◦
0.0045

∠−76.9◦
0.0093

∠−169.1◦
0.0006

∠−130.9◦

Also, observe that for the 0.51 Hz mode, having the largest
settling time of the three, the observability magnitude in the
signal set varies between 0.0013 and 0.0078. This negatively
impacts the overall denseness1 of the signal set. κ1(Ψ̂) is
calculated as 0.8116. To study the implications of such a high
value, we corrupt the signal |V8| as shown in Fig. 6 (b). All 4
clean signals without corruption are shown in Fig. 6 (a). It is
evident from Fig. 6 (b) that the recovery of |V8| is inaccurate,
as the reconstructed signal traces the corruption.

TABLE IX: MODE-WISE DENSENESS2 OF |V1|, |V8|, |V6|, and |V7|

Modes 0.51 Hz 0.39 Hz 0.62 Hz 0.79 Hz

κ1(Ψ̂i) 0.5959 0.5470 0.5765 0.9968
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Fig. 6: Plots for (a) signals ∆|V1|,∆|V8|, ∆|V4|, and ∆|V5| without
corruption, and (b) incorrect 1−sparse recovery of ∆|V8| after corruption.

Next, we replace signals |V1| and |V8| by signals |V4| and
|V5|. The observabilities are listed in Table VIII and as shown
in Table X, mode-wise denseness κ1(Ψi) < κ∗ ∀ i. The
overall denseness1 κ1(Ψ) is calculated as 0.5359, which is
also less than κ∗, i.e. signal recovery is guaranteed. To validate
this claim, we corrupt |V5| as in Fig. 7 (b). All 4 clean signals
without corruption are shown in Fig. 7 (a). It can be seen from
Fig. 7 (b) that the recovery of |V5| is exact.

TABLE X: MODE-WISE DENSENESS2 OF |V4|, |V5|, |V6|, and |V7|

Modes 0.51 Hz 0.39 Hz 0.62 Hz 0.79 Hz

κ1(Ψi) 0.5328 0.5229 0.5377 0.5519
1√
n

(
1 + ρiσi

µi

)
0.5468 0.5322 0.5541 0.5761

Fig. 7: Plots for (a) signals ∆|V6|,∆|V7|, ∆|V4|, and ∆|V5| without
corruption, and (b) exact 1−sparse recovery of ∆|V5| after corruption.

TABLE XI: MODAL ESTIMATION FROM SIGNALS |V8| and |V5| WITH
CORRUPTION AND AFTER RECOVERY

Mode-wise
Damp. ratio &

Frequency

Linear

Model

Prony on ∆|V8| Prony on ∆|V5|
z(t) ŷ(t) z(t) ŷ(t)

ζ1 0.063 −0.751 −0.760 −0.889 0.060

f1 (Hz) 0.391 0.466 0.466 0.330 0.393

ζ2 0.043 −0.994 −0.994 −0.565 0.045

f2 (Hz) 0.508 0.515 0.515 0.581 0.512

ζ3 0.056 −0.302 −0.302 −0.982 0.055

f3 (Hz) 0.622 0.660 0.660 0.612 0.622

ζ4 0.050 −0.999 −0.999 −0.131 0.061

f4 (Hz) 0.792 0.787 0.787 0.747 0.799

Table XI lists the results of modal estimation on the signals
|V5| and |V8| − both when corrupted and after recovery (as
discussed above), and compares those with that obtained from
the linearized model. We can see from the table that for
V5 the damping ratios and frequencies estimated from the

recovered signal closely match those of the linear model for
all 4 poorly-damped modes. This validates our proposition that
modal estimation from the signal set in Fig. 7 is robust to
corruption. On the other hand, the modal estimation from the
reconstructed |V8| is inaccurate leading to an impression that
the modes are unstable.

IV. SIGNAL SELECTION FROM FIELD PMU DATA

Finally, we extend the insights derived before for grouping
signals directly from field PMU data in absence of a small-
signal model. This is entirely data-driven and can find potential
application during system operation. To that end, we consider
detrended bus voltage magnitude signals |V1| to |V40|, from
40 different PMU locations in New York Power Authority
(NYPA). Denseness calculation on the entire data set yields
κ1(Y) = 0.549 − just enough to guarantee recovery of 1 in
40 signals. This ratio being abysmally low, our objective is
to selectively group signals from this set using our proposed
recommendations to improve corruption resilience.

We consider a 50 s moving window of archived data (as-
sume previously recovered, and therefore, trusted) and perform
spectral decomposition on each of the 40 signals. We observe
two frequencies within the signal set− 0.25 Hz and 0.06
Hz. Next, with |V1| as reference we compute the output-to-
output transfer function, and the relative modeshapes for all 40
signals at the mentioned frequencies− 0.25 Hz and 0.06 Hz, as
described in [29]. Since the output-to-output transfer functions
were computed with respect to a fixed reference, modeshapes
thus obtained are equivalent to relative modal observabilities.
Next, going by our propositions, we group signals having
similar phase and magnitude of relative modal observabilities
for each of the two frequency components. To do so, we use
k−means clustering [30] on the signal set using the 2 × 1
feature vector of complex-valued relative observabilites.

TABLE XII: SIGNAL SETS I AND II

Signal Set I |V6|, |V15|, |V19|, |V20|, |V21|, |V26|, |V27|, |V28|
Signal Set II |V4|, |V7|, |V11|, |V13|, |V16|, |V17|, |V22|, |V24|

Two such clusters− signal sets I and II, obtained for k = 10
are listed in Table XII. Figures 8 (a) and 9 (a) show the time-
domain plots of all 8 signals in each cluster, along with power
spectral density (PSD) plots of one representative signal from
each cluster in Figs 8 (b) and 9 (b). Clearly, signals in set I
exhibit unimodal oscillations of 0.25 Hz, while those in set II
indicate presence of both 0.25 Hz and 0.06 Hz oscillations.

The denseness coefficients1 κ1 and κ2 corresponding to
1−sparse and 2−sparse recoveries for these signal sets are
listed in Table XIII. It can be seen that for both the signal
sets, κ2(Y) < κ2(Ψ̂). This validates our claim in lemma 1.
Further, in both cases, κ2(Ψ̂) < κ∗, which guarantees exact
recovery upto 2 of 8 signals in each group. This is a significant
improvement from 1 in 40.

TABLE XIII: DENSENESS VALUES FOR SIGNAL SETS I AND II

Group κ1(Y) κ1(Ψ̂) κ2(Y) κ2(Ψ̂)

Signal Set I 0.3806 0.4109 0.5382 0.5530

Signal Set II 0.3752 0.3804 0.5275 0.5363
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Fig. 8: Plots for (a) all signals in set I prior to corruption with (b) PSD, and
(c)-(d) correct 2−sparse recovery after corruption of |V6| and |V27|.

TABLE XIV: SET II: FREQUENCY-WISE DENSENESS2 AND BOUNDS

Freq. κ1(Ψ̂i)
1√
n

(
1 + ρiσi

µi

)
κ2(Ψ̂i)

√
2
n

(
1 + ρiσi

µi

)
0.25 Hz 0.3794 0.3842 0.5259 0.5433

0.06 Hz 0.3884 0.3953 0.5438 0.5590

1 computed on singular vectors capturing 95% or more variance in data
2 Ideally, κs(Ψ̂) ≥ κs(Ψ̂j) ∀ j ≤ k, when computed on all k singular

vectors. Here, mode-wise variance minimization results in 1st singular

vector capturing 97% variance. κs(Ψ̂) thus computed, appears slightly

less than some κs(Ψ̂j)-s due to numerical approximations in truncation.

Fig. 9: Plots for (a) all signals in set II prior to corruption with (b) PSD, and
(c)-(d) correct 2−sparse recovery after corruption of |V7| and |V22|.

Table XIV shows the denseness coefficients2 of set II
for each constituent frequency component, obtained corre-
sponding to each complex-conjugate column pair Ψ̂j of
Ψ =

[
Ψ̂1Ψ̂2

]
. As is seen, for each frequency component,

the sufficiency condition for 2−sparse recovery is attained.
Moreover, it is seen that the bound on κ1 derived in Section
III, and extended to κ2 using the identity κs <

√
sκ1 [26], is

sufficiently tight.
To validate our claim on resilience, we next corrupt signals

|V6| and |V27| from set I, and |V7| and |V22| from set II.

TABLE XV:
ESTIMATION OF 0.25 Hz OSCILLATION FROM ∆|V6| AND ∆|V27| −
WITH CORRUPTION AND AFTER RECOVERY USING SIGNAL SET I

Parameters
Prony on ∆|V6| Prony on ∆|V27|

y(t) z(t) ŷ(t) y(t) z(t) ŷ(t)

Damp. Ratio 0.026 0.069 0.026 0.023 0.078 0.025

Freq. (Hz) 0.250 0.216 0.251 0.251 0.211 0.251

TABLE XVI:
ESTIMATION OF 0.25 Hz OSCILLATION FROM ∆|V7| AND ∆|V22| −
WITH CORRUPTION AND AFTER RECOVERY USING SIGNAL SET II

Parameters
Prony on ∆|V7| Prony on ∆|V22|

y(t) z(t) ŷ(t) y(t) z(t) ŷ(t)

Damp. ratio 0.025 0.113 0.027 0.024 0.104 0.023

Freq. (Hz) 0.251 0.214 0.251 0.251 0.212 0.251

In signals |V6| and |V7|, we perform missing data attack
as before, while in signals |V22| and |V27| we corrupt the
actual signal value with random spurious outliers. Corruption
is introduced in 200 consecutive samples starting at t = 68 s,
as shown in Figs 8 (c)-(d) and 9 (c)-(d). Recovery is performed
independently for each set with subspace derived from its
constituent signals. It can be observed that the recovery is
exact as the reconstructed signal tracks the original. The results
of modal estimation using Prony analysis on a 30 s window
(see Figs 8 and 9) of original, corrupted, and reconstructed
signals are listed in Tables XV and XVI. It can be seen that
the 0.25 Hz mode estimated from the recovered signals closely
matches that of the original.

Further, to underscore the importance of our propositions
in grouping signals, we arbitrarily form signal set III taking
4 signals each from sets I and II, as shown in Table XVII.
As before, we corrupt signals |V7| and |V22|. For this group,
the denseness values obtained are: κ1(Y) = 0.709 and
κ2(Y) = 0.995, each of which is greater than κ∗. Therefore,
recovery of signals is not guaranteed. This is evident from the
erroneous reconstruction plots in Figs 10 (a)-(b). The damping
ratio and frequency of oscillation estimated from these recon-
structed signals are: 0.092 and 0.210 Hz respectively, which
are different from those estimated from the original signals in
Table XVI.

TABLE XVII: SIGNAL SET III

Signal Set III |V15|, |V20|, |V21|, |V27|, |V4|, |V11|, |V7|, |V22|

Fig. 10: Incorrect recovery of 2 corrupted signals from signal set III.

V. CONCLUSION

Insights were derived and recommendations were made
for grouping signals to enhance denseness of a set – both
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considering availability of small-signal model, and in absence
thereof. It was shown that denseness of a set increased when
signals were grouped with observabilities in same phase and
variation in magnitudes minimized, for each poorly-damped
mode. Further, for a signal set sufficiently dense, the denseness
coefficient increases linearly with increase in relative magni-
tude of the largest observability. This implies signals that are
conventionally preferred for oscillation monitoring might have
to be sacrificed for guaranteed recovery of the signal set.

ACKNOWLEDGMENTS

The authors would like to thank New York Power Authority
for providing the PMU data.

REFERENCES

[1] F. Aminifar, M. Fotuhi-Firuzabad, A. Safdarian, A. Davoudi, and M.
Shahidehpour, “Synchrophasor Measurement Technology in Power
Systems: Panorama and State-of-the-Art,” IEEE Access, vol. 2,
pp. 1607–1628, 2014.

[2] D. J. Trudnowski, “Estimating Electromechanical Mode Shape From
Synchrophasor Measurements,” IEEE Trans. Power Syst., vol. 23,
no. 3, pp. 1188–1195, 2008.

[3] T. Huang, M. Wu, and L. Xie, “Prioritization of PMU Location and
Signal Selection for Monitoring Critical Power System Oscillations,”
IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3919–3929, 2018.
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