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Abstract—Accurate online classification of disturbance events
in a transmission network is an important part of wide-area
monitoring. Although many conventional machine learning tech-
niques are very successful in classifying events, they rely on
extracting information from PMU data at control centers and
processing them through CPU/GPUs, which are highly inefficient
in terms of energy consumption. To solve this challenge without
compromising accuracy, this paper presents a novel methodology
based on event-driven neuromorphic computing architecture for
classification of power system disturbances. A Spiking Neural
Network (SNN)-based computing framework is proposed, which
exploits sparsity in disturbances and promotes local event-driven
operation for unsupervised learning and inference from incom-
ing data. Spatio-temporal information of PMU signals is first
extracted and encoded into spike trains and classification is
achieved with SNN-based supervised and unsupervised learning
framework. In addition, benefits of deep spiking networks for
complex multi-class event identification problem are presented by
leveraging increasing dynamic neural sparse spiking events with
network depth. Moreover, a QR decomposition-based selection
technique is proposed to identify signals participating in the low
rank subspace of multiple disturbance events. Performance of
the proposed method is validated on data collected from a 16-
machine, 5-area New England-New York system.

Index Terms—PMU, Spiking neural network (SNN), Event-
driven operation, Signal selection, Disturbance classifier, Neuro-
morphic computing, MAC operations.

I. INTRODUCTION

ADVENT of Phasor Measurement Units (PMUs) is leading
to a new era of wide-area monitoring with large-scale

utilization of machine learning (ML) and deep learning (DL)
techniques. Proliferation of PMUs offer better observability
of the modes of the system and helps building situational
awareness. However, this also brings along challenges in
handling and utilization of higher volume of time-series data.
Typically, PMU measurements are transmitted at high speeds
to digital computing systems (e.g. DSP, microprocessor or
computers with CPU/GPU capabilities) in the control center,
which requires high computational power and consumes lots of
energy while processing the data for monitoring applications.
One such application is the classification of large-scale events
using PMU data.

The conventional way to approach event classification
problem involves two steps. The first step is to utilize many
measurements and apply feature engineering to extract relevant
features for events under consideration. Some examples are raw
time-series, energy function approach [1]–[3], ellipsoid char-
acteristics [4]–[7], frequency-domain details such as wavelets
or shapelets [1], [7]–[11], principal component analysis [4],
[12]–[14]. Extraction of features involve computations for every

new data window. In contrast, we propose a feature selection
method to utilize a subset of raw signals directly into the spiking
network framework so that the computations associated with
feature extraction can be avoided.

The second step is the utilization of ML/DL based clas-
sification algorithms. Classification algorithms proposed in
literature are broadly based on either statistical tests, correlation
tests or thresholds [2], [9], [13], [15], [16], or different
ML methods such as clustering [5], [17], decision tree [18]–
[20], support vector machines [11], [14], [20]–[22], k-Nearest
neighbor [8], [21], [23], artificial neural network (ANN) [3],
[20], extreme learning machines [23], auto-encoders [14],
and deep learning architectures [24] among others. These
techniques inherently require a large computational effort in
processing every incoming time-series data window for training
and inference on a traditional computing platform. Especially,
computations performed on an ANN platform for learning and
inference is extremely hardware expensive and cannot leverage
the sparse nature of disturbance events in PMU measurements.

In contrast, in the human brain, information is processed
in networks composed of spiking neurons, which accepts
dynamic binary spiking inputs as a function of time and with
only parts of the network being active during any operation.
A Spiking Neural Network (SNN) driven by the notion of
biological neurons with computing by means of sparse binary
spike signals over time is thus more biologically plausible,
and supports unsupervised learning via event-driven hardware
operation, consuming much less power. These features make
SNN a suitable candidate for online learning and inference
from PMU data for disturbance monitoring and thereby,
necessitates development of SNN architecture for enabling
algorithm-hardware co-design and encourages implementation
on hardware for low power event-driven operation. In this work,
we present a maiden application of neuromorphic computing
platform in power systems for an event classification problem
using PMU data streams. A SNN architecture is proposed to
extract spatio-temporal information from PMU measurements
in an efficient way for classification of different power system
events without sacrificing accuracy obtained with conventional
ML algorithms.

This paper is organised into six sections. Section II discusses
the main motivation for shifting from ANN to a spiking domain
for representing PMU data. Section III presents spike-based
representation of a time series signal. Section IV introduces a
feature selection approach to complement SNN classification
framework to reduce the computational burden by enabling
selection of candidate raw signals. Section V discusses different
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types of SNN learning frameworks for event classification
problem. Section VI presents the experimental set up and
discusses the results of performance comparison between ANN
and SNN. Section VII presents results with deeper spiking
neural networks on event classification problem. Section VIII
concludes the paper.

II. MOTIVATION

Disturbance event identification and characterization in smart
grid using PMU data is a computationally expensive task
for online operations. Availability of ML/DL resources on
CPU/GPU at control centers helps in solving problems requiring
training and inference using large PMU data sets. However,
due to lack of event-driven operation and inability to exploit
sparsity patterns in the data, the computational burden, energy
consumption, and time required to train and deploy networks
for this complex solution space is humongous. Addressing the
high computational burden of machine learning hardware has
been identified as one of the Grand Challenges in Computing
for the next decade by the US government and Federal
agencies [25], [26]. For instance, training common large Deep
Learning models can result in more than 626,000 pounds
of carbon emissions - the equivalent of 5 times the lifetime
emission of an average car [27]. Therefore, power grid’s secure
operation also comes at a cost of significant increase in its
carbon footprint, which counters the sustainability goals in
today’s world. This just shows the inefficiency of our current
computational platforms (CPU/GPUs/cloud clusters) and how
these can be improved with neuromorphic computing. The goal
of this paper is to address this challenge for the smart grid
community.

An under-explored fact here is that a power transmission sys-
tem remains in ambient/quasi steady state operating condition
most of the time and switches to transient state only during
disturbance events for a brief period. Typical disturbance events
such as line faults (voltage events), generator-load unbalancing
(frequency events) due to generator outages or load shedding,
and so on, occur infrequently over the span of the year. Table I
shows two metrics from the North American Electric Reliability
Corporation (NERC) report [28] for years 2015-2018, which
indicate the average probability of occurrence of transmission
line outage events in a year is ≈ 0.237% and also the number
of occurrences of contingency events related to balancing
resources/generation with demand following a disturbance
ranges between 150− 425 per year.

TABLE I
FINDINGS FROM NERC STATE OF RELIABILITY REPORT [28]

Years 2015 2016 2017 2018
Transmission Unavailability (%) 0.22 0.27 0.24 0.22
Number of Disturbance Control 350- 375- 150- 175-

Standard Events (Range) -400 -425 -200 -225

In addition, based on a 15s window of simulated data
from the New England-New York test system [29], a typical
histogram of distribution of signal magnitudes for 363 events
is shown in Fig. 1(a). Signal magnitude here refers to the
deviation from nominal values per unit magnitudes of phasor
voltages (|V |), currents (|I|) or frequency (f/60) of various
network variables in the system following a disturbance. Each
of these windows contains 5s of pre-disturbance and 10s

of post-disturbance data from each event. For more details
on the data generation, please refer to Section VI-A. The
characteristic of these deviations alters with post-disturbance
operating condition. Under quasi-steady-state pre-disturbance
(also called ambient) condition, the signal magnitudes are
represented by zero mean gaussian noise. During disturbance,
the fluctuations in these magnitudes are highest and they
typically manifest electromechanical oscillations of smaller
amplitude following the disturbance , which damp out if the
system is stable. Therefore, the period of high magnitude
fluctuations (0.95-1 times signal magnitude of 1 pu) from
steady state value (of.1 p.u.) for most disturbances is short
and thus such fluctuation values have a less probability of
occurrence in the window right after disturbance.

This implies there is a higher probability of samples in the
signals of the window to have a lower range of ‘magnitude
deviation from the prefault values’ that lies on the left side
of histogram. Note that these magnitude deviations are caused
by oscillations. Due to temporal sparsity of events, most of
the oscillations occur only at the starting of a disturbance
event and dies down after a small duration. In addition, due
to spatial sparsity of PMUs, the signals which are closer to
the disturbance location undergoes more significant deviations
during disturbance compared to others which are farther (see
4.2.2 of [30]). Moreover, spatial sparsity brings in dispersion
in the observability of modes reflected in post-disturbance
oscillation magnitudes. As a result, in the event window,
the high magnitude samples are less frequent and can be
characterized by a sparse distribution with close to 0 magnitude
samples persisting mostly in the time horizon.

Interestingly, our brain computes by means of sparse, event-
driven temporal signals and algorithms inspired by such
computational principles can be an ideal fit here. Inspired by
this property, we propose to leverage a disturbance event-driven
neuromorphic computing platform, which can exploit sparsity
in signal representation in spike domain and thus reduces the
computational effort leading to energy savings.

SNN is a class of ANN-based computational model, which
closely mimics our brain’s ability to naturally encode and
process information. Its efficiency comes from the “learning
over time” feature as well as computation and communication
in terms of spike in the operating model. The main advan-
tages of SNN are as follows: (1) sparse signal processing,
(2) event-driven hardware operation, and (3) lower energy
consumption [31]. Recent developments show that SNN now
has the potential to achieve similar accuracy as of other ML
techniques with much less power consumption [32]. Incoming
data represented by a sparsely-distributed input spike train
can significantly reduce energy consumption during periods of
ambient condition of the grid.

Figure 1(b) describes the proposed architecture for processing
PMU signals at a control center in spiking domain. After
receiving PMU data at phasor data concentrator (PDC), a
moving window containing present and past samples of data
is extracted. This data is first encoded into spike trains and
then processed in SNNs for event detection and classification
purposes. The main contributions of this work are as follows.
• A spike-based representation of PMU measurements and
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Fig. 1. (a) A histogram plot for a 15s measurement data window of 10
signals with disturbance starting at 5s over 363 disturbance events, where
X-axis indicates 20 normalized magnitude ranges of magnitude deviations
from ambient prefault values and Y-axis indicates the probability of any signal
taking a magnitude in that range at any instant. The events are simulated
in NE-NY system; (b) Proposed architecture for power system disturbance
classification.

event-driven supervised and unsupervised power system
event classification through a SNN architecture that can
replace the CPU/GPU-based processing of state-of-the-art
classification algorithms.

• A signal selection technique to eliminate dependency on
processing many signals without loosing any information
and thus, reduce the computations during classification
by operating directly on measurements instead of derived
features, when the number of observed signals is large.

The following sections present these contributions.
III. SPIKE-TRAIN REPRESENTATION OF A TIME-SERIES

SIGNAL

A spike train is a mode of transmitting information in the ner-
vous system. This can be interpreted as a sequence of recorded
times at which a neuron fires an action potential [33]. The
irregularity in arrival time of successive action potentials can
be modelled as a random process. Under an independent spike
generation hypothesis, the random process in the neocortex
is assumed to follow a Poisson distribution. This is typically
utilized in a process called “rate coding” [34] to convert an
input sample to a certain number of spikes while including an
element of stochasticity.

The ith sample y(i) of a discrete time-series measurement
[ȳ], i ∈ [1, N ] is represented by first associating it with an input
neuron i. With a homogeneous Poisson process assumption,
the spike generation rate λi of this neuron over an interval
of spiking takes a fixed continuous analog value and is set to
be proportional to the amplitude of the sample y(i). In other
words, the neuron i is driven by a stimulus of y(i) over the
interval [0,T] to generate spikes at a rate λi = y(i). The spike
train interval T is subdivided into shorter intervals δt such
that t = jδt, where j = 0, 1, 2, ...,T/δt. The probability of
spikes occurring during each δt is set to rδt. For each δt, a

uniformly distributed random number x(δt) is generated. This
is followed by a spike generation as per the following rule.

s (jδt) =

{
1, x(jδt) ≤ rδt
0, otherwise

⇒ s =
∑
Tf

δ (t− tf )

(1)
where, s is the spike train generated over the interval [0,T] with
spiking instances tf for sample y(i). s can also be represented
as a set of Dirac-δ functions at time instants tf ∈ Tf . These
spike trains are given as input to the excitatory layer of SNN and
has been demonstrated in Fig. 2. This type of binary encoding
of stimulus requires a single bit for computing as well as
for communicating a spike. With address-event representation
(AER)-based communication protocol, sparse neural events
can be communicated efficiently in event-driven neuromorphic
hardware [31].

A power system follows a quasi-steady state trajectory during
most of the time of operation and only switches to a transient
state trajectory during a disturbance. The spike generation rate
follows a steady-state value proportional to signal magnitude
during the steady state operation and fluctuates in presence
of disturbance samples. Assuming that under steady state
conditions of the system, the spike rate is set to a low value,
the distribution in spike occurrence will be sparse over the
interval of stimulus presentation to the neurons. This leads
to inactivity in the regions of SNN, which can be exploited
on a neuromorphic hardware through “power gating” [35] by
shutting off portions of the circuit, which are not being triggered
by spiking events. Only upon the onset of an event, sufficient
spikes are generated to activate the network enabling event-
driven operation, and eliminating computational effort. Thus, a
spiking representation of signals and the algorithm-hardware co-
design of SNN and implementation on neuromorphic hardware
could potentially result in significantly low power consumption.

IV. SIGNAL SELECTION

PMUs provide discrete synchronous time-series measure-
ments of electrical quantities y(t) such as voltage, current,
power and frequency at any time t. The system response Y
(N ×m) containing N samples for t = [0, (N − 1)Ts] of m
measured signals can be approximated by low dimensional
feature set could potentially overcome the dependency on
processing all PMU signals online. However, it comes at a cost
of SVD computations every time a new sample arrives, and thus
imposes a complexity of O (mN) for online feature extraction
from a N × m data matrix. To overcome this, a feature
selection procedure based on economy QR decomposition [36]
is proposed to identify PMU signals which participate in
forming the low-rank subspace under multiple disturbance
events that could be used as input to the SNN.

To that end, response matrix Y can be expressed as a product
of Vandermonde matrix V and complex transformation matrix
Fo. Please see Appendix-A for details.

Y T = FoV ⇒ Y = V ∗Fo
∗ (2)

The rectangular matrix Y can be decomposed into two factors
using economy QR decomposition [36], which rearranges
signals present in Y in decreasing order of priority for obtaining
a linearly independent set of signals in the columns of

↼

Y .
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Y P =
↼

Y = QR⇒ QT
↼

Y = R (3)

where, Q represents an orthonormal basis for subspace of
↼

Y
and R represents an upper triangular matrix rk,l = q̄Tk ȳl, P
represents permutation matrix. When all the signals present
in Y are linearly independent, the rank of subspace U of
Y is m implying at least m distinct modes (vi) of V are
contributing in forming U . Since, Y is low rank, the rank
of U becomes n < m << N . Since Q ⊆ R(Y ), where R
indicates the column space, it can be written as a mapping
from V ∗ as follows. We know that columns of Q form the
orthonormal basis of the subspace U in RN and represents a
similar transformation of trajectories in V , thus can be written
as follows.

Q = V ∗Go
∗ ⇒ QT = GoV (4)

where, Go in (4) can be interpreted as a transformation matrix
similar to Fo such that q̄(t) = χgo(v̄(t)) and q̄(t) is the image
of v̄(t) under mapping χgo .

QTQ = I = GV V ∗G∗ = GV̂ G∗

⇒ GV̂ = (G∗)
†

=
(
G†
)∗ (5)

where, G† represents the pseudoinverse of matrix G. Now
substituting expression for G†∗ in (3) for R leads to

R = QT
↼

Y = GV V ∗F ∗ = GV̂ F ∗ =
(
G†
)∗
F ∗ (6)

This implies R is the projection of F ∗ onto G∗, which are
both mapping complex exponential time series in Vandermonde
matrix to the signal subspace of Y . Each entry rk,l of R is
equivalent to ḡTk f̄l, which is the projected component of f̄l in
the direction of ḡk of Q.

ḡTk f̄l = 0,∀l, k = l + 1 : m
ḡT1 f̄1 ≥ ḡT2 f̄2 ≥ ...ḡTn f̄n ≥ ... ≥ ḡTm−1f̄m−1 ≥ ḡTmf̄m
ḡTk f̄k = 0, n < k ≤ m

(7)

Note that the projected component in rk,l are proportional to
the F ∗ matrix. A total of n independent column vectors of
F ∗ corresponding to top n diagonal entries of R implies n
linearly independent signals forming the subspace U of all m
signals in Y . This set forms a minimal group, which at the
least ensures observability of high energy modes responsible
for oscillations observed through Y .

Since, the objective of this work is to detect transient
disturbances with low frequencies of oscillation (persisting
over longer duration) carrying more energy and the number of
low frequency modes present in the system is ñ < n,–a very
low dimensional subspace Q̂ (tall matrix with ñ orthonormal
columns) need to be extracted from Y . In reality, both F ∗ and
V ∗ are very sensitive to operating condition and disturbance as
well. By applying the above analysis, we can obtain a linearly
independent minimal group of ñ signals for each disturbance
scenario.

To select signals, a metric is proposed to find the impor-
tance of each signal among a group of signals based on its
contribution in low rank subspace formation under multiple
disturbance scenarios. Given a set of training examples of
multiple disturbance events obtained by a contingency analysis
on the system, we propose the following heuristic to identify

a group of signals of priority and to represent the lower
dimensional signal subspace.
• Input Disturbance event data set Yh ∈ RN×m, with h ∈

[1 : Htrain], where Htrain is the number of training
examples obtained under 3 types of disturbance events;
Bus faults (Class-A), generator outage (Class-B), load trip
(Class-C); Output: Important signal set S; Parameters:
Threshold ν1 for selecting important signals in each Yh;

• Initialization
– Set initial counter CC(j) for each signal j = 1 : m.
– Set thresholds ν1 = 0.1.
– Set h = 1, set of all signals M = [1 : m],

• while h ≤ Htrain

1) Apply economy QR decomposition on Yh to obtain
permutation matrix P , orthonormal matrix Q, R.

2) Find the permutation vector p from P containing
arrangement of signals in Y used for economy QR
decomposition.

3) Find set Ŝ = {s|s ∈ p, rs,s ≥ ν1r1,1}.
4) Update counter CC(j) = CC(j) + 1 for all j ∈ Ŝ.
5) Increment h by 1 and go to step (1).

• Find importance score Sc for each signal j as follows.
Sc(j) = CC(j)/Htrain.

• Select the top n signals having highest scores in Sc and
save those in set S.

• Output Set S containing signal indices important for
multiple disturbance event data Yh for h = 1 : Htrain.

Given m number of signals for any event in Yh, signals
in Ŝh forming the low-rank subspace Uh is important for the
event h. Cardinality (ñ) of set Ŝh is an estimate of the number
of high energy modes λis present in m signals. Given Htrain

events, a score Sc(j) for each of signal indicates how many
such events, signal j has participated in forming their low-rank
subspace. Thus, signals with higher scores become potential
candidates for representing multiple disturbance events and
thus, can faithfully ensure the information contained in signals
not selected during this process is also preserved.

V. SPIKING NEURAL NETWORK
A. Learning using Unsupervised Spiking Neural Network

A typical architecture of spiking neural network [37] consists
of input layer and excitatory layers as shown in Fig. 2. The
number of neurons present in input layer is a function of
number of signals and corresponding samples of the data
window. Each neuron in the input layer is fully connected
to the neurons in the excitatory layer. A connection between
two neurons is called a synapse. After receiving the spike
trains from input layer, excitatory postsynaptic potentials are
generated. The synaptic weights between input to excitatory
layer are then trained based on time difference between pre- and
post-synaptic spike occurrences through a process called spike
time dependent plasticity (STDP), which promotes temporal
correlation in the firing activities of the connecting neurons.
The excitatory layer has inhibitory connections in which
information from each excitatory neuron is simultaneously
backward-propagated to other neurons in the excitatory layer.
This is called “lateral inhibition” whose purpose is to discourage
simultaneous firing of multiple excitatory neurons and promotes
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Fig. 2. Spike train representation of incoming PMU signals communicated to a
Spiking Neural Network (SNN) architecture for disturbance event classification.

competition among neurons for learning different input patterns.
The firing potential or threshold of each neuron in the excitatory
layer is increased (referred to as ‘Homeostasis’) every time
it spikes to prevent single neuron from dominating the firing
pattern. Each excitatory neuron learns to represent a class and
spikes at a higher frequency as compared to other neurons
when examples of that class are presented as input to the SNN.

As shown in Fig. 2, the input layer accepts samples of
measurement data window and produces spike train as output,
which in turn is sent to the excitatory layer. The synapse
response in terms of excitatory postsynaptic potential (EPSP)
for a spike train input to a neuron in the excitatory layer can
be described as follows.

EPSP (t) =

{
1, tc ≤ t ≤ td , s(tc) = 1
0 otherwise

(8)

The temporal dynamics of membrane potential upost of a
leaky integrate-and-fire (LIF) neuron in the excitatory layer in
response to EPSP is given by

τmt
dupost(t)

dt
= −upost(t) + w(t)

∑
Tf

EPSP(t)− I (9)

where, τepsp and τmt are the EPSP and membrane time
constants, respectively. upost is being reset after reaching a
threshold uth and results in spiking of post-synaptic neuron
in the excitatory layer. Immediately after this event, upost is
not allowed to change for a refractory period. In addition,
Homeostasis was adopted to prevent single neuron from
dominating the response pattern, where uth for the spiking
neuron is updated to a higher value at a rate of θr as follows.

uth ⇐ uth + θruth (10)
In this framework, a biologically plausible unsupervised

learning mechanism based on STDP [37] is presented. STDP
is a form of Hebbian learning, which supports event-driven
learning and weight updating only upon arrival of post synaptic
spikes during learning phase and can provide low power on-
chip learning. The main idea behind STDP is the adjustment
of synaptic weights based on the the temporal correlation
between the pre- and post-synaptic spike occurrences. STDP-
based weight updation for each connection between input to
excitatory layer is described as follows.

∆w =

{
ς+e

(−∆t/τ+) ∆t > 0
ς−e

(−∆t/τ−) ∆t < 0
(11)

where, ∆t = tpost − tpre. tpost and tpre are the pre- and

Fig. 3. Trajectories of 4 voltage measurements (|V |, pu) at buses 64, 51, 11,
9 during disturbance applied at 10s. Three traces show the type of disturbance;
Class-A: bus fault, Class-B: generator outage, Class-C: load trip cases.

post-synaptic firing time instances, respectively. τ+, τ−, ς+,
ς− are weight updating constants.
B. Learning using Supervised Spiking Neural Network

Although unsupervised SNN has the advantage of low power
on-chip local learning without the requirement of any labelled
data, supervised SNN gives much better performance and are
currently more scalable to complex pattern recognition tasks
[32]. Here, we explore a particular type of supervised SNN
training, namely ANN-SNN conversion, for power system
disturbance classification. In a supervised learning framework,
a particular type of sparsely-firing event-driven spiking deep
network [32], [38], [39] can be constructed by training an ANN
using standard backpropagation and then converting to SNN.
This technique exploits the relationship between number of
spikes produced by integrate-and-fire (IF) spiking neuron over
an interval in SNN and the output activation of Rectified Linear
Unit (ReLU) network (ANN). Typically, the output activation vj
of a ReLU neuron j as a weighted sum of neuronal activations
received from previous layer (∀yi) can be expressed as follows.

vj = max
(

0,
∑

i
wijyi

)
(12)

Similarly, in case of IF neurons (without leak and refractory
period), input yi encoded as spike train syi(t), with expectation
E [syi(t)] ∝ yi, which is integrated over T to update
membrane potential umem, which upon crossing the threshold
uth generates output spikes svj .

umem (t + 1) = umem (t) +
∑

i
wijs

yi (t) (13)
In this framework, a ReLU-Based Feed-Forward Neural

Network is first trained. To ensure minimum loss in accuracy
and faster convergence during the conversion process, a weight
normalization is adopted [32], [38], [39] to optimize the ratio
of neuron thresholds to synaptic weights. This is achieved by
propagating the training set through the network and recording
the maximum ReLU activations per layer. The weights are then
scaled according to the maximum possible activation within the
training set [38]. The final weight-normalized spiking network
can be tested for classification of disturbances in the test set.
For an extensive discussion on spiking neuron models and
network architectures, readers are directed to reference [40].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSG.2020.3043782

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

Fig. 4. For 69 voltage magnitude signals |V |, signal scores in % of total
number of events was obtained over 3 classes of disturbance events and is
presented in (a)-(c). The total score Sc as a sum of the 3 scores was calculated
for each signal and is shown in (d).

VI. RESULTS AND PERFORMANCE EVALUATION
A. Experimental Setup

A 16-machine, 5-area New England-New York system [29] is
considered with PMUs installed at all 69 buses. A disturbance
event data set consisting of (1) bus faults (BF), (2) generator
outages (GO), and (3) load trip (LT) cases were created via a
contingency analysis under 3 operating conditions with different
loading scenarios. During each simulation, disturbance was
applied at 10s and measurements of voltage magnitudes |V |
from all buses and frequencies f from 16 generator terminals
were recorded for 40s at a sampling frequency of 30Hz. A
total of 201 bus faults, 38 generator outages, and 156 load trip
cases were generated. Figure 3 shows time-domain plots of 4
voltage magnitude measurement |V | signals recorded under 3
types of disturbance cases.

� Pre-processing of voltage magnitudes and frequency mea-
surements: For classification purposes, the entire data set from
the three classes were divided into 10-fold cross validation
sets with 60% of the event examples used for training and
40% for testing. A window size of 15s was considered for
extraction from starting of event at 10s while detrending and
downsampling to 10 Hz was applied on each signal.
B. Signal Selection on Voltage Magnitude Measurements

The QR decomposition-based signal selection algorithm
proposed in Section IV was applied on the data window Y with
all |V | measurements. Figure 4 shows the signal importance
scores Sc calculated for 69 signals with 3 classes of event
examples and their total scores. As can be seen from Fig. 4,
signals |V9|, |V40|, |V50| are participating in forming low rank
subspace of more number of events. A group of n̂ signals with
the highest total scores were selected from set S. An estimation
error formula is presented next for performance evaluation of
the proposed heuristics in preserving the information in the
entire data set.

Given m signals with N (>> 2m) samples from each
training event example Yh, suppose the proposed heuristic
selects n̂ signals of higher importance scores present in S
(with the rest signals in set S̄). Then, given pN (>> m)

Fig. 5. Average error in LS estimation of signals in the set S̄Wr (S̄) using
the selected signal set SWr (S), when the number of signals (|SWr |(|S|))
varies from 1-21 as shown in x-axis.

samples of all m signals, where p (≥ 0.5) shows a fraction of
N samples, the rest (1− p)N samples of (m− n̂) signals in
S̄ can be estimated using (1− p)N samples of n̂ signals in S
with a least squares (LS) estimation procedure as follows.
• Given training event examples Yh, h ∈ [1 : Htrain]
• Initialize sets S, S̄, D, D̄.
• while h ≤ Htrain (for each Yh)

1) Calculate β =
(
Y (S,D)

)†
Y (S̄,D); † indicates

pseudo-inverse of a matrix.
2) Estimate Ŷ (S̄,D̄) = Y (S,D̄)β
3) Calculate LS estimation error for example event Yh;

eh = ||Y (S̄,D̄) − Ŷ (S̄,D̄)||2
• Calculate mean error µX across examples h ∈ [1, Htrain]

Here Y (S,D) denotes submatrix of Yh with signals present in
set S and samples present in set D. Subscript h in notation Y (,)

is dropped for simplicity. D and D̄ show the samples in the
range [1, pN ] and [pN + 1, N ], respectively. Using the above
steps, an estimation error µX can be calculated for Htrain

example events.
A Monte-Carlo simulation was then conducted for 100

randomly generated signal combinations W, each with n̂ = 21
number of signals such that for each randomly generated set
Wr ∈W, |Wr| = n̂ = 21. The effect of considering selection
of different number of signals in set SWr

⊂ Wr, (S̄Wr
=

Wr − SWr ), and each with multiple combination of signals
on the estimation error for all disturbance events was then
compared against the proposed set S obtained using the
proposed heuristics. For each combination of signals in each
random set Wr, the estimation errors were calculated by
considering |SWr

| = 1 (|S̄Wr
| = 69 − |SWr

|), and in each
subsequent iteration, |SWr | was increased by 1 by including
signals from the combination in Wr. Error µX in estimation
of the unselected signals in S̄Wr

(S̄) is calculated as a function
of set SWr

(S) and the number of signals |SWr
|(|S|) for each

signal set Wr and the proposed set of signals in S – see, Fig. 5.
A decrease in the estimation errors is observed by including
more number of signals in set SWr (S). This reduction is more
significant for proposed set S as compared to any randomly
selected set SWr

. This shows the ability of the proposed set
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Fig. 6. Preprocessed voltage signal |V8| as stimulus y presented as input
to SNN is shown in (a). (b)-(d) shows spike train representation of samples
y(19), y(25), y(30), respectively over a spike train duration of 400 samples.

S to contain most information present in the entire data set.
Therefore, in this work, |S| = n̂ = 10 number of signals
in S were selected to provide input to event detection and
classification algorithms.

C. Spike Train Representation

In this step, the entire window of data matrix for each event
example was converted to a 1-D vector by stacking the signal
samples present in the window, which is further encoded as
Poisson spike trains with an average spiking rate proportional
to the maximum value of the data window. Figure 6(a) shows
the detrended and downsampled version of voltage magnitude
measurement signal from bus 8. The corresponding spike train
representation for 19th, 25th, and 30th samples are shown in
Fig. 6(b), (c), and (d), respectively. Spike train generated for
each example event data was then presented as input to SNN.

D. SNN’s Classification Performance Analysis

The experiment starts with training and inference on 10
cross-validation (CV) sets in the following supervised and
unsupervised learning frameworks – 1) Unsupervised learning
framework: a) U1: Self-organising maps (SOM); b) U2:
LIF based SNN; 2) Supervised learning framework: ANN-
SNN conversion based SNN. The following sections present
classification results obtained with supervised and unsupervised
learning techniques.

1) Unsupervised Learning: In this framework, a network of
size [n̂N, 10] is presented, where n̂N represents the number
input neurons as well as the number elements in the 1-D vector,
which leads to n̂N = 1090 for |V | signals and n̂N = 2512
for f signals. The number of neurons in output (excitatory)

layer of SOM (SNN) is kept 10. The average accuracy for
event detection with an SNN on 10 CV tests is 96.5% for |V |
and 97.7% for f signals, which ensures unsupervised online
event-driven operation. The accuracy for disturbance event
classification is shown in Table II. The average accuracy on
the test set is 92.4% with U1 and 92.9% with U2 for |V | and
93.4% with U1 and 96.8% with U2 for f signals.

2) Supervised Learning: In this framework, a ReLU based
ANN-SNN of size [n̂N, h1, h2, r] as described in Section V-B,
is considered for supervised classification using voltage and
frequency information of the simulated events with n̂N input
nodes, two hidden layers each with h1, h2 nodes, respectively
and r output nodes with all fully connected layers. Maximum
number of epochs was kept to 30 and a mini batch size
of 100 was adopted during training ANN through standard
backpropagation. The weights from the ReLU network is then
scaled to obtain the SNN version of the trained ANN. The
results obtained with ANN-SNN conversion are presented in
Table III, which shows the average classification accuracy is
96.3% for voltage magnitudes and 93.6% for frequency mea-
surements and proves the effectiveness of SNN in supervised
classification tasks. The following sections present a discussion
on the computational performance analysis of both ANN and
SNN algorithms.
E. Evaluation of Computational Burden

1) Unsupervised Learning: Although an estimation of the
entire hardware overhead or actual energy consumption is
outside the scope of the work, a comparison of number of
computations per synaptic operations with techniques U1 and
U2 are presented based on the number of multiply-accumulate
(MAC) operation. A typical ANN with i input neurons and
r output neurons requires ir multiplication and addition
operations with one forward pass of the fully connected feed
forward network. In contrast, SNN performs only accumulate
(AC) operations over the entire spiking interval [0,T] in layer j
only upon receiving a spike from previous layer j−1. Number
of AC operation per layer j becomes a product of average
number of accumulated spikes per neuron sm(j) from previous
layer j − 1 during the spiking interval T and the number of
synaptic operations (ir) between two consecutive layers. The
ratio of number of MAC operations in SOM to AC operations
in SNN is estimated to be ≈ 1.2, which shows a 20% reduction
in number of computations with SNN.

2) Supervised Learning: After ANN-SNN conversion, the
total number of computations in SNN during testing becomes
n̂Nh1sm(2) +h1h2sm(3) +h2rsm(4), which is much less as
compared to n̂Nh1 +h1h2 +h2r operations involved with the
trained ANN in the process. The ratio the number of MAC
operations involved in ANN to the AC operations in SNN is
≈ 1.1. This ratio is expected to further increase with more

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY BETWEEN SOM (U1) AND SNN (U2) WITH UNSUPERVISED LEARNING USING |V | AND f FEATURES

Feature type CV Sets 1 2 3 4 5 6 7 8 9 10 Average accuracy
Voltage |V | Training (SOM) 93.6 96 93.7 96.5 97 96.6 95 92.8 92.5 96 94.9
Voltage |V | Test (SOM) 93.3 93 96 92 92 91.6 89 87.5 92.1 98 92.4
Voltage |V | Training (SNN) 90 87 90 90.3 91.5 85 86 90.1 86 90.1 88.6
Voltage |V | Test (SNN) 92.5 92 92 93 94.6 91 94 94.2 93 93 92.9

Frequency f Training (SOM) 96 94 93 93.4 93.1 97 92 96.4 95 94.2 94.4
Frequency f Test (SOM) 95 88 96.2 95.8 98 90 85 95.4 96.2 95 93.4
Frequency f Training (SNN) 93 92.3 94 95.31 92.8 94 97 93.7 92.6 96.14 94.08
Frequency f Test (SNN) 98 96.7 99.2 98.7 95.8 95 99 93.7 95.4 96.7 96.82
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TABLE III
CLASSIFICATION ACCURACY OF SNN OBTAINED USING ANN-SNN BASED CONVERSION (S1) FOR SUPERVISED LEARNING

Feature type CV Sets 1 2 3 4 5 6 7 8 9 10 Average accuracy
Voltage |V | Training 98 99 98 98.6 98 99 99 97.3 98.3 99 98.42
Voltage |V | Test 97 97 97.1 95.8 95 97.9 97.2 91.2 97.2 98 96.34

Frequency f Training 98.3 99.5 99 98 97.8 99 99 97.3 97.6 99.1 98.4
Frequency f Test 98 91.2 96.2 89 91 96.7 90 94.6 91.2 98 93.6

layers in networks [32], which is due to exponential increase
in neuron spiking sparsity with network depth. This could be
very useful at control centers for larger datasets. This proves
the capability of spiking neurons in achieving similar accuracy
as conventional techniques in disturbance classification with
less computational burden.

Moreover, SNN is more efficient even for the worst case
scenarios when an input pattern demands more binary AC
operations than real-valued MAC operations, since SNNs can
be implemented in energy efficient neuromorphic hardware [41],
[42]. For instance, an estimated ratio of order of magnitude
of energy consumption per MAC operation (with one 32-bit
ADD and 32-bit MULT) to AC operation (with 32-bit ADD)
is 5.1 for floating point computations [43]. A summary of
projected energy savings for disturbance classification has
been presented in Table IV, which shows SNN deployed
for disturbance classification operations can save upto 83.6%
of energy which is wasted by ANN in the unsupervised
and upto 82% in supervised framework. This implies by
deploying SNNs, which are inherently low energy networks and
incurs less computations, the energy savings will significantly
increase with deep networks. While an actual estimate is
outside the scope of the work, the evidence presented through
AC operations encourages implementation of the event-driven
classifier in a neuromorphic computing hardware for realization
of a spiking environment enabling low energy computations
and efficient data processing without sacrificing accuracy.

The following section demonstrates the potential benefits of
deep SNNs over ANNs in a new experiment to show the impact
of training with more data at scale and corresponding effects
on classification accuracy and computational performance.

VII. SCALING TO DEEPER NETWORKS

A. Experimental Setup

While the results in the previous section have provided
motivation for SNN usage in power system disturbance
classification, computational burden reduction becomes a
significant issue in complex problem spaces where deep
networks exceeding a million parameters become necessary to
achieve state of the art accuracy. To substantiate the benefits of
SNN usage in such scenarios, a new experiment was conducted
with additional class data. Due to limitations in the availability
of real-time PMU data and an annotated dataset containing
information on the type of disturbance in the general power
system community, a set of simulations on the existing test

TABLE IV
COMPARISON OF PERFORMANCE MEASURES BETWEEN ANN AND SNN

For each MAC (ANN) Unsupervised Supervised
to AC (SNN) operation Learning Learning

Ratio of number of operations 1.2 1.1
Ratio of Energy consumption 6.12 5.61

% of Energy saving with SNN 83.67 82.18

accuracy of 90% 

at 86 time steps

Fig. 7. The classification accuracy of SNN after AlexNet based ANN-SNN
conversion is plotted as a function of time steps T. SNN achieved 90%
validation accuracy at 86 timesteps. The temporal behavior can be exploited
for accuracy-efficiency tradeoff.

Fig. 8. Average spiking activity of the converted AlexNet is plotted as a
function of network depth. The SNN spiking sparsity significantly increases
as the network depth increases.
system were performed for collecting time series measurements
involving transient data from disturbance events. Four classes
of events considered in this experiment are: (1) bus faults (BF),
(2) generator outages (GO), (3) load trip (LT) and (4) line
outage (LO) cases under 7 different operating conditions with
varying loading levels across the network. This resulted in 483
BF, 112 GO, 490 LT, 490 LO labeled cases. A 30 seconds of
simulation data was extracted from the selected |V | signals
and preprocessed for providing inputs to the neural network.

B. Supervised Training Methodology

Next, we trained a convolutional network architecture by su-
pervised learning and subsequently converted that to a spiking
network using ANN-SNN conversion. The SNN simulation is
performed using a modified version of BindsNet [44], a PyTorch
based package. The AlexNet [45] architecture, an 8-layer
deep network consisting of 5 convolutional layers and 3 fully
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connected layers was selected. Without loss of generality, the
network was trained on voltage magnitude features. The training
can be extended for other features as well. It is worth noting
here that the convolutional layers used in our work are 1D, ideal
for time-series data processing. The dataset was then randomly
split into two parts: 2/3 for training and 1/3 for validation. The
network was trained with a learning rate of 0.001 and a batch
size of 32, and subsequently converted to spiking mode for
inference. To reduce the high inference latency observed in
deep SNNs, a fixed percentile (96.4% in our case) from the
maximum activation histogram was used during the weight
normalization process. Such a relaxed normalization scheme
significantly reduces the timesteps involved in inference without
any observable degradation in classification accuracy [46]. For
an extensive discussion on constraints involved in ANN-SNN
conversion and design-time/run-time optimizations, readers are
referred to reference [46].

C. Advantages with Deeper SNN

Figure 7 depicts the SNN classification accuracy as a function
of timesteps T. This temporal behavior, where the accuracy
of the network increases over timesteps, can be leveraged
for accuracy-efficiency trade-off - appealing for resource-
constrained applications. For instance, the SNN achieves 90%
accuracy at 86 time steps and subsequently saturates in terms
of accuracy improvement. Hence, computations involved in the
SNN can be significantly reduced by small relaxation in the
final accuracy requirement. Using the methodology described
in the previous section, the SNN is estimated to be 2.71×
energy efficient than the corresponding ANN to achieve a final
accuracy of 90%. It is worth mentioning here that SNNs are
power efficient due to sparse event-triggered neural operation.
However, the power advantage is achieved at the expense of
inference delay.

While instantaneous power consumption is a key metric
driving computational cost overhead for resource constrained
devices, resultant energy efficiency (delay x power) will be
a trade-off between inference latency (impacting delay) and
sparsity of the spike train (impacting power). In this particular
example, the power efficiency of the SNN is estimated to be
233× in contrast to the ANN since the inference takes 86
timesteps to reach 90% accuracy. Note that this is a first order
estimate as mentioned before based on computational energy
requirements.

Additionally, Fig. 8 demonstrates that the SNN spiking
sparsity significantly increases as the network depth increases.
This downward trend of spiking rate as layers go deeper implies
SNN’s even higher power/energy efficiency when implementing
deeper architectures such as VGG [47] and ResNet [48], which
are essential to solve more complex problems.

VIII. CONCLUSION

This work successfully demonstrated the ability of spiking
neural networks (SNN) to process PMU signals for online
event-driven disturbance classification. SNNs can exploit the
sparsity patterns of events to achieve classification accuracy
comparable to ANNs while significantly reducing the energy
consumption. In addition, a signal selection technique to

determine the signals participating in low rank subspace in
multiple disturbance event scenarios was proposed, whose
effectiveness was demonstrated by reconstructing samples
of multiple signals using the selected signals. Performance
comparison of ANN and SNN from classification tests on
16-machine, 5-area New England-New York system shows
that SNN has the capability to achieve 96.8% disturbance
classification accuracy with upto 20% reduction in number of
computations in terms of MAC to AC operations. Event-driven
SNNs in unsupervised (supervised) learning framework results
in a projected estimate of energy savings upto 83.6% (82.18%)
with respect to standard ANNs. In addition, our results on
deep SNNs also highlighted the fact that dynamic sparsity
benefits would be best realized for deeper networks which,
in turn, is a necessity for complex machine learning tasks.
Hence, the energy and power benefits of SNNs are expected to
further improve with increasing complexity of the power grid
disturbance classification problem and in real time operational
scenarios. This work opens up the new possibility of utilization
of neuromorphic computing algorithms and hardware at control
centers for real time disturbance monitoring.

IX. APPENDIX

A. Measurement data

y(t) can be expressed in terms of the linearized system
matrices (Ao,Bo,Co,Do) of the network [49] at an operating
condition (o).

ȳ(t) = CoΦoLoz̄(t) (14)
where, Φo is the modal matrix of Ao, columns of which
contains the right eigenvectors φ̄i of Ao. z̄(t) represents the
complex exponential associated with n eigenvalues [λ1, ...λn]
of the system at the operating condition and can be expressed
as

z̄(t) =
[
eλ1t ... eλnt

]T
(15)

Each row in matrix Lo contains vector l̄ = [l1l2...ln], in which
each element li is a function of initial condition ∇x(0) and
left eigenvectors ψ̄i of Ao.

li = ψ̄i∇x(0) (16)
where, Ψo contains the left eigenvectors ψ̄i. Discretized system
response Y (N ×m) containing N samples for t = [0, (N −
1)Ts] of m measured signals at an operating condition (o),
can be expressed as follows.

Y T = CoΦoLoV = FoV ⇒ Y = V ∗Fo
∗ (17)

where, V is a Vandermonde matrix (n ×N ) with n distinct
complex modes [v1, ..., vn] in the z-plane inside the unit circle
corresponding to eigenvalues λi = Fsln(vi) in continuous
domain. Therefore, V ∗ contains n columns with n complex
exponential time series signals v̄i representing the trajectories
of modal signals.

V ∗ =

 v0
1 . . . v0

n
...

. . .
...

vN−1
1 . . . vN−1

n

 (18)

The data window Y can be written as a function of V in (17),
where, rows ȳ(t) ∈ Rm of Y are a complex transformation of
each row v̄(t) ∈ Cn of V ∗ by transformation matrix Fo∗ for
each t ∈ [0, (N − 1)Ts]. So we can write ȳ(t) = χfo(v̄(t)),
where y(t) is the image of v̄(t) under mapping χfo . For distinct
vi’s, the columns of V ∗ forms a basis of a set of linearly
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independent vectors of complex exponential time series signals
and defines the dimension of Y as n when m >= n.

B. Comparison of classification accuracy of SNN with other
machine learning techniques

Due to the “architectural similarity” between ANN and SNN
and the applicability of ANNs in learning from large-scale
datasets, ANN is presented for comparison of accuracy and
computational efficiency. Nevertheless, the results with other
classification methods are presented here.

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY

Accuracy (%) DT SVM RF SNN
Training (|V |) 98.6 95.5 95.8 98.4
Testing (|V |) 96.6 97.01 93 96.3
Training (f ) 98.7 99.2 94.4 98.4
Testing (f ) 96.2 95.08 94.5 93.6

Note that the objective here is to attain a similar accuracy as
other machine learning methods with reduced computational
overhead. For real-time operations, ANNs or deep ANNs are
preferable for large data set as compared to other classification
techniques due to the capability of ANNs in representing highly
nonlinear functions/decision boundaries. The results in Table V
indicate that SNN has the capability to achieve similar accuracy
as other machine learning techniques such as decision tree (DT),
support vector machines (SVM), random forest (RF).

Remarks: Note that for large-scale problems, deep neural
networks are known to outperform the traditional ML tech-
niques such as SVM, DT, RF etc. in regression or classification
tasks. It is a known fact that traditional ML techniques are not
suitable in achieving generalization while learning from large
datasets. Reference [50] shows how the scale of the problem
drives machine learning progress and highlights the limitation
of traditional ML techniques.

While latest deep neural networks present the best platform
to learn from large datasets, a significant improvement in
computational efficiency can be achieved through the use of
alternative neuromorphic SNN architectures. Thus, deep SNNs
are proposed for large power system event detection problems,
which can achieve similar accuracy as ANNs, while saving
significant energy consumption due to its sparse, event-driven,
temporal operation.
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