
On the Equality of Modal Damping Power and
the Average Rate of Transient Energy

Dissipation in a Multimachine Power System
Kaustav Chatterjee, Student Member, IEEE , and Nilanjan Ray Chaudhuri, Senior Member, IEEE

Abstract— This letter establishes a relationship between
the concepts of damping torque and the dissipation of tran-
sient energy in a multimachine power system with constant
power loads. To that end, we present a mathematical proof
showing that, for a poorly-damped mode, the total damping
power stemming from the interaction of electromagnetic
torques and rotor speeds is approximately equal to the
average rate of transient energy dissipation in the system
corresponding to the modal oscillation. This is verified with
numerical studies on the IEEE 2-area 4-machine and 5-area
16-machine test systems.

Index Terms— Lyapunov methods, power systems, sta-
bility of linear systems, smart grid

I. INTRODUCTION

DAMPING torque analysis, as introduced by Park in his
1933 paper [1] and furthered by Concordia [2], Shep-

herd [3], and notable others [4]–[6], help develop insightful
understanding of the stabilizing contributions coming from a
synchronous machine and its governor and excitation systems.
Complementary to this, the Lie derivative of a Lyapunov-like
transient energy function, derived in [7], is another control-
theoretic measure of system’s damping. The concepts of
passivity and positive realness have also been used to interpret
this complementary notion [8] and there exists a host of
publications that have focused on passivity-based damping
control [9], [10] of power systems.

Although some of the initial works listed above highlighted
an intuitive link between damping torque and dissipation of
transient energy (and indirectly with the passivity theory), it
is only in the recent works [11] and [12] that a rigorous
mathematical connection between the two has been established
for a single-machine-infinite-bus system. However, for multi-
machine systems such a connection is yet to be confirmed – in
this letter, we make a maiden attempt to fill this gap. This is
important given the critical emphasis attributed to the theory
of damping torque in power system stability analysis, as is
evident from classical textbooks like [13] and [14]. To that
end, we use a simplified mathematical model for multimachine
systems with constant power loads to establish an equivalence
between the average power dissipation due to the damping
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torques on the rotors and the average rate of transient energy
dissipation in the system. We emphasize that our focus is
on poorly-damped conditions posing stability challenges that
form the basic premise for both the theories.

The letter is structured as follows. In Section II we derive
a linearized representation of a multimachine system with
third-order synchronous generator model, lossless transmission
network, and constant power loads. Building on this model, in
Sections III and IV, we present a rigorous analytical proof of
the approximate equality of total damping power and average
rate of transient energy dissipation in the system, for poorly-
damped modes, under assumptions of constant mechanical
power input and constant field excitation. Case studies extend-
ing the proof to higher-order models are presented in Section
V, followed by conclusions in Section VI.

Symbols and notations: Quantities Vi, θi, PLi , and QLi
are respectively, the voltage magnitude, angle, and real and
reactive power loads at bus i ∈ {1, · · · , n}. Quantities δi,
ωi, E

′
di
, E′qi , Tmi , Efdi , Hi, x

′
di
, x′qi , xdi , xqi , T

′
doi
, and

T ′qoi are respectively, the rotor angle, rotor speed, d- and q-axes
induced emfs, mechanical torque input, field circuit excitation
voltage, inertia constant, d- and q-axes transient reactances, d-
and q-axes synchronous reactances, and d- and q-axes open-
circuit transient time-constants of a generator connected to
bus i ∈

{
1, · · · , ng

}
, ng < n. ωs is the synchronous speed

and Yik ej∝ik is the (i, k)th-element of the network admittance
matrix. Symbol ∆~xi,r is the small-signal phasor representation
of the rth modal component in xi. Superscripts T , ∗, and
H are respectively the transpose, conjugate, and Hermitian
operators. <{·} and ={·} denote the real and imaginary parts
of a complex entity.

II. SYSTEM MODEL: LINEARIZED REPRESENTATION

Consider a n−bus transmission system of which, without
loss of generality, first ng are generator buses. The network is
lossless and each synchronous generator is described by a one-
axis flux-decay model [7] with manual excitation. In addition,
we neglect the stator resistances and assume constant power
loads leading to the worst-case damping.

The differential and algebraic equations describing the
system, as functions of state variables δi, ωi, and E′qi , and
algebraic variables θi and Vi are described below.

(a) Generator buses (i = 1, 2, . . . ng) :
δ̇i = ωi − ωs (1)
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ω̇i
ωs

=
Tmi
2Hi
−
E′qiVi sin(δi − θi)

2Hi x
′
di

+
V 2
i sin 2(δi − θi)

4Hi

(xqi − x′di
xqix

′
di

)
(2)

Ė′qi =
Efdi
T ′doi

−
E′qi
T ′doi
−
E′qi − Vi cos(δi − θi)

x′di

(xdi − x′di
T ′doi

)
(3)

0 = fi =
E′qiVi sin(δi − θi)

x′di
− V 2

i sin 2(δi − θi)
2

(xqi − x′di
xqix

′
di

)
+ PLi −

n∑
k=1,k 6=i

ViVkYik sin(θi − θk)

(4)

0 = gi =
E′qiVi cos(δi − θi)

x′di
− V 2

i cos2(δi − θi)
x′di

+QLi − V
2
i Yii

− V 2
i sin2(δi − θi)

xqi
+

n∑
k=1,k 6=i

ViVkYik cos(θi − θk)

(5)
(b) Load buses (i = ng + 1, ng + 2, . . . n) :

0 = fi = PLi −
n∑

k=1,k 6=i
ViVkYik sin(θi − θk) (6)

0 = gi = QLi +

n∑
k=1,k 6=i

ViVkYik cos(θi − θk)− V 2
i Yii (7)

Linearizing (1) − (5) around an operating point, with Vi0 as
the voltage magnitude of bus i at that point and defining a
new variable νi = Vi/Vi0 , we obtain[

∆δ̇ ∆ω̇ ∆Ė′
q

]T
= M

[
∆δ ∆ω ∆E′

q

]T
+ N [ ∆θ ∆ν ]T

+ B
[

∆Tm ∆Efd
]T[

0 0
]T

= C
[

∆δ ∆ω ∆E′
q

]T
+ D

[
∆θ ∆ν

]T
(8)

where, δ, ω, E′
q , θ, and ν are the vectorized state and

algebraic variables of respective type, for instance, δ =[
δi . . . δng

]T
and ν =

[
νi . . . νn

]T
, and M, N,

B, C, and D are the Jacobian matrices obtained from lin-
earization (see, Appendix II). Finally, eliminating the algebraic
variables, we get[

∆δ̇ ∆ω̇ ∆Ė′
q

]T
= A

[
∆δ ∆ω ∆E′

q

]T
+ B

[
∆Tm ∆Efd

]T
(9)

where, A = M−ND
−1

C. It follows from the equations
above that A is of the form

A =

 0 I 0
A21 0 A23
A31 0 A33

 . (10)

Apart from the state variables ∆δi, ∆ωi, and ∆E′qi , the
output variable ∆Tei , which is the electromagnetic torque
of generator i, is of specific interest to us. From the swing
equation this is expressed as ∆Tei = − 2Hi

ωs
∆ω̇i + ∆Tmi .

The notions of damping torque and damping power for
a given mode originate from the phasor representation (see,
Appendix I) of ∆~Tei,r in the ∆~δi,r − ∆~ωi,r plane and the
power resulting from the interaction of the torque and the
speed. This is explained next.

III. DAMPING POWER IN A MULTIMACHINE SYSTEM

Definition 1. For a mode r, the average damping power of
any ith machine due to ∆Tei,r (t) over a cycle starting from
t = t0, denoted by Pdi,r (t0), is defined as

Pdi,r (t0) :=
ωdr
2π

∫ t0+ 2π
ωdr

t0

∆Tei,r (t) ∆ωi,r(t) dt. (11)

Using the phasor notation described in Appendix I, let
∆~Tei,r (t) = β1 eσrt ∠γ1 and ∆~ωi,r(t) = β2 eσrt ∠γ2.
Therefore, Pdi,r (t0) =

=
ωdr
2π

∫ t0+ 2π
ωdr

t0

e2σrt β1 cos(ωdr t+ γ1) β2 cos(ωdr t+ γ2) dt

=
β1 β2 ωdr

4π
cos(γ1 − γ2)

e2σrt0

2 σr

{
e
4πσr
ωdr − 1

}
+
β1 β2 ωdr

4π

∫ t0+ 2π
ωdr

t0

e2σrt cos(2ωdr t+ γ1 + γ2) dt

(12)
Now, considering that our mode of interest is poorly-damped1,
we may expand the exponential e

4πσr
ωdr and neglect the second

and higher order terms. On doing so, the first term in (12)
reduces to 1

2 β1 β2 e2σrt0 cos(γ1 − γ2). With the same
assumption, the second term in (12) becomes negligible, and
can be ignored for mathematical tractability. This is because,
with |σr| << ωdr , for a complete cycle of cos(2ωdr t),
the e2σrt term remains almost constant, and therefore, the
positive and negative half cycles approximately add to zero.
Therefore, Pdi,r (t0) ≈ 1

2 β1 β2 e2σrt0 cos(γ1 − γ2) =
1
2 <

{
∆~Tei,r (t0) ∆~ω∗i,r(t0)

}
. Following which, it can be

interpreted that Pdi,r (t0) is the average power due to the
component of ∆~Tei,r (t0) in the direction of ∆~ωi,r(t0).

Hereafter, in the letter, assuming all phasors are computed
at t = t0 and powers are averaged over a cycle starting at t0,
we shall drop the argument t0 from our expressions.

Definition 2. For a system with ng machines, the total
damping power of the system for a mode r, denoted by Pdr ,
is the sum of the average damping powers of all machines.

Pdr =

ng∑
i=1

Pdi,r
poor damp.
≈ 1

2

ng∑
i=1

<
{

∆~Tei,r ∆~ω∗i,r
}
. (13)

Next, we present the following lemma expressing Pdr in terms
of the block matrices in A.

Lemma 1. Under assumptions of constant power loads,
constant mechanical power input, and constant field excitation,
for a poorly-damped mode r,

Pdr ≈
1

2
∆~ω

H

r A
T

31 P (ω2
drI + A33

2)
−1

A31 ∆~ωr (14)

where, P is a diagonal matrix with P(i, i) =
T ′doi

xdi−x
′
di

.

Proof. First, we express ∆~Tei,r in (13) in terms of the state
variables using the swing equation (see, Section II) and the
linearized system description obtained in (9) and (10). To

1 see, [15] pg.4, a mode r is poorly-damped, if σr < 0, with |σr| << ωdr
and damping ratio ζr = −σr/(σ2

r + ω2
dr

)0.5 ∈ (0, 0.03).
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that end, we take the Laplace transform of ∆Tei , with the
assumption that the inputs ∆Tmi = 0 and ∆Efdi = 0.

∆Te(s) = −2 H

ωs
∆ω̇(s) = −2 H

ωs

{
A21 ∆δ(s) + A23 ∆E′

q(s)
}

= −2 H

ωs

{
A21 + A23 (sI−A33)

−1
A31

}
∆ω(s)

s
∆
= K(s) ∆ω(s).

(15)
Next, defining Kr = K(jωdr ), we may re-write (13) as

Pdr ≈
1

2
<
{ ng∑
i=1

ng∑
j=1

Kij,r∆~ωj,r∆~ω
∗
i,r

}
=

1

2
<
{

∆~ω
H

r Kr∆~ωr
}

(16)
where, Kij,r is the (i, j)th element of Kr. Finally, we simplify
the expression in (16) using the propositions (i)− (iv) below.

Propositions: (i) P
−1

A
T

33P = A33, (ii) A
T

31P =
2 H

ωs
A23,

(iii) 2 A
T

21H = 2 H A21,

(iv) ∀ x ∈ Cng , <{xHKrx} = xH<{Kr} x.

Propositions (i) − (iii) are derived using the differential and
algebraic equations of the system modeled in Section II. These
propositions are then used to establish the symmetry of Kr,
which is in-turn used in proving proposition (iv). Proof of
these propositions are outlined in Appendix II.
Using (iv) we reduce (16) as follows

Pdr ≈
1

2
∆~ω

H

r <{Kr}∆~ωr. (17)

<{Kr} is the matrix of multimachine damping torque coeffi-
cients for mode r. It is expressed as follows,

<{Kr} = −<
{

2 H

jωdrωs

(
A21 + A23 (jωdrI−A33)

−1
A31

)}
=

2 H

ωs
A23 (ω2

drI + A33
2)
−1

A31.

This, along with (ii) when substituted in (17) gives

Pdr ≈
1

2
∆~ω

H

r A
T

31 P (ω2
drI + A33

2)
−1

A31 ∆~ωr .

This concludes the proof.

IV. CONSISTENCY OF DAMPING POWER WITH
TRANSIENT POWER DISSIPATION IN THE SYSTEM

For the system model in Section II, the Lyapunov energy
function W has been derived in [7] for assessing transient
stability2. In this section, we deduce an analytical relationship
between the Lie derivative of W along the system trajectories
and the total damping power of the system.

As derived3 in [7], the derivative of W along
the trajectories of the system is expressed as Ẇ =

−
∑ng
i=1

T ′doi
xdi−x

′
di

(∆Ė′qi)
2. Following which, the average

value of this derivative over a cycle can be calculated as ¯̇W =

− 1
T

∑ng
i=1

T ′doi
xdi−x

′
di

∫ t0+T

t0
(∆Ė′qi)

2 dt. Assuming, in ∆Ė′qi

the modal components ∆Ė′qi,r are poorly-damped sinusoids

2 for the expression of W , see, eqns (3.14) and (3.15) in [7]
3 in eqn (3.17) of [7], for our model Di = 0

of different frequencies, the average value can be decoupled

as ¯̇W ≈ −ωdr2π

∑m
r=1

∑ng
i=1

T ′doi
xdi−x

′
di

∫ t0+ 2π
ωdr

t0 (∆Ė′qi,r )
2 dt

(see, (23)−(25) in [11]). We use this to define the transient
power dissipation of a mode, discussed next.

Definition 3. For a mode r, its average rate of transient
energy dissipation over a cycle (or simply, ‘transient power
dissipation’), denoted by PWr

, is defined as

PWr :=
ωdr
2π

ng∑
i=1

T ′doi
xdi − x

′
di

∫ t0+ 2π
ωdr

t0

(∆Ė′qi,r )2 dt. (18)

Theorem 1. (Main Result) Under assumptions of constant
power loads, constant mechanical power input, and constant
field excitation, for a poorly-damped mode r, PWr is approx-
imately equal to Pdr .

Proof. Using the phasor notation in Appendix I, and with
the assumptions and approximations as before (see, algebraic
manipulations in (12) and discussions following it), for a
poorly-damped mode, (18) can be expressed as follows,

PWr ≈
1

2

ng∑
i=1

T ′doi
xdi − x

′
di

∣∣∣∆ ~̇E′qi,r

∣∣∣2. (19)

Further, using notations from (29), we may write ∆ ~̇E′qi,r =

(σr + jωdr )∆
~E′qi,r = 2(σr + jωdr )cre

σrt0ψE′qi,r
. Next,

substituting this in (19) we get,

PWr ≈ 2|ĉr|2 (σ2
r + ω2

dr ) ΨHE′qr
P ΨE′qr

(20)

where, ΨE′qr
=
[
ψE′q1,r

. . . ψE′qng,r

]T
and ĉr = cr e

σrt0 .
Since λr is an eigenvalue of the system, we may

write AΨr = λrΨr, where, the right eigenvector Ψr =[
Ψδr Ψωr ΨE′qr

]T
. Next, using the structure of A in

(10), we can split this into the following equations

ΨE′qr
= (λrI−A33)−1 A31 Ψδr and Ψδr =

1

λr
Ψωr . (21)

Using these, along with (28) describing ∆~ωr = 2 ĉr Ψωr , we
may re-write (20) as follows

PWr ≈ 2 |ĉr|2 (σ2
r+ω2

dr )
∆~ωHr

2 ĉ∗r λ∗r
A
T

31 (λ∗rI−A33
T )−1

P (λrI−A33)−1 A31
∆~ωr

2 ĉr λr
.

(22)

Using proposition (i), this reduces to

PWr≈
1

2
∆~ω

H

r A
T

31 P (|λr|2I + A33
2)
−1

A31 ∆~ωr . (23)

Finally, considering that the mode of interest is poorly-
damped, we substitute λr = jωdr in (23). This leads to
PWr ≈

1
2 ∆~ω

H

r A
T

31 P (ω2
dr
I + A33

2)
−1

A31 ∆~ωr, which
from Lemma 1 is Pdr . This concludes the proof.

Extensions to higher-order models: Next, we present the
generalized expressions of PWr

and Pdr for higher-order
machine models relaxing some of the assumptions made in
Theorem 1. To that end, we do the following − (1) introduce
an exciter and a power system stabilizer (PSS) in the model
for modulating ∆Efdi , (2) include a q-axis damper winding,
and (3) introduce a speed governor for modulating4 ∆Tmi .

4 assumed, ∆Tmi = Dgovi∆ωi

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2021.3121008

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



Accounting for the damping contribution from these, the
expression of Ẇ and by extension PWr in (19) will be
modified. The modified expression for PWr is shown in (24).
In (24), the first, second, and the last terms are respectively,
the transient power dissipations in the field winding P field

Wr
,

damper winding P damp
Wr

, and governor P gov
Wr

.

PWr ≈
ng∑
i=1

T ′doi
2 (xdi − x

′
di

)

{∣∣∣∆ ~̇E′qi,r

∣∣∣2− 1

T ′doi
<
(

∆ ~̇E′qi,r∆ ~E∗fdi,r

)}

+

ng∑
i=1

T ′qoi
2 (xqi − x′qi)

∣∣∣∆ ~̇E′di,r

∣∣∣2 +

ng∑
i=1

Dgovi

∣∣∣∆~ωi,r∣∣∣2.
(24)

For the damping power, its expression Pdr in (17) would
remain the same with <{Kr} modified as shown below.

<{Kr} =
2H

ωs

{
A23(ω2

drI + A33
2)
−1

(A31 + A33A32)−A22

}
.

(25)
Note that, in (25), the block matrices A23, A31, and A33

are larger in dimensions compared to that in (17) to account
for the additional state variables like ∆E′

d, ∆Efd, etc. which
are now concatenated to the vector ∆E′

q as the third entry.
Further, due to the speed feedback to governor and the washout
block in PSS, the terms A22 and A32 are non-zero.

In Section V, we will numerically verify the equality be-
tween Pdr and PWr

, for higher-order models, with case studies
on two different IEEE test systems with damper windings,
different types of excitation systems, and PSSs.

V. CASE STUDIES

A. IEEE 2-area 4-machine Kundur Test System
Consider the 4-machine system5 in [13] with two-axis

machine model (includes field and q-axis damper winding) and
DC1A excitation system [13] for each synchronous generator.
The network is lossless and the total load of the system
is 2, 734 MW. Under nominal conditions, the system has a
poorly-damped mode at 0.67 Hz with a damping of 2.9%.
For this poorly-damped mode, in Fig. 1, we show that for
small perturbation6 in the system, across operating points,
the total damping power is numerically equal to the sum
of the average rates of transient energy dissipations in the
field and damper windings. The operating point is varied by
progressively reducing the tie flow between buses 7 and 9
from 433 MW under nominal condition to −400 MW while
maintaining the total load of the system constant.

Validation under large disturbances: Next, we consider
the same system, but with flux-decay machine model (only
field winding) and IEEE ST1A excitation system [13] on
all generators. Additionally, generator 1 is equipped with a
PSS. We simulate a 5-cycle three-phase self-clearing fault
near bus 8. From the detrended time-domain responses, using
∆ω1 as the reference, we next estimate [16] the relative
modeshapes for all ∆ωi, ∆Tei , ∆E′qi , ∆E′di , and ∆Efdi -s
for the poorly-damped mode. The Pdi,r and PWi,r of all 4
generators as computed using these modeshapes are shown in
Table I. As can be seen, for the small-signal (linearized) model,

5 slightly modified to include a third line between buses 7− 8 and 8− 9
6 one-time 0.2 s unit pulse disturbance in the excitation system reference

Fig. 1: Equality of Pdr and PWr (= P field
Wr

+ P damp
Wr

) for the poorly-
damped mode, across different operating points in the 4−machine system.

TABLE I: DAMPING AND DISSIPATIVE POWERS IN 4−MACHINE
SYSTEM MODEL FOR THE POORLY-DAMPED MODE

small-signal model time-domain responses
Pdi,r
2 |ĉr|2

PWi,r
2 |ĉr|2

Pdi,r
2 |ĉr|2

PWi,r
2 |ĉr|2

G1 0.0382 0.2294 0.0361 0.2274

G2 0.0321 −0.1830 0.0340 −0.1877

G3 0.0435 0.0794 0.0405 0.0754

G4 0.0521 0.0401 0.0472 0.0390

Sum 0.1659 0.1659 0.1578 0.1541

the equality of Pdr and PWr
is verified. Further, the values

estimated from post-fault time-domain responses indicate that
the approximate equality of Pdr and PWr holds even under
large disturbances.

B. IEEE 5-area 16-machine NY-NE Test System
Next, consider the 16−machine New York-New England

test system in [17] with two-axis machine model. Generators
G1 − G8 have DC1A exciters, G9 is equipped with a ST1A
exciter and a power system stabilizer (PSS), and the remaining
generators have manual excitation. The machine and the
network data can be obtained from [17]. The system has a
poorly-damped mode at 0.56 Hz with 2.8% damping. In Fig
2, corresponding to this particular mode, the consistency of
total damping power and sum of power dissipation in machine
windings is shown for pulse disturbances6.

Fig. 2: Equality of Pdr and PWr (= P field
Wr

+ P damp
Wr

) for the poorly-
damped mode, across different operating points in the 16−machine system.

VI. CONCLUSIONS

A mathematical proof was presented for the approximate
equality of total damping power and the average rate of
transient energy dissipation in a multimachine power system,
under assumptions of poor-damping like lossless transmission
network, constant power loads, constant mechanical power in-
put, and constant excitation voltage. Numerical studies showed
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the equality holds true even when some of these assumptions
are relaxed. Future work will focus on establishing this con-
nection for more realistic load models.

APPENDIX I
PHASOR NOTATION

For an autonomous system ẋ(t) = Ax(t), assume there are
m oscillatory modes in the response, each due to a complex-
conjugate eigenvalue pair λr (= σr + jωdr ) and λ∗r of A.
The time evolution of any ith state variable xi(t) can then be
expressed as the sum of m modal constituents, as in (26)

xi(t) =

m∑
r=1

xi,r(t) =

m∑
r=1

{
eλrtcrψi,r + eλ

∗
rtc∗rψ

∗
i,r

}
(26)

where, cr = φTr x(0), and φTr and Ψr are respectively the left
and right eigenvectors of A corresponding to the eigenvalue λr
with ψi,r as the ith entry of Ψr. Denoting 2crψi,r

∆
= βi,re

jγi,r ,
xi,r(t) reduces to

xi,r(t) = 2 <
{
eλrtcrψi,r

}
= βi,r e

σrt cos(ωdr t+ γi,r). (27)

This sinusoidal variation is represented in the dynamic
phasor (mentioned as ‘phasor’ going forward) notation using
the magnitude and phase of the signal, as shown in eqn (28).

~xi,r(t)
∆
= βi,r e

σrt ∠γi,r = 2 cr ψi,r e
σrt (28)

The phasor ~xi,r(t) is rotating at the modal frequency ωdr with
its amplitude having an exponential decay. Next, from (27),
ẋi,r(t) = βi,r e

σrt
{
σr cos(ωdr t + γi,r) − ωdr sin(ωdr t +

γi,r)
}

. Therefore,

~̇xi,r(t) = (σr + j ωdr ) ~xi,r(t). (29)

APPENDIX II
PROOF OF PROPOSITIONS

Observe that, from (8), the matrices can be structured as

M =

[
0 I 0

M21 0 M23
M31 0 M33

]
N =

[
0 0

N21 N22
N31 N32

]

C =

[
C11 0 C13
C21 0 C23

]
D =

[
D11 D12

D21 D22

]
.

Following the notation that Dkl(i, j) is the (i, j)th element
of the (k, l)th submatrix Dkl of D, we may write ∀ j 6= i

D12(i, j) = Vj0
∂fi
∂Vj

∣∣∣∣
0

= −Vi0Vj0Yij sin(θi0 − θj0) (30a)

D21(i, j) =
∂gi
∂θj

∣∣∣∣
0

= Vi0Vj0Yij sin(θi0 − θj0) = D12(j, i)

(30b)

D11(i, j) =
∂fi
∂θj

∣∣∣∣
0

= Vi0Vj0Yij cos(θi0 − θj0) = D11(j, i)

(30c)

D22(i, j) = Vj0
∂gi
∂Vj

∣∣∣∣
0

= Vi0Vj0Yij cos(θi0 − θj0) = D22(j, i).

(30d)

Similarly, it can be shown that,

D12(i, i) = Vi0
∂fi
∂Vi

∣∣∣∣
0

=
∂gi
∂θi

∣∣∣∣
0

= D21(i, i). (31)

Therefore, from eqns (30a), (30b), and (31), it can be
inferred that D

T

12 = D21. Additionally, from eqns (30c) −
(30d), D

T

11 = D11 and D
T

22 = D22. Thus, D
T

= D. Further,
D being real and symmetric implies D

−1

is also real and
symmetric, D

−T
= D

−1

.
Proof of Prop. (i) : Recall, A = M−ND

−1

C

=⇒ A33 = M33 −
[
N31 N32

]
D
−1
[

C13
C23

]

=⇒ A
T

33 = M
T

33 −
[
C
T

13 C
T

23

]
D
−T

N
T

31

N
T

32

 . (32)

From eqns (3) and (4) observe that, ∀ j 6= i,

N31(i, j) =
∂Ė′qi
∂θj

∣∣∣∣
0

= 0 ; C13(i, j) =
∂fi
∂E′qj

∣∣∣∣
0

= 0 ; (33)

and for elements on the principal diagonal,

N31(i, i) =
∂Ė′qi
∂θi

∣∣∣∣
0

=
Vi0 sin(δi0 − θi0)

x′di

(
xdi − x

′
di

T ′doi

)
(34a)

C13(i, i) =
∂fi
∂Eqi

∣∣∣∣
0

=
Vi0 sin(δi0 − θi0)

x′di
(34b)

Further note, N31 and C13 are rectangular matrices of dimen-
sions Rng×n and Rn×ng respectively. Therefore, combining
eqns (33) and (34) we get

P
−1

C13
T

= N31 (35)

Similarly, from eqns (3) and (5), ∀ j 6= i,

N32(i, j) = Vj0
∂Ė′qi
∂Vj

∣∣∣∣
0

= 0 ; C23(i, j) =
∂gi
∂E′qj

∣∣∣∣
0

= 0 ; and

N32(i, i) = Vi0
∂Ė′qi
∂Vj

∣∣∣∣
0

=
Vi0 cos(δi0 − θi0)

x′di

(
xdi − x

′
di

T ′doi

)
C23(i, i) =

∂gi
∂Eqi

∣∣∣∣
0

=
Vi0 cos(δi0 − θi0)

x′di

Therefore, following arguments as before,

P
−1

C23
T

= N32 (36)

Finally, observe that M33 ∈ Rng×ng with M33(i, j) =
∂Ė′qi
∂δj

∣∣∣∣
0

= 0 ∀ j 6= i. This implies M33 is diagonal.

Using D
−T

= D
−1

, and the results (35) and (36), eqn (32)
can be rewritten as

P
−1

A
T

33P = M33 −
[
N31 N32

]
D
−1
[

C13
C23

]
= A33.

This concludes the proof.
Proof of Prop. (ii) : It can be seen from eqns (2) and (3)

that blocks M31 and M23 are diagonal. Also,

M31(i, i) =
∂Ė′qi
∂δi

∣∣∣∣
0

= −
Vi0 sin(δi − θi)

x′di

(
xdi − x

′
di

T ′doi

)
M23(i, i) =

∂ω̇i
∂E′qi

∣∣∣∣
0

= −
Vi0 sin(δi − θi)

2Hi x
′
di

ωs

Therefore, we my write

M
T

31 P =
2 H

ωs
M23 (37)
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where H is diagonal with H(i, i) = Hi.
Now, as before, for N and C matrices,

N21(i, j) =
∂ω̇i
∂θj

∣∣∣∣
0

= 0 ; C11(i, j) =
∂fi
∂δj

∣∣∣∣
0

= 0. Also,

N21(i, i) =
∂ω̇i
∂θi

∣∣∣∣
0

=
ωs E

′
qi0
Vi0 cos(δi0 − θi0)

2Hi x
′
di

−
ωsV

2
i0

sin 2(δi0 − θi0)

2Hi

(xqi − x′di
xqix

′
di

)
C11(i, i) =

∂fi
∂δi

∣∣∣∣
0

=
E′qi0

Vi0 cos(δi0 − θi0)

x′di

−V 2
i0 sin 2(δi0 − θi0)

(xqi − x′di
xqix

′
di

)
=

2 Hi
ωs

N21(i, i)

Combining these with the fact that, N21 ∈ Rng×n and C11 ∈
Rn×ng we may write,

C
T

11 =
2 H

ωs
N21. (38)

Similarly, it can be shown that

C
T

21 =
2 H

ωs
N22. (39)

Now, recall A = M−ND
−1

C. Therefore,

A31 = M31 −
[
N31 N32

]
D
−1
[

C11
C21

]

=⇒ A
T

31P = M
T

33P−
[
C
T

11 C
T

21

]
D
−T

N
T

31

N
T

32

P

(40)

Next, using D
−T

= D
−1

and results (35) − (39) in (40)

A
T

31P =
2 H

ωs
M23 −

2 H

ωs

[
N21 N22

]
D
−1

[
C13

C23

]
=

2 H

ωs
A23

This concludes the proof.
Proof of Prop. (iii) : As before, observe from (2) that M21

is diagonal. Therefore, we may write

H M21 = MT
21 H. (41)

Also, A21 = M21 −
[
N21 N22

]
D
−1
[
C11
C21

]

=⇒ 2 A
T

21H = M
T

21H −
[
C
T

11 C
T

21

]
D
−T

 2 N
T

21 H

2 N
T

22 H


(42)

Finally, substituting (38), (39), and (41) in (42)

2 A
T

21H = 2 H M21 − 2 H
[
N21 N22

]
D
−1
[
C11
C21

]
= 2 H A21.

This concludes the proof.
Proof of Prop. (iv) : From the definition of Kr and (15),

KT
r = − 2

ωs jωdr

{
A
T

21H + A
T

31 (jωdrI−A
T

33)
−1

(A
T

23 H)
}

= − 2

ωs jωdr

{
A
T

21H + A
T

31 P (jωdrI − P−1A
T

33P)
−1

P−1(H A23)T
}
.

Using propositions (i)− (iii) we can re-write KT
r as

KT
r = − 2 H

ωs jωdr

{
A21 + A23 (jωdrI−A33)

−1
A31

}
= Kr.

(43)
Next, for any x = x1 + jx2, with x1,x2 ∈ Rng

xHKrx = (xT1 − jxT2 )
(
<(Kr) + j=(Kr)

)
(x1 + jx2). (44)

Also, since Kr = KT
r , we may write

xT1 =(Kr)x2 = xT2 =(Kr)x1 and xT1 <(Kr)x2 = xT2 <(Kr)x1.
(45)

The identities in (45) reduces the real part of (44) as follows

<{xHKrx} = xT1 <(Kr)x1 + xT2 <(Kr)x2

= xT1 <(Kr)x1 + xT2 <(Kr)x2 + jxT1 <(Kr)x2 − jxT2 <(Kr)x1

= xH<{Kr} x.
(46)

This concludes the proof.
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