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Abstract—The Stability of grid-forming converters (GFCs)
interfacing renewable resources in a power system with multiple
synchronous generators (SGs) is studied in the context of primary
frequency response. The GFCs are divided into two classes based
on the control methods – class-A: droop control, dispatchable
virtual oscillator control (dVOC), and virtual synchronous ma-
chine (VSM); and class-B: matching control. First, averaged
phasor models of these GFC classes are developed, which can
be seamlessly integrated with positive sequence fundamental
frequency planning models. Next, simplified averaged models are
derived to study the stability of the dc-link voltage of the GFCs
under dc-side current limitation in a generic multimachine system
during primary frequency response. To that end, sufficiency
conditions for stability of both classes and that of instability
for class-A GFCs are established. Finally, the proposed stability
conditions are verified using detailed switched models of two
small systems and phasor models of a 4-machine and a 16-
machine IEEE benchmark systems.

Index Terms—Grid-forming converter, droop, virtual oscilla-
tor, virtual synchronous machine, matching control, Lyapunov
stability, input-to-state stability, input-output stability

NOMENCLATURE

Subscripts g, c, τg are used for SG, GFC and turbine
governor and superscript * is used for reference quantities.

ω angular frequency/speed
vdc, idc dc-link voltage and dc-side source current
imax
dc maximum limit of the dc-side current

τc equivalent delay representation in dc current
source

Gc conductance to represent dc-side losses
Cc GFC dc-bus capacitance
L, C, R GFC filter inductance capacitance and resistance
Lt ,Rt transformer inductance and resistance
ix dc-side current entering the GFC
vtdq, itdq d−q axes voltage and current at GFC terminal
vdq, idq d−q axes voltage and current at filter capacitor

terminal
vcdq d − q axis voltage at the transformer terminal

connected to grid
mtdq modulation index for GFC in d−q frame
dpc droop gain for class-A GFC
km matching control gain for class-B GFC
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kc dc voltage droop coefficient
kp,ac, ki,ac proportional and integral controller parame-

ters for inner ac current control
P, PL real power output and load
θ bus voltage angle
dpg SG inverse governor droop
kd SG damping torque coefficient
Hg SG inertia constant
τg SG turbine time constant

For the wind plant model:

ωw f wind turbine rotor angular speed
Hw f wind turbine rotor inertia
Pm

w f , Pe
w f mechanical and electrical power of the wind

farm
Pmax maximum power point of the wind plant
cp power coefficient for wind turbine
vwind , ρ wind speed and air density
A turbine swept area.
β1 turbine blade pitch angle.
θPLL angle output of the PLL used in stator-side

converter of the wind farm
Id,re f , Iq,re f d and q axis current reference of the current

controller of stator-side converter

I. INTRODUCTION

As converter-interfaced generation (CIG) is experiencing
significant growth, the existing synchronous generator (SG)-
dominated power system is now slowly progressing towards
a combination of SGs and CIGs. Several studies are already
reported in the literature including [1], [2] that focus on the
impact of CIGs on bulk power systems with progressively
declining inertia. However, since the CIGs are typically based
on a grid-following strategy, most of these studies have consid-
ered this technology. Moreover, such studies involving time-
and frequency-domain analyses, while very important, are
mostly numerical in nature, and as a result, generic conclusions
are hard to derive from them. In a recent work [3], the
authors pointed out such deficiencies of the existing literature
and summarized the major challenges of such low inertia
systems. Out of these challenges, one important area is primary
frequency response following loss of generation – especially
in presence of grid-forming converters (GFCs), which is less
understood compared to its grid-following counterpart. In this
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work, we consider the bulk power system consisting SGs and
GFCs and focus on the stability analysis of GFCs contributing
towards primary frequency response.

GFC-interfaced renewable resources in future grids are
expected to provide primary frequency support, so that un-
derfrequency load shedding (UFLS) is averted. There are two
classes of GFCs depending on the control philosophy: (A)
either of droop, dispatchable virtual oscillator control (dVOC),
and virtual synchronous machine (VSM); and (B) matching
control [4]–[7] – we call the first group ‘class-A’ and the
second group ‘class-B’ [8].

Reference [9] reported dc-link voltage instability in class-A
GFCs when the dc-side and ac current limits are hit in the
process of providing frequency support. On the other hand,
class-B GFCs are shown to demonstrate a certain degree of
superiority in this regard. In this work, the authors provided
qualitative reasoning-based analysis for the dc-link voltage sta-
bility of GFC under different control strategies and instability
of class-A GFC in presence of large load changes. However,
analytical treatment of stability guarantees in presence of dc-
side current limitations was reserved for future research.

Some of the recent works on the topic of stability analysis
of power systems in presence of GFCs include [10], [11], and
[12]. Reference [10] has focused on the small-signal stability
of low inertia power systems in presence of GFCs and grid-
following converters. As a result, dc-link voltage instability
due to the presence of current limits was not considered.
Authors in [11] proposed a dc-side voltage feedback strategy
for class-A GFCs to address the instability problem. However,
the authors did not present any analytical stability guarantees.
In [12], the authors proposed a hybrid angle control approach
to ensure almost global stability of Class-B GFCs using a
novel nonlinear angle feedback control in presence of ac
current limits. To the best of our understanding, this work
did not consider dc-side current limitation, and restricted its
analysis to a single GFC.

In [8] we proposed sufficiency conditions for stability of
GFCs under dc-side current limitation, which were verified in
a 2-bus system. In this paper, we extend our previous work
and present a more detailed treatment of averaged modeling
of GFCs that can be integrated with traditional multimachine
planning models in the phasor framework. Next, reduced-order
models of the multimachine systems with GFCs are derived.
The validation and limitations of this reduced-order model are
presented in detail. Further details of the dc-side source model
and the impact of the selection of the dc-side current limitation
are provided using the model of a Type-4 wind plant. These
models are then used to study the Lyapunov stability and
sufficiency conditions for stability and instability of different
classes of GFCs. Finally, the accuracy of the proposed stability
conditions is extensively tested on EMT models of an isolated
GFC and the IEEE 9-bus system in addition to averaged phasor
models of IEEE 4-machine and 16-machine systems.

II. MODELING AND CONTROL OF GFCS

The typical circuit model of a GFC interfacing renewable
resources is shown in Fig. 1 whose dc bus is connected for

example, to the dc side of the ac-dc converter of a Type-4 wind
turbine. We restrict our focus to the dc to ac unidirectional
power flow scenario, i.e. energy storage is excluded from
our analysis. The converter is operating at an ‘off’ maximum
power point (MPP) to provide frequency support. Also, it is
assumed that the converter ac current is within the allowable
limit during primary frequency response.

Fig. 1. Circuit model of GFC: dc-side current limit reflecting capacity of the
renewable resource.

A. Modeling of GFCs Connected to Power Grid

We integrate a space-phasor model of GFCs with the
traditional positive sequence fundamental frequency phasor
model of the power grid for system planning. To that end,
the components of the power system are divided into four
categories – (a) SGs, (b) loads, (c) network, and (d) GFCs, as
shown in Fig. 2. Reference [13] performed modeling adequacy
study of such systems for capturing frequency dynamics and
demonstrated that an algebraic network model is acceptable,
which is followed here. The model of each component in the
power system is mentioned next.

(a) A sixth-order subtransient model of SGs in their individ-
ual d− q reference frames (rotating at ωgi for ith SG)
along with their exciters and turbine-governors [14] is
used.

(b) Unless otherwise stated, the loads are represented with
constant power models.

(c) An algebraic network model is used, which is interfaced
with all the SGs, loads, and GFCs in the system. It solves
the equation Ibus = YbusVbus in a synchronously rotating
reference frame (rotating at ω∗) to calculate the voltages
at each bus.

(d) The GFCs are also modeled in their respective d−q ref-
erence frames rotating at speed ωci for the ith converter.

Next, the modeling of GFCs is discussed in details.

Fig. 2. GFC integrated with thr phasor model of the power system.
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Fig. 3. Controls of GFCs: only frequency controls are different for two classes of GFCs.

The GFC shown in Fig. 1 is modeled using the following
differential and algebraic equations,

i̇τ =
1
τc

(i∗dc− iτ) (1a)

v̇dc =
1

Cc

(
imax
dc sat

(
iτ

imax
dc

)
− ix−Gcvdc

)
(1b)[

i̇td
i̇tq

]
=

[ −R
L ωc
−ωc

−R
L

][
itd
itq

]
+

1
L

[
vtd− vd
vtq− vq

]
(1c)[

v̇d
v̇q

]
=

[
0 ωc
−ωc 0

][
vd
vq

]
+

1
C

[
itd− id
itq− iq

]
(1d)[

i̇d
i̇q

]
=

[
−Rt
Lt

ωc

−ωc
−Rt
Lt

][
id
iq

]
+

1
Lt

[
vd− vcd
vq− vcq

]
(1e)

vtd =
mtdvdc

2
,vtq =

mtqvdc

2
(1f)

Here, imax
dc is the dc-side current limit reflecting the capacity

of the renewable resource (see section IV-B for more discus-

sion choice of imax
dc ); and sat(y) =

{
y, i f |y| ≤ 1
sgn(y), i f |y|> 1

. In

Fig. 1, idq = id + jiq, itdq = itd + jitq, vdq = vd + jvq, vcdq =
vcd + jvcq, mtdq = mtd + jmtq.

To interface the GFC with the phasor model of the grid,
the following steps are taken. The pcc voltage v

′
cdq in network

reference frame is first transformed to vcdq in GFC’s reference
frame, which in turn is used in (1e). The GFC controller
regulates voltage vdq across the filter capacitor. Finally, current
idq from (1d), (1e) in GFC reference frame is transformed
back to network reference frame as i

′
dq and used in solving

the network equation as shown in Fig. 2. The coordinate
transformation involves the term e± jθc , where θc is generated
based on the type of GFC controls, i.e. class-A or class-B as
described in the following section.

B. Control of GFCs

We follow the control laws described in [9], which are
summarized here for completeness. The control of a GFC can
be divided into three parts – (a) frequency control, (b) dc-link
and ac-side voltage magnitude control, and (c) inner current
and voltage control. Throughout the paper, symbols with ∗ as
a superscript denote reference quantities.

1) Frequency control: The control of frequency of ac
voltage imposed by the GFC differs among the two classes
(see, Fig. 3-(1)) as discussed below.

Class-A GFC: For droop control the frequency is decided
by the active power output pc of the converter as shown in
(2), where dpc is the droop gain.

ωc = ωc−ω
∗ = dpc (p∗c− pc) , pc =

3
2
(vd id + vqiq) (2)

This mechanism is analogous in VSM and dVOC [5], [6].
Class-B GFC: For matching control, the frequency of the

converter is proportional to vdc,

ωc = kmvdc (3)

where, km = ω∗
v∗dc

is the matching control gain.
The angle reference θc mentioned earlier is generated as,

θc = θc0 +
t∫

0
ωcdτ (4)

The remaining controllers are common for both classes of
GFCs.

2) DC-link and ac-side voltage magnitude control: The
dc-link voltage is regulated through vdc − idc droop control
accompanied by feedforward compensation (the feedforward
is applied for class-B GFC as in [9]) to determine the dc-side
current reference i∗dc,

i∗dc = kc(v∗dc− vdc)+
p∗c
v∗dc

+Gcvdc +
vdcix− pc

v∗dc
(5)

where, kc is the dc-link voltage droop coefficient. This vdc− idc
droop control has been explained in the context of a Type-4
wind turbine in section IV-B where the wind generator stator-
side converter is responsible for this.

The ac voltage magnitude is regulated by a PI controller,

v∗d = kp,acvd + ki,ac

∫ t

0
vd(τ)dτ, v∗q = 0 (6)

where, vd =
(
v∗−

∥∥vdq
∥∥), and kp,ac and ki,ac are the propor-

tional and integral control parameters, respectively. Figure 3-
(2) shows the above-mentioned controllers.

3) Inner control loops: Figure 3-(3) shows the inner loops
consisting of ac voltage and current control, which are de-
signed in the converter’s individual d − q reference frame
whose angular frequency ωc is generated as described earlier.

III. REDUCED-ORDER MODEL FOR STABILITY ANALYSIS

We derive the reduced-order model of a generic test system
with m1 SGs, n1 GFCs and p1 load buses from its detailed
model described above. The model should be suitable for
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stability analysis of vdc in presence of dc-side current limits
within the primary frequency response regime, i.e. after a
generation loss or large increase in load. It was observed in
[9] that during such events, the increase in Pc may lead to
dc-side current limit hitting, which affects the stability of vdc.

To derive the model, we make the following assumptions:
(1) the inner current and voltage control loops shown in
Fig. 3-(3) track the references instantaneously, (2) the dc-link
model of the GFC and the swing equation of the SG along
with corresponding turbine-governor equations can represent
frequency dynamics, (3) SGs are rated to deliver any load
change in the system, (4) time constant τc of the dc energy
source is neglected, and (5) a dc power flow model is assumed
to be adequate for the system.

rth GFC
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Fig. 4. Single line diagram of the connectivity of the rth GFC to its
neighboring buses in a generic case. Superscript r on kg, kgl , and k are not
shown to avoid clutter.

A. Reduced-order Model of Class-A GFCs

For any rth class-A GFC, let us assume that it is connected
to kr no. of neighboring buses as shown in Fig. 4. Out of those
kr buses, other GFCs are connected to kr

g buses, no GFCs or
SGs are connected to kr

gl − kr
g buses, and SGs are connected

to the remaining buses. The GFCs and SGs may or may not
have local loads, but no GFC and SG are connected to the
same bus. We define N (r) as the immediate neighborhood
of the node corresponding to the rth GFC in a graph where
other GFCs are connected, implying |N (r)|= kr

g. The angular
frequency imposed by the droop control of the ith GFC at bus
i is ω i

c, ∀i ∈ r∪N (r), while the angular frequencies of the
rest of the neighboring buses are assumed to be the Center of
Inertia (COI) frequency ωCOI . This is a good approximation,
since electromechanical oscillations of individual generators
are not of interest – rather the inertia-weighted average is
under consideration, see for example [15]. The reduced-order
model can be written as,

Ṗr
cg = br (dr

pc (P
r∗
c −Pr

c )+ω
∗)−br

g (ωCOI +ω
∗)−

∑
i∈N (r)

br
i

(
di

pc

(
Pi∗

c −Pi
c

)
+ω

∗
)

(7a)

ω̇COI =
1

2HT

[
PτgT −PgT − kdT ωCOI

]
=

1
2HT

[
PτgT +PcT −PLT − kdT ωCOI

]
(7b)

ṖτgT =
1

τgT

[
P∗gT −dpgT ωCOI −PτgT

]
(7c)

v̇r
dc =

1
Cr

c

[
−Gr

cvr
dc + imax,r

dc sat

(
kr

c
(
vr∗

dc− vr
dc
)

imax,r
dc

)
− Pr

c
vr

dc

]
(7d)

r = 1, . . . ,n1

We introduce the following notations pertaining to the rth
GFC bus and neighboring buses shown in Fig. 4: br

i de-
notes admittance of the branch connecting the bus of the
rth GFC and bus i, φ r

i = θ r − θi; Pr
cg = ∑

kr

i=1 br
i φ

r
i ; Pr

c =

Pr
cg+Pr

L; PcT =
n1
∑

r=1
Pr

c ; br =
kr

∑
i=1

br
i ; br

g =
kr

∑
i=kr

g+1
br

i ; whereas the

rest are independent of the location of the rth GFC: HT =
m1
∑

i=1
H i

g; dpgT =
m1
∑

i=1
di

pg; τgT = τ i
g ∀i, ω i

g = ω i
g−ω∗, ωCOI =

1
HT

m1
∑

i=1
H i

gω i
g, PτgT =

m1
∑

r=1
Pr

τg, P∗gT =
m1
∑

r=1
Pr∗

g , kdT =
m1
∑

i=1
ki

d –

superscript i denotes ith generator; PLT =
n1+m1+p1

∑
j=1

PL j with

PL j denoting the load in jth bus.

B. Model for Stability Analysis of Class-A GFCs

The class-A GFC acts as a buffer to adjust the frequency of
its terminal voltage in order to deliver the power Pc demanded
by the system, which in turn affects the dc-link voltage
dynamics. The converter has no direct control over Pc and the
dc-link dynamics does not have any ‘feedback mechanism’
to alter it. Therefore, the stability of the dc-link voltage of
class-A GFCs described by (7d) can be analyzed in isolation.
Let, vr

dc = y > 0, vr∗
dc = y∗, Pr

c = v > 0, and (ȳ, v̄), ȳ > 0, v̄ > 0
be the equilibrium point. Also, assume y∗ is chosen such that
the allowable maximum value of y is ỹ∗ = kr

c
(kr

c+Gr
c)

y∗, i.e. when
y→ ỹ∗, protective circuits will kick in and limit the dc voltage.
Define, x = y− ȳ⇒ y = x+ ȳ, u = v− v̄⇒ v = u+ v̄. Now, (7d)
can be written as:

ẋ =
1

Cr
c

[
−Gr

c(x+ ȳ)+ imax,r
dc sat

(
kr

c(y
∗− x− ȳ)
imax,r
dc

)
− u+ v̄

x+ ȳ

]
(8)

This equation is in the form ẋ = f (x,u), x = h(x), where
f : Dx×Du→ R is locally Lipschitz in (x,u), h : Dx→ Dx is
continuous in (x,u), f (0,0) = 0, and domains Dx = (−ȳ, ỹ∗−
ȳ) ⊂ R,Du ⊂ R contain the origin. The equilibrium (ȳ, v̄)
satisfies the following equation:

v̄ =

{
f1 :−Gr

cȳ2 + kr
cȳ(y∗− ȳ), i f |kr

c(y
∗− ȳ)| ≤ imax,r

dc

f2 :−Gr
cȳ2 + ȳimax,r

dc , otherwise

It can be shown that the maximum values of f1(.) and

f2(.) are obtained at ȳm1 =
kr

c

2(Gr
c + kr

c)
y∗ and ȳm2 =

imax,r
dc
2Gr

c
,

respectively. Moreover, the point of intersection of f1(.) and

f2(.) is ym = y∗−
imax,r
dc
kr

c
.

Depending upon the value of y corresponding to the maxima
of v̄, we can get four types of characteristics in y−v plane as
shown in Fig. 5. For example, type (d) corresponds to ȳm2 ≤
ym ≤ ȳm1; type (c) occurs for ȳm1 ≥ ym, ȳm2 > ym; type (b)
for ȳm1 < ym, ȳm2 < ym; and type (a) corresponds to ȳm1 <

ym, ȳm2 > ym. Out of these, the typical case is that in Fig. 5(a)
– going forward, unless otherwise mentioned, we will consider
this characteristic. We note that for any given v̄, there exists
two equilibria ȳ1 ∈Ω1 = [ym, ỹ∗) and ȳ2 ∈Ω2 = (0, ym] .
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Fig. 5. Four possible v vs y (GFC power vs dc-link voltage) characteristics.

C. Reduced-order Model of Class-B GFCs

Combining (1b) and (5), we can write:

Cr
c v̇r

dc =−Gr
cvr

dc + imax,r
dc sat

Gr
cvr

dc +
Pr∗

c
vr∗

dc
+ kr

c
(
vr∗

dc− vr
dc
)

imax,r
dc

− Pr
c

vr
dc

(9)
With matching control law kr

mvr
dc = ωr

c and kr
mvr∗

dc = ω∗ = 1pu,
we can modify (9) and (7a)-(7c) to derive the system model
with class-B GFCs. In presence of matching control, we
assume that ωr

c ≈ ωCOI ⇒ ωr
c ≈ ωCOI = ωCOI−ω∗. With this

approximation, we can write:

Cr
c

kr2
m

ω̇COI = Pmax,r
c sat

−
kr

c

kr2
m

ωCOI

Pmax,r
c

+Pr∗
c −Pr

c
ω∗

ωCOI

≈ Pmax,r
c sat

(
−dr

pcωCOI

Pmax,r
c

)
−Pr

c

(10)

With
Cr

c

kr 2
m
≈ 0 as assumed in [9] and defining κr =

dr
pcωCOI

Pmax,r
c

,

we can write:
Pr

c =−Pmax,r
c sat (κr) (11)

where, dr
pc =

kr
c

kr2
m
, Pmax,r

c = vr∗
dcimax,r

dc −Gr
cvr∗2

dc −Pr∗
c , Pr

c = Pr
c −

Pr∗
c . With power balance under nominal condition, i.e. −P∗gT −

P∗cT +P∗LT = 0, we can write:

ω̇COI =
1

2HT

(
PτgT −

n1
∑

r=1
Pmax,r

c sat (κr)−PLT − kdT ωCOI

)
ṖτgT = 1

τgT

(
−PτgT −dpgT ωCOI

)
(12)

where, PτgT = PτgT −P∗gT ; PLT = PLT −P∗LT .

D. Model for Stability Analysis of Class-B GFCs

In contrast, to its class-A counterpart, the class-B GFC has
a ‘feedback mechanism’ from the dc-link voltage dynamics to
the rest of the system that can alter the power Pc demanded
from the GFC. Thus, the stability of dc-link voltage can not be
analyzed in isolation and a reduced-order model (12) is used

for this purpose. Assuming z =
[
ωCOI PτgT

]T
, w = −PLT ,

(12) can be expressed as ż = g(z,w), g : R2×R→R2, where
g is locally Lipschitz in (z,w), and g(0,0) = 0.

The fundamental difference between these two classes is
coming from the fact that class-B GFC controls the frequency
based on the dc-link voltage vdc, whereas class-A GFC’s
frequency regulation is not sympathetic to vdc.

IV. RESPONSE COMPARISON & LIMITATIONS: DETAILED
MODEL & REDUCED MODEL

First, the reduced-order models as described in (7) and (12)
are used to compare the time-domain responses of class-A and
class-B GFCs, respectively with those of the detailed models
described in Section II-A. Next, the implications of a more
detailed dc current source model is investigated. Finally, the
limitations of the proposed models are discussed.

A. Response Comparison of Reduced & Detailed Models

1) Class-A GFC: The modified version of the IEEE 68-bus,
16-machine, 5-area system with 4 class-A GFCs (see, Fig. 14)
is modeled using both the detailed phasor model as shown in
Fig. 2 and the reduced-order model as described in (7). At
t = 0.5 s a step increase is provided in the load at bus 26
where GFC-2 is also connected. As observed from Fig. 6, the
reduced-order model closely approximates the response of the
detailed model.

Fig. 6. Comparison of detailed and reduced-order model for GFC-2 in
modified IEEE 68-bus, 16-machine, 5-are system with class-A GFCs.

2) Class-B GFC: For class-B GFCs in the modified IEEE
68-bus, 16-machine, 5-area system, the detailed model and the
reduced-order model per (12) are compared in a time-domain
response. The detailed model considers 6 GFCs as described
in section VI-B3. At t = 0 s, the PτgT state is perturbed to
1.1 times its nominal value, which results in similar responses

Fig. 7. Comparison of detailed and reduced-order model of the IEEE 68-bus,
16-machine, 5- area system with class-B GFCs.
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from both models (see, Fig. 7). The reduced-order model takes
into account the equivalent damping torque coefficient kdT .

Fig. 8. Comparison of detailed and reduced-order model for modified 9-bus
system with class-B GFCs.

As shown in Fig. 8, response from the reduced model
show close similarity with a detailed switched model of 9-
bus system in Fig. 16(a) following an increase in the total
load of the system by 50 MW at t = 1 s.

B. Implication of a More Detailed DC Current Source Model

To understand the implications of a more detailed model of
the dc current source, a Type-4 wind plant [16] is included
at bus 12 of the modified IEEE 4-machine, 2- area system as
shown in Fig. 16(b). The SG at bus 1 now serves 50% of its
nominal generation (700 MW) and the wind plant serves the
rest (350 MW). The grid-side converter (C2) of the wind plant
(see, Fig. 9) is operating as a GFC. In two separate cases, the
GFC is modeled with class-A and class-B control strategies.
The stator-side converter (C1) is operating in grid following
mode connected to a synchronous machine as shown in Fig.
9. Converter C1 uses a PLL for the standard vector-control,
within which the d-axis current reference is decided based
on the vdc − idc droop as described in (5). The value of
imax
dc is decided by the MPP of the wind plant’s power-speed

characteristics at current wind speed. In the phasor simulation
model, a functional representation of the wind plant and
converter C1 is used as shown in Fig. 9. The power and rotor

Fig. 9. Detailed and functional model of the wind plant: C1 is stator-side
converter and C2 is grid-side converter.

speed dynamics are decided by the swing equation as shown
in (13).

ω̇w f =
ω∗

2Hw f

(
Pm

w f −Pe
w f
)

(13)

The power-speed characteristics of the wind turbine is
described in (14), where the mechanical power depends on
the power coefficient of the turbine cp, which is a function of
ωw f , vwind , and β1.

Pm
w f = cp

(
ωw f ,vwind ,β1

) ρA
2

v3
wind (14)

Note that the WF is operating in a deloaded (i.e. off-MPP)
condition.

The issue of dc-link voltage collapse in class-A GFC after
a large load increase does not get affected in presence of the
the detailed wind plant in the model. In Fig. 10, it is shown
that the dc-link voltage of the class-A GFC in the 4-machine
system collapses when the total load increases by 40%, but
it is stable for a smaller load increase (e.g., 20%). This time-
domain response also shows the fast dc-voltage dynamics and
much slower rotor dynamics of the wind plant. For the stable
case, the turbine rotor speed settles at a lower value in order
to produce higher power output.

Fig. 10. Wind plant with class A GFC in IEEE 4-machine system: (a) unstable
dc link voltage after 40% increase in all the loads, (b) stable dc link voltage
after 20% increase in all the loads.

As shown in [8], [9], the dc-link voltage of the class-B GFC
is less likely to collapse during a large load increase. In Fig.
11 (b), it is shown that a 40% increase in the total load of
the modified 4-machine system does not cause any instability
in the dc-link voltage of the class-B GFC. However, if imax

dc is
chosen to be higher than the maximum power limitation from
the wind plant, the converter might try to deliver more power
than the MPP of the speed-power characteristics of the wind
plant after a large load increase. It might slow down the rotor
of the wind plant and eventually, it will stall as shown in Fig.
11(a).
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Fig. 11. Wind plant with class B GFC in IEEE 4-machine system: (a) rotor
stalls when imax

dc is higher than MPP at current wind speed, (b) stable when
imax
dc is decided considering the power limitation from plant.

C. Discussion on Limitations of the Proposed Models

First, we remark on the limitation of the proposed detailed
models. After that, we focus on the limitations of the reduced
models.

1) The detailed model with dc-side current representation is
adequate for studying dc-link voltage instability as long
as imax

dc corresponds to the MPP of the dc-side source.
2) Components like damper windings and power system

stabilizers (PSSs), among others are not included in the
reduced-order models, which makes the stability analysis
in presence of class-B GFCs more conservative. One way
to capture the net damping effect is to use total damping
torque coefficient kdT as in (7)(b), which needs to be
determined by comparing the COI frequency dynamics
with a detailed model through trial-and-error method.

3) The reduced-order model considers constant power load.
However, this model cannot capture voltage or angle sta-
bility issues induced by such loads in the detailed model.
Moreover, for a heavily-stressed power system, voltage,
angle, and frequency instabilities can get coupled, which
cannot be captured by the reduced model.

V. STABILITY ANALYSIS UNDER DC-SIDE CURRENT
LIMITS DURING PRIMARY FREQUENCY RESPONSE

We focus on stability analysis of vdc in presence of dc-
side current limits when the GFCs participate in primary
frequency response. To that end, we establish the following:
(1) Lyapunov stability and region of attraction (ROA)1 for
class-A and class-B GFCs, (2) Sufficiency condition for input-
output stability of class-A GFCs, (3) Sufficiency condition for

1[17] Let φ(t;z) (defined ∀t ≥ 0) be the solution of ż = f (z) that starts at
initial value z at t = 0, then the ROA of an asymptotically stable equilibrium
z = 0 of this system is defined as

{
z| lim

t→∞
φ(t;z) = 0

}
.

instability of class-A GFCs, and (4) Sufficiency condition for
input-to-state stability2 for class-B GFCs.

A. Stability Analysis of Class-A GFC

We first focus on the reduced model of the test system in
Fig. 4 and present the following Theorems and Lemmas.

Theorem V.1. For class-A GFCs, the equilibrium ȳ1 is asymp-
totically stable with ROA RA = (ȳ2, ỹ∗) .

Proof. Corresponding to the domain Ω1 for y, (8) can be
rewritten as:

ẋ =
1

Cr
c

[
−Gr

cx− kr
cx+

v̄
ȳ1

x
x+ ȳ1

− u
x+ ȳ1

]
(15)

where, x ∈ D̃x = [ym− ȳ1, ỹ∗− ȳ1)⊂Dx, u ∈Du. Consider the
following Lyapunov function

V1 =
Cr

c

2
x2, x ∈ D̃x

Now, we can write the unforced system as:

V̇1 =

[
−(Gr

c + kr
c)+

v̄
ȳ1

1
x+ ȳ1

]
x2

It can be shown that V̇1 is negative definite, if x > ỹ∗−2ȳ1.
In the most typical case as in Fig. 5(a), ȳ1 > ym > (ỹ∗/2),
which satisfies this condition. Therefore, ȳ1 is asymptotically
stable ∀y ∈Ω1.

To establish the ROA of ȳ1, we analyze Lyapunov stability
of ȳ2 ∈ Ω2 shown in Fig. 5(a) with the same v̄. To that end,
we can rewrite (8) with u = 0 as:

ẋ =
1

Cr
c

[
−Gr

c (x+ ȳ2)+ imax,r
dc − v̄

x+ ȳ2

]
,x ∈ D̄x = (−ȳ2,ym− ȳ2]

Choosing a continuously differentiable function

V2 =
Cr

c

2

[
ȳ2

2− (x+ ȳ2)
2
]
, x ∈ D̄x, s.t. V2 (0) = 0

We choose a ball Br = {x ∈ R | |x| ≤ r} and define set U =
{x ∈ Br | V2 > 0} – note that U ⊆ (−ȳ2, 0) . Therefore, we
can choose x(0) = x0 ∈ U arbitrarily close to the origin s.t.
V2(x0)> 0. Also,

V̇2 > 0, ∀x ∈U, if x <
imax,r
dc
Gr

c
−2ȳ2

Taking into account the typical characteristics in Fig. 5(a) and
analyzing local maxima of f2, we can write ȳ2 < (imax,r

dc /2Gr
c).

Therefore, V̇2 > 0,∀x ∈ U , which provides a sufficiency
condition for instability of ȳ2 following Chetaev’s theorem
[17]. This implies that y(t) with any initial value y(0) = y0 ∈
(0, ȳ2) ⊂Ω2 will move away from ȳ2 and reach 0.

Next, consider a continuously differentiable function

V3 =
Cr

c

2

[
(x+ ȳ2)

2− ȳ2
2

]
, x ∈ D̄x, s.t. V3 (0) = 0

2[17] The system ż = f (t,z,u), f : [0,∞)× Rn × Rm → Rn piecewise
continuous in t and localy Lipschitz in z and u, is input-to-state stable if
there exist a class KL function β and a class K function γ such that for any
initial state z(t0) and any bounded input u(t), the solution x(t) exists for all

t ≥ t0 and satisfies ||z(t)|| ≤ β (‖z(t0)‖ , t− t0)+ γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
.
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It is easy to follow similar arguments and show that

V3 > 0,∀x ∈ (0, ym− ȳ2] ⊂ D̄x

This implies that y(t) with any initial value y0 ∈ Ω̄2 =
(ȳ2, ym] ⊂ Ω2 will move away from ȳ2 and reach ym. We
define RA = Ω̄2

⋃
Ω1 = (ȳ2, ỹ∗) , which is the largest open,

connected, invariant set in Ω2
⋃

Ω1, such that lim
t→∞

y(t) =

ȳ1,∀y(0) ∈RA. This implies RA is the ROA for equilibrium
ȳ1 of class-A GFCs.

Corollary V.1.1. For class-A GFCs, the equilibrium ȳ1 is
exponentially stable in Ω1.

Proof. As mentioned in Theorem V.1, the chosen Lyapunov
function is

V1 =
Cr

c

2
x2 =

Cr
c

2
|x|2, x ∈ D̃x

Also,

V̇1 ≤
[
−(Gr

c + kr
c)+

v̄
ȳ1

1
ym

]
|x|2, x ∈ D̃x

Since, m =−(Gr
c + kr

c)+
v̄
ȳ1

1
ym

< 0, it satisfies all conditions in
Theorem 4.10 in [17], and therefore ȳ1 is exponentially stable
in Ω1.

Theorem V.2. The dc voltage dynamics of class-A GFCs
described in (8) is small-signal finite-gain Lp stable ∀p ∈
[1,∞], if x(0) = x0 ∈ {|x| ≤ r} ⊂ D̃x, r > 0. Also, for a
ru > 0, s.t. {|u| ≤ ru} ⊂ Du, ru > 0,∀u ∈ Lpe with sup |u|

0≤t≤τ

≤

min{ru, |m|ymr}, the output x(t) is bounded by the follow-

ing relation ‖xτ‖Lp
≤
‖uτ‖Lp

|m|ym
+ β ∀τ ∈ [0,∞), where β =

|x0|, i f p = ∞, and

(
Cr

c

p|m|

) 1
p

|x0|, i f p ∈ [1, ∞).

Proof. We proved that x = 0 is exponentially stable in D̃x in
Corollary V.1.1. With Lyapunov function

V1 =
Cr

c

2
x2 =

Cr
c

2
|x|2

we have V̇1 ≤ −|m||x|2,

∣∣∣∣∣∂V1

∂x

∣∣∣∣∣ = Cr
c |x| , ∀x ∈ D̃x. Also,

| f (x,u)− f (x,0)| ≤
1

Cr
cym
|u| , |h(x,u)| = |x| , ∀x ∈ D̃x, ∀u ∈

Du. This satisfies all conditions in Theorem 5.1 in [17] and
proves the conditions for input-output stability and bound on
output.

Remark I: It can be shown that min{ru, |m|ymr}= Pmax
c in

Theorem V.2. Moreover, the dc-link voltage trajectory should
satisfy the following constraint ym ≤ vdc(t) < ỹ∗, t ∈ [0,∞),
which restricts the initial state vdc(0) to the same range.

Theorem V.3. For class-A GFCs, the equilibrium ȳ1 ∈Ω1 of
(8) with u = 0 is unstable if

v̄ >−Gr
c(x+ ȳ1)

2 +(x+ ȳ1)i
max,r
dc sat

(
kr

c(y
∗− x− ȳ1)

imax,r
dc

)
for any x ∈ [−r, 0), where r = min{ȳ1, ỹ∗− ȳ1}.

Proof. The unforced system can be expressed as

ẋ =
1

Cr
c

[
−Gr

c(x+ ȳ1)+ imax,r
dc sat

(
kr

c(y
∗− x− ȳ1)

imax,r
dc

)
− v̄

x+ ȳ1

]
∀x ∈ Dx ⊂ R. Define a continuously differentiable function,

V4 : Dx→ R, V4(x) =
1
2

Cr
c
[
ȳ2

1− (x+ ȳ1)
2] , s.t. V4(0) = 0

Choose r ∈ (0,min{ȳ1, ỹ∗− ȳ1}] such that the ball Br = {x∈
R| |x| ≤ r}, Br ⊂Dx. Define, U = {x∈Br|V4(x)> 0}, implying
U = [−r, 0). Choose x0 in the interior of U =⇒ x0 < 0. Hence,
V4(x0)> 0 for any such x0 arbitrarily close to the origin. Now,
derivative of V4 along the trajectory of x is:

V̇4 = Gr
c(x+ ȳ1)

2− (x+ ȳ1)i
max,r
dc sat

(
kr

c(y
∗− x− ȳ1)

imax,r
dc

)
+ v̄

According to Chetaev’s theorem [17], the sufficiency con-
dition for instability is V̇4 > 0, ∀x ∈ U , which proves the
theorem.

B. Stability Analysis of Class-B GFC

In this section, we analyze the stability of class-B GFCs
and present the following lemma and theorem.

Lemma V.4. For class-B GFCs, the equilibrium z = 0 is
globally asymptotically stable ∀ dpgT , dr

pc > 0, ∀r.

Proof. For unforced system, w=−PLT = 0. Choose Lyapunov
function with dpgT > 0, V5 = HT ω2

COI +
τgT

2dpgT
P2

τgT .

⇒ V̇5 =−
P2

τgT

dpgT
−ωCOI

n1

∑
r=1

Pmax,r
c sat (κr)− kdT ω

2
COI (16)

Here, ωCOI

n1
∑

r=1
Pmax,r

c sat (κr) > 0 ∀ ωCOI ∈ R−{0} , dr
pc >

0. Thus, V̇5 is negative definite and radially unbounded
∀ dpgT , dr

pc, kdT > 0. Therefore, the origin is globally asymp-
totically stable when this condition is satisfied.

Remark II: We observe that the ROA for x = 0 corre-
sponding to the equilibrium ȳ1 of class-A GFCs is limited
to x ∈ (ȳ2− ȳ1, ỹ∗− ȳ1), while the same for z = 0 of class-B
GFCs is R2. Also, equilibrium ȳ2 of class-A GFCs is unstable.

For studying input-to-state stability, we will assume kdT = 0,
which will lead to a conservative analysis.

Theorem V.5. The reduced-order model (12) is input-to-state
stable with class KL function β and class K function
γ (|w|) = cmax{χ1 (|w|) ,χ2 (|w|)} , c > 0 for piecewise con-
tinuous w(t) that is bounded in t, ∀t ≥ 0 implying

‖z(t)‖ ≤ β (‖z(t0)‖ , t− t0)+ γ

(
sup
τ≥t0
|w(τ)|

)
,∀t ≥ t0, where,

(Pmax
c , dpc) = argmin

Pmax,r
c ,dr

pc

Pmax,r
c tanh(|κr|) ,r = 1 : n1; χ1 (|w|) =

Pmax
c

dpc
tanh−1

(
|w|

θn1Pmax
c

)
, and χ2 (|w|) =

[ |w|dpgT

θ
χ1 (|w|)

] 1
2

∀w ∈ (−θn1Pmax
c , θn1Pmax

c ), Pmax
c ∈ R>0, 0 < θ < 1,

R>0 : positive real space.
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Proof. In Lemma V.4, it is shown that ż = g(z,0) is globally
asymptotically stable. It can be shown that the Lyapunov
function V5(z) satisfies the following inequalities:

λmin (Q)‖z‖2
∞
≤V5 (z)≤ (λmax (Q)+λmin (Q))‖z‖2

∞

⇒ α1 (‖z‖)≤V5 (z)≤ α2 (‖z‖)

where α1 and α2 are class K∞ functions and Q =[
HT 0
0 τgT

2dpgT

]
. For 0 < θ < 1, we can write:

V̇5 =−
P2

τgT

dpgT
−ωCOI

n1

∑
r=1

Pmax,r
c sat (κr)+wωCOI

≤−(1−θ)

(
P2

τgT

dpgT
+ωCOI

n1

∑
r=1

Pmax,r
c sat (κr)

)

−θ

(
P2

τgT

dpgT
+ωCOI

n1

∑
r=1

Pmax,r
c sat (κr)

)
+ |w| |ωCOI |

Let us define, W = (1−θ)

(
P2

τgT

dpgT
+ωCOI

n1
∑

r=1
Pmax,r

c sat (κr)

)
,

which is a positive definite function in R2. Now, define

Γ =−θ

(
P2

τgT

dpgT
+ωCOI

n1

∑
r=1

Pmax,r
c sat (κr)

)
+ |w| |ωCOI |

As, tanh is a class K function and tanh(κr) < sat (κr),
replacing saturation with tanh function and assuming

Pmax
c tanh

(∣∣∣∣∣ dpc

Pmax
c

ωCOI

∣∣∣∣∣
)

= min
(
Pmax,r

c tanh(|κr|)
)
=

min

(
Pmax,r

c tanh

(∣∣∣∣∣ dr
pc

Pmax,r
c

ωCOI

∣∣∣∣∣
))

, r = 1 : n1, we can write

Γ <−θ

(
P2

τgT

dpgT
+ωCOIn1Pmax

c tanh
(∣∣∣∣ dpc

Pmax
c

ωCOI

∣∣∣∣)
)
+ |w| |ωCOI |

Now, this term Γ will be ≤ 0 if

|ωCOI | ≥
Pmax

c

dpc
tanh−1

(
|w|

θn1Pmax
c

)
= χ1 (|w|) or

|ωCOI | ≤ χ1 (|w|) and
∣∣PτgT

∣∣≥ [ |w|dpgT

θ
χ1 (|w|)

] 1
2

= χ2 (|w|).

This condition implies ‖z‖
∞
≥ max{χ1 (|w|) ,χ2 (|w|)} =

ρ (|w|). So,
V̇5 ≤−W, ∀‖z‖

∞
≥ ρ(|w|)

Here, ρ(|w|) is a class K function with w ∈
(−θn1Pmax

c , θn1Pmax
c ). Since, Pmax

c ∈ R>0, we contend
that the above holds ∀(z,w) ∈ R2 × R. Therefore, we
have satisfied all conditions of input-to-state stability
per Theorem 4.19 in [17]. Now, we need to define
class K function γ = α

−1
1 ◦ α2 ◦ ρ . It can be shown that

γ (|w|) =

√
λmax (Q)+λmin (Q)

λmin (Q)
ρ (|w|) = cρ (|w|).

Remark III: Unlike class-A GFC, the initial states z(t0)∈R2.
However, in reality, the assumptions behind the reduced-order
model (12) will hold for a subset of initial states when

a detailed model is considered. This will be demonstrated
through case studies in the next section.

C. Engineering Applications of the Proposed Analysis

The proposed Theorems, Lemmas, and Corollaries give
certain sufficiency conditions for stability and bounds on
variations of dc-link voltage following disturbances. Overall,
they also give insights into the performance of the two classes
of GFCs. An engineer can apply these in the following ways
–
• Bound on dc-link voltage variation of class-A GFCs:

Using Theorem V.2, the limit on dc-link voltage
variation following a bounded disturbance in system
load/generation can be calculated. The dip in the dc-link
voltage is of interest for converter control. This will not
require a complex time-domain simulation.

• Maximum allowable load/generation change to guarantee
stability of the dc-link voltage: From Theorem V.5, the
maximum load/generation change to guarantee stability
of dc-link voltage of class-B GFCs is n1Pmax

c , which
can be calculated for any operating point. This will
allow operators to compare the loss of power due to
(N−1) generator outage contingency and ascertain such
guarantees in near real-time. Similar conclusions can be
drawn about class-A GFCs from Remark I.

• Engineering and scientific insights: The results lead to
important insights and stability guarantees that give prac-
ticing engineers some guidance on which GFC type may
be acceptable given their implementation complexity vs
risk of instability trade-off. For example, class-A GFCs
can be easier to implement, but would face instability
issues if a system’s largest generation outage contingency
is larger than n1Pmax

c .

VI. RESULTS & DISCUSSIONS

For verifying the accuracy of the proposed lemmas and
theorems, we consider: (a) the detailed switched model of
a standalone GFC connected to a constant power load; (b)
the detailed switched model of two GFCs connected to the
modified 9-bus system available online [18]; and (c), (d) the
positive sequence fundamental frequency phasor models of a
modified version of the IEEE 4-machine, 2-area system [15]
and IEEE 68-bus, 16-machine, 5-area system [19], both with
constant power loads. All these simulation models have the
detailed controls of the GFC as shown in Fig. 3. These phasor
models take into account a sixth-order subtransient model
of SGs with excitation systems and the averaged model of
GFCs with the control loops described in Section II. The
integration of GFCs and SGs with the remaining network in
the phasor model is illustrated in Fig. 2. The simulation cases
and the verified theorems are summarized in Table I, which
are described in detail in the following sections. Parameter kdT
is assumed to be zero in the following simulation studies.

A. Class-A GFC

1) Standalone GFC Connected to Load: This system con-
siders all the details of control loops mentioned in section II-B
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TABLE I
SIMULATION MODELS FOR VERIFYING THE PROPOSED THEOREMS AND LEMMAS

GFC class Test case Simulation platform Proposition validated

Class - A
Standalone GFC connected to load Detailed switched model in EMTDC/PSCAD Theorems V.1 and V.3
Modified IEEE 4-machine 2-area System Detailed phasor model in Matlab/Simulink Theorem V.2
Modified IEEE 16-machine System
Modified 9-bus System Detailed switched model in Matlab/Simulink Lemma V.4 & Theorem V.5

Class - B Modified IEEE 4-machine 2-area System Detailed phasor model in Matlab/Simulink Lemma V.4
Modified IEEE 16-machine System Lemma V.4 & Theorem V.5

for class-A GFC, which is built using EMTDC/PSCAD [20].
First, we switch the dc bus capacitor voltage to a value y0 at
t = 0.2 s while operating at equilibrium (ȳ1, v̄). As shown in
Fig. 12, the dc-link voltage collapses when y0 < ȳ2, and stable
if y0 > ȳ2 by a slight margin. Here, ȳ1 = 2.4 kV , and ȳ2 = 2 kV
corresponding to v̄ = 150 kW is considered. The results are in
agreement with Theorem V.1.

Fig. 12. Standalone Class-A GFC model: unforced response.

Next, we show that vdc is stable following a small step
increase in load from v̄ = 175 kW to v̄m = 177 kW (see, Figs
13(a), (b)), which is in agreement with Theorem V.2. In Fig.
13 (c,d), it is shown that when v = v̄m, the unforced response
becomes unstable when the initial value of y is less than ym,
which matches the condition of Theorem V.3.

Fig. 13. Standalone Class-A GFC model: (a), (b): Forced response; (c), (d):
Unforced response.

2) Phasor Model of Modified IEEE 16-machine System: As
shown in Fig. 14, we consider the modified phasor model of
the IEEE 16-machine system with averaged models of 4 GFCs
integrated to it as described in Section II. Among these, 2 are
in NETS and 2 are in NYPS, which serve 33% and 23% of
the total power generation in the respective areas.

Fig. 14. Single-line diagram of modified IEEE 16-machine system with 4
class-A GFCs. Load type: constant power.

Although we conducted numerous experiments to verify all
the Theorems on class-A GFCs in this system, due to space
restrictions we only present a case study to check the suffi-
ciency condition of input-to-state stability and bound on L∞

norm of the deviation in vdc per Theorem V.2. Figure 15 shows
the variation in Pc and vdc of GFC 2 following a step increase
in load at bus 26. We note that Pmax

c = 98 MW , and therefore
‖uτ‖Lp

= 92 MW satisfies the requirement sup |u|
0≤t≤τ

≤ Pmax
c per

Fig. 15. Power and dc-link voltage variation of GFC 2 in modified IEEE
16-machine system in Fig. 14 following a step increase in load at bus 26.
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Fig. 16. Line diagram of (a) modified 9-bus test system with 2 GFCs, (b) modified IEEE 4-machine 2-area system. Load type: constant power.

Remark I. We see that vdc is stable following the disturbance as
postulated in Theorem V.2. Moreover, for this case the values
|m|= 1.84e3 f, ym = 2.43 kV , and |x0|= 0 V lead to a bound
of 20.6 V on peak deviation of vdc. As Fig. 15 shows, the
actual value of peak deviation is 4.1 V, which respects this
bound and satisfies the condition {|x| ≤ r} ⊂ D̃x.

B. Class-B GFC

As described earlier, unlike class-A GFCs, the stability of
its class-B counterpart needs to take into account the whole
system. Through exhaustive testing in different multimachine
systems, we establish the validity and limitations of Lemma
V.4 and Theorem V.5.

1) Detailed 3-phase Model of Modified 9-bus System: This
test system shown in Fig. 16(a), built in Matlab/Simscape [21],
was taken from online resource [18]. However, we changed the
loads to constant power type from constant impedance type for
validation.

First, we focus on Lemma V.4, which is based on a
reduced-order model with simplifying assumptions described
in Section III-C. We performed tests with the state variables
vdc, Pτg and ωg starting from different extremities by resetting
their values at a particular instant and observing the unforced
response. Figure 17 shows the unforced response of the
system when the initial values of the perturbed states are:
vdc0 = v1

dc(0.5) = v2
dc(0.5) = 1.2v̄dc, Pτg0 = Pτg(0.5) = 3.2P̄τg.

Superbars are used to denote pre-disturbance values. The
derivative of the Lyapunov function V5 for unforced system
as derived in (16) is also shown here. V̇5 is always negative
(except at the origin) which satisfies the asymptotic stability
condition according to the Lemma. Although, similar conclu-

Fig. 17. Unforced response with class-B GFCs in 9-bus system. At t = 0.5
s, vdc of GFCs and Pτg are set to 1.2 and 3.2 times of the steady state values,
respectively.

sions were obtained from multiple other combinations of initial
states. only these cases are reported due to space restriction.

It can be observed that class-B GFCs converge to pre-
disturbance equilibria even after starting from such a large
off-nominal values. Although, this does not prove the global
asymptotic stability as claimed in Lemma V.4, we do find
evidence of a significantly large ROA in our tests.

To demonstrate the input-to-state stability of class-B GFCs
in 9-bus system per Theorem V.5, a step increase of 10 MW
is given in load at bus 7 and the state Pτg is perturbed to
3.2 times of nominal value at t = 1 s. Note that for this
system θn1Pmax

c = 160 MW , which is the maximum allowable
total load change postulated in the theorem (0 < θ < 1,n1 =
2, Pmax

c = 80 MW ). As shown in Fig. 18, the system is stable
after this load increase. The constraints on |PτgT | and |ωCOI |
that are sufficiency conditions for V̇5 to be negative are satisfied
till t = t1 after which V̇5 is almost 0. Following the disturbance,
|ωCOI | ≥ χ1 till t = t2, whereas |ωCOI | ≤ χ1 and |PτgT | ≥ χ2
during t2 ≤ t ≤ t1. We observe that when V̇5 is negative, but
very close to zero, the sufficiency conditions are not met,
which shows some degree of conservatism in the constraints.

We note that the major issue in simulating such a detailed
3-phase model comes from very high computational burden,
which rules out exhaustive case studies. To resolve this, we
validate our propositions on class-B GFCs in two positive

Fig. 18. Forced response of class-B GFCs in 9-bus system following a step
increase of 10 MW load at bus 7 at t = 1 s, while at the same instant, the
initial value of Pτg0 is set to 3.2 times the nominal value.
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sequence fundamental frequency test system models integrated
with averaged models of GFCs as described in Section II.

2) Phasor Model of Modified IEEE 4-machine 2-area Sys-
tem: In the modified 4-machine system shown in Fig. 16(b),
generation from SG1 is decreased to 50% of nominal value
(700 MW ) and the power deficit (i.e. 350 MW ) is produced by
the GFC at bus 5. To determine the ROA, we perform a design
of experiment on the phase space involving the initial values of
state variables vdc(0), fCOI(0), and PτgT (0), where fCOI(0) =
ωg(0)/(2π), ωg(0) = ωr

g(0), ∀r = 1, . . . ,4; PτgT (0) =
4
∑

r=1
Pr

τg(0). To that end, we obtain the unforced response of

the system by varying the initial values of these states from
their equilibrium (v̄dc, f̄COI , PτgT ) = (2.45 kV, 60 Hz, 0 MW )
such that vdc(0) ∈ [0.25, 2.63] kV , fCOI(0) ∈ [6, 120] Hz, and
PτgT (0) ∈ [−24.8e2, 74.3e2] MW .

Figure 19 shows the ROA in vdc− fCOI −PτgT space. The
region is shown from three different angles in Figs 19(a)-(c) to
get a more clear visualization. On the other hand, Figs 19(d)-
(f) show the projections of the ROA on three 2-d planes. These
figures also highlight the equilibrium using an asterisk in each
of them. The following are the observations and conclusion:
• Figures 19(d), (f) show that the ROA extends over

vdc(0) ∈ [0.25, 2.63] kV . Considering the fact that in a
realistic power system the frequency variation practically
does not go outside 60± 2 Hz, we see the ROA covers
well beyond this range. On a similar note, considering the
nominal value of P̄τgT = 2,450 MW , we see from Fig. 19
(e) that for fCOI = 60±2 Hz, the ROA extends to PτgT
values that are ≈±100% of P̄τgT .

• Based on these observations we conclude, within the
practical range of variation of the state variables associ-
ated with (12), the system is asymptotically stable. This

shows the applicability and limitation of Lemma V.4
3) Phasor Model of Modified IEEE 16-machine System:

The phasor model of 16- machine system, which is shown in
Fig. 14, is modified again for class-B GFCs. We remove class-
A GFCs and add 6 class-B GFCs at buses 12, 18, 22, 32, 34,
and 54, which deliver ≈ 4.6 GW , i.e., 25 % of total load.

Fig. 20. Unforced response of class-B GFCs in 16-machine system with
initial states PτgT (0) = 1.1P̄τgT , and ωr

g(0) = 0.95ω̄r
g,∀r.

Focusing on Lemma V.4, we performed a multitude of
experiments and did find initial states for which the system
is unstable. However, we could not perform a design of
experiment like the 4-machine system due to a significant
number of variables in this case. We report one stable case
here due to space constraint. The states are perturbed at t = 0
s as follows: PτgT (0) = 1.1P̄τgT , and ωr

g(0) = 0.95ω̄r
g,∀r. Here,

superbars represent the nominal values. As observed in Fig. 20,
the system is asymptotically stable in this condition. The

(a) (b) (c)

(d) (e) (f)
Fig. 19. ROA in vdc− fcoi−PτgT space for 4-machine 2-area system. The equilibrium (2.45 kV, 60 Hz, 0 MW ) is shown using ∗.
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Lyapunov function V5 for unforced system follows (16) whose
rate of change along the trajectories of the system is always
negative (except at the origin) satisfying the condition for
asymptotic stability.

Fig. 21. Response of 16-machine system following a step increased of 62
MW in total load at t = 0 s, while at same instant, the initial value of Pτg is
set to 1.1 times the nominal value.

Finally, the input-to-state stability of class-B GFCs in 16-
machine system is demonstrated by applying a step increase
of 62 MW in load at t = 0 s and the state PτgT is perturbed
to 1.1 times of its nominal value. This load increment is less
than θn1Pmax

c , since 0< θ < 1, n1 = 6, and Pmax
c = 97 MW . As

shown in Fig. 21, the system is stable after the load increase
and V̇5 satisfies the sufficiency conditions till t = t3 s. As these
constraints derived in Theorem V.5 are conservative, V̇5 is
negative (almost zero) even after the conditions are violated.

Remark IV: Based on the results concerning class-B GFCs,
we notice that the ‘global’ nature of asymptotic stability
postulated by Lemma V.4 is not true for a detailed system
model. This is expected, since the lemma is supposed to hold
as long as the assumptions leading to the reduced-order model
is valid. Nevertheless, our experiments confirm a significantly
large ROA for class-B GFCs around the equilibria we tested
with.

C. Results with Generator Trip

In all the previous experiments, we considered step increase
in the constant power load of the system. In this section, we
consider the tripping of SG4 in the modified IEEE 4-machine
2-area System to validate two of the proposed theorems that
are applicable under this condition. In the modified system,
SG1, SG4 and the GFC at bus 3 are generating 350 MW ,
150 MW , and 350 MW , respectively, the loads have a unity
power factor, and the real power load at bus 9 is 1217 MW .
Although, the theorems in Section V are validated for a
constant power load, the generator tripping in presence of
constant power load leads to infeasible load flow condition
(i.e., voltage collapse) in this system. Hence, the real power
portion of the load is modeled as 50% constant power and 50%
constant impedance in the modified 4-machine system. Other
parameters and variables of this test system can be found in
[15] and in Table V of the Appendix.

Fig. 22. Plot of Pc and vdc following the trip of SG4 at t = 1 s in modified
IEEE 4-machine system in presence of class-A GFC.

1) Generator trip in presence of Class-A GFC: A class-A
GFC is considered at bus 3 for this case. After SG4 is tripped
at t = 1 s, the power generation (Pc) from the GFC experiences
transients and finally settles at a higher value than the pre-
disturbance output as shown in Fig. 22. Here, for the GFC
Pmax

c = 53 MW , so ‖uτ‖Lp
= 52 satisfies the the condition

sup |u|
0≤t≤τ

≤ Pmax
c as mentioned in Remark I and vdc is found to

be stable as described in Theorem V.2. Also, for this case,
|m| = 1.9e3 f, ym = 2.43 kV , and |x0| = 0, which gives the
bound on the peak deviation of vdc as 11 V . As Fig. 22 shows,
the actual value of peak deviation is 5 V, which respects this
bound and satisfies the condition {|x| ≤ r} ⊂ D̃x.

2) Generator trip in presence of Class-B GFC: For this
case, the GFC is operating in class-B control mode keeping
all the other parameters the same as in the previous one. After
the SG4 trip, in this case, vdc is stable as shown in Fig. 23.
As the loading condition doesn’t change during this event,
this can be treated as an unforced system and the stability
condition in Lemma V.4 can be tested for the post-disturbance
equilibrium. In Fig. 23, the derivative of the Lyapunov function
(V̇5) as derived in (16) is shown along with two states ωCOI
and Pτg. It is found that V̇5 is always negative following
the generation loss, and it satisfies the asymptotic stability
condition in Lemma V.4.

Fig. 23. Response of modified IEEE 4-machine system in presence of class-B
GFC after SG4 tripped at t = 0 s.
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VII. CONCLUSION

It was shown that for class-A GFCs the stability conditions
can be derived by focusing on the dc-link voltage dynamics
in isolation, whereas class-B GFCs need to consider sys-
tem’s frequency dynamics as well. The ROA of a class-A
GFC was shown to be a subset of its class-B counterpart.
Moreover, it was possible to derive sufficiency conditions for
small-signal finite gain Lp stability of class-A GFC, whereas
constraints guaranteeing (large-signal) input-to-state state sta-
bility of class-B GFC following bounded variations in the
load was provided. Therefore, these propositions analytically
establish superior stability properties of class-B GFCs in
primary frequency response regime. Finally, exhaustive testing
through detailed switched models and full-order phasor models
indicate that the lemmas and theorems, although established
using reduced-order models, largely hold in realistic power
systems.

APPENDIX

TABLE II
PARAMETERS FOR STANDALONE CLASS-A GFC

dpc 1.6e−4 Hz(kW )−1 imax
dc 75 A Gc 0.83e−6 f

τc 0.001 s ω∗ 314 rad/s kc 1.6 f
Pmax

c 178 kW P∗c 150 kW v∗dc 2.44 kV

TABLE III
PARAMETERS FOR EACH CLASS-A GFC IN 16-MACHINE SYSTEM

dpc 2.1e−3 Hz(MW )−1 imax
dc 440 kA Gc 0.83 f

τc 0.001 s ω∗ 377 rad/s kc 2e3 f
Pmax

c 1074 MW P∗c 976 MW v∗dc 2.45 kV

TABLE IV
PARAMETERS FOR EACH CLASS-B GFC IN 16-MACHINE SYSTEM

km 0.0245 Hz/V imax
dc 360 kA kc 2e3f

Gc 0.83f τc 0.001 s ω∗ 377 rad/s

Pmax
c 871.3 MW P∗c 774.5 MW v∗dc 2.45 kV

Machine and transmission line parameters of 16-machine
system are used from [19].

TABLE V
PARAMETERS FOR GFC IN 4-MACHINE SYSTEM

km 0.0245 Hz/V imax
dc 166 kA kc 2e3f

Gc 0.83f τc 0.001 s dpc 2e−3Hw(MW )−1

Pmax
c 402 MW P∗c 350 MW v∗dc 2.45 kV

Machine and transmission line parameters of 4-machine
system are available in [15].
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