Armament, Alignment and Alliance

Sukwon Lee & Alastair Smith

New York University

October 9, 2014

- Gain Security in Extended Deterrence
 - Arm
 - Align
 - Alliance
- Add domestic Politics

Figure: The Crisis Subgame

- Policy $z \in \{0, 1\}$
- Salience of Policy $\sigma_A < 0, \sigma_B > 0$ and $\sigma_C > 0$
- Strengths: a, b, c
- $Pr[B \text{ wins alone}] = p = \frac{b}{a+b}$
- $Pr[B \text{ wins with } C] = q = \frac{b+c}{a+b+c}$
- Cost of fighting: k_i + $\frac{m_i}{W_i}$ + $\frac{m_i}{W_i}$ financial
- Selectorate Politics
 - R_i resources
 - W_i winning coalition

Nation C's Intervention

•
$$\frac{R_C - m_C}{W_C} + q\sigma_C - k_C \text{ vs } \frac{R_C}{W_C} + p\sigma_C$$

C intervenes if and only if

•
$$k_C \leq k_C^0 = \sigma_C(q-p) - \frac{m_C}{W_C}$$

Hence,

•
$$\gamma^0 = Pr(k_C \le k_C^0) = F_C(\sigma_C(q-p) - \frac{m_C}{W_C}).$$

Nation B's Resistance

- B resists $Pr=\beta$ if
 - $k_B \le k_B^0 = \sigma_B \gamma^0 (q p) + \sigma_B p \frac{m_B}{W_B}$

Nation A's Attack

- A attacks $Pr = \alpha$ if
 - $-\frac{m_A}{W_A}\beta^0 \sigma_A + \beta^0\gamma^0q\sigma_A + \beta^0(1-\gamma^0)p\sigma_A \ge \beta^0k_A$

Proposition 1

$$\gamma \uparrow \Rightarrow \beta \uparrow$$
 and $\alpha \downarrow$

- Deter aggression
- Empower target
- Ambiguous War Effect: $\alpha \downarrow \beta \uparrow$

Proposition 2

 γ^0 is increasing in W_C ; β^0 is increasing in W_B ; α^0 is increasing in W_A .

Preparing for Crisis

- Arm
 - B buy more weapons
- B Aligns with C
 - B shifts policy
 - incentivize C to intervene
- C offers alliance
 - C ties hands
 - deters A

Preparing for Crisis

- Arm
 - B buy more weapons
- B Aligns with C
 - B shifts policy
 - incentivize C to intervene
- C offers alliance
 - C ties hands
 - deters A

Power vs Domestic

ARMS

Proposition 3

C's military strength: γ^0 and β^0 are increasing in c and α^0 is decreasing in c.

B's military strength: γ^0 is decreasing in b. β^0 is increasing and α^0 is decreasing in b if $X = \frac{d\gamma^0}{db}(q-p) + \gamma^0 \frac{d(q-p)}{db} + \frac{dp}{db} > 0$.

A's military strength: if $a < \sqrt{b(b+c)}$ then γ^0 is increasing in a; if $a > \sqrt{b(b+c)}$ then γ^0 is decreasing in a. If $\frac{d\gamma^0}{da}(q-p) + \gamma^0 \frac{d(q-p)}{da} + \frac{dp}{da}$ is positive then β^0 increases in a and α^0 decreases in a.

Figure: B's Military and Outcomes in the Crisis Subgame

- Weak with friends ⇒ Don't Arm
 - Underprovision of Arms (Olson&Zeckhauser)
- Large W_B Arm
 - Marginal cost: $\frac{\mu}{W_B}$

Alliance ties hands

Proposition 4

Defense Pact: $\gamma \uparrow \Rightarrow \beta \uparrow$ and $\alpha \downarrow$

Alliance ties hands

Proposition 4

Defense Pact: $\gamma \uparrow \Rightarrow \beta \uparrow$ and $\alpha \downarrow$

Result 1

Large W_C alliance attractive

Alignment

- B makes itself attractive to C
 - Policy Concession: $y \in \{0, 1\}$
 - Saliences: $\lambda_C > 0$ and $\lambda_B < 0$
- Align $\Rightarrow \gamma \uparrow$
 - $\gamma \uparrow$ beneficial if $|\lambda_B|$ small
 - deter A
- ullet Alignment attractive for small W_{B}

Proposition 5

Alignment increases intervention, $\gamma^A \geq \gamma^0$. Alignment increases the probability of resistance if $(\gamma^A - \gamma^0)(q - p)\sigma_B \geq -\gamma^A\lambda_B q$. The probability of resistance is increasing in λ_C and λ_B : $\frac{d\beta^A}{d\lambda_B} = f_B(\gamma^A q(\sigma_B + \lambda_B) + (1 - \gamma^A)p\sigma_B - \frac{m_B}{W_B})\gamma^A q \geq 0 \text{ and } \frac{d\beta^A}{d\lambda_c} = f_B\left(\gamma^A q(\sigma_B + \lambda_B) + (1 - \gamma^A)p\sigma_B - \frac{m_B}{W_B}\right)\frac{d\gamma^A}{d\lambda_c}((q - p)\sigma_B + q\lambda_B) \geq 0$. Alignment deters attacks if $\beta^A > \beta^0$.

Conclusions: Power and Institutions matter

- Power
 - ullet strategic behavior modified by institutions: γ , β and α
- Arms
 - Weak targets with friends don't arm
 - W_B does not matter
 - ullet Stronger targets: arms increase in W_{B}
- Align
 - Weak nations buy help
 - small W_B align
- Alliance
 - Large W_C offer alliance