Milestone Review Flysheet

nstitutior

The Pennsylvaina State University

Vehicle Properties		
Total Length (in)	147	
Diameter (in)	6.079	
Gross Lift Off Weigh (lb)	39.5	
Airframe Material	Blue Tube 2.0	
Fin Material	Fiberglass (1/8")	
Coupler Length	12 inches	

Stability Analysis				
Center of Pressure (in from nose)	110 inches			
Center of Gravity (in from nose)	89.7 inches			
Static Stability Margin	3.33			
Static Stability Margin (off launch rail	2.25			
Thrust-to-Weight Ratio	7.68			
Rail Size and Length (in)	1515 rail, 144 in			
Rail Exit Velocity	76.6 ft/s			

Recovery System Properties				
	Dogue Parachute			
Manufactu	irer/Model	Fruity Ch	utes/ Classic Elliptical	
Si	ze		36"	
Altitude	e at Deployn	nent (ft)	5280	
Velocity	at Deploym	ent (ft/s)	0	
Terminal Velocity (ft/s)		(ft/s)	65.7	
Recovery Harness Material		Kevlar		
Harness Size/Thickness (in)		0.5		
Recovery Harness Length (ft)		20		
Harness/Airframe C Interfaces		Closed 1/2" Steel Eyebolts, 1/4" Steel Quick Links		
Energy of	Section 1	Section 2	Section 3	Section 4
Each Section (Ft-	548.2	604.2	438.5	

Recovery Electonics		
Altimeter(s)/Timer(s) (Make/Model)	Stratologger SL100/CF	
Redundancy Plan	Two independent	
	altimeters (Stratologger	
	SL100/CF), e-matches,	
	power sources, black	

Milestone Preliminary Design Report

Motor Properties		
Motor Designation	4263-L1350-CS-0	
Max/Average Thrust (lb)	348.23/ 303.27 lb	
Total Impulse (lbf-s)	962 lbf-s	
Mass Before/After Burn	7.87/ 4.20 lb	
Liftoff Thrust (lb)	101.16	
Motor Retention	Slimline Retainer w/ Tailcone	

Ascent Analysis			
Maximum Veloxity (ft/s)	668 ft/s		
Maximum Mach Number	M 0.6		
Maximum Acceleration (ft/s^2)	255 ft/s^2		
Target Apogee (From Simulations)	5315 ft		
Stable Velocity (ft/s)	337.6 ft/s		
Distance to Stable Velocity (ft)	310 ft		

Recovery System Properties				
Main Parachute				
Manufactu	irer/Model	Fruity	/ Chutes/ Iris	Ultra
Si	ze		96"	
Altitude	e at Deployn	nent (ft)	700	
Velocity	at Deploym	ent (ft/s)	65	5.7
Terminal Velocity (ft/s)		17.8		
Recovery Harness Material		Kevlar		
Harness Size/Thickness (in)		0.5		
Recovery Harness Length (ft)		30		
		2" Steel Eyek eel Quick Lin		
Energy of	Section 1	Section 2	Section 3	Section 4
Each Section (Ft-	41.5	45.7	33.2	

Recovery Electonics		
Rocket Locators (Make/Model)	Garmin Astro 320 GPS Beacon	
Transmitting Frequencies	***Required by CDR***	
Black Powder Mass Drogue Chute (grams)	7.4	

Pad Stay Time (Launch Configuration)	3 hours		Black Powder Mass Main Chute (grams)	7.76
Milestone Review Flysheet				

nstitutior

Milestone

	Autonomous Ground Support Equipment (MAV Teams Only)
	Overview
Capture Mechanis m	
	Overview
Container Mechanis m	
-	Overview
Launch Rail Mechanis m	***Include Description of rail locking mechanism***
Igniter	Overview
Installation Mechanis m	

Payload			
	Overview		
Payload 1 Due to high accelerations and impacts during rocket flight, fragile objects stored within rocket are particularly vulto break or bend. LTRL's fragile object protection system aims to protect these fragile objects from potential date caused by vehicle flight by envelopling them in a non-Newtonian fluid suspended in a foam lined chamber via means.			
	Overview		
Payload 2	LTRL's second payload, a coaxial helicopter called Kiwi, will be launched from the rocket at apogee. Kiwi will then stabilize itself and autonomously navigate to a predetermined location. It will be equipped with an onboard GPS and emergency parachute.		

Test Plans, Status, and Results			
Ejection Charge Tests	LTRL will conduct ground tests for the ejection charges before subscale launch at a local facility. There will also be a ground test on the day of subscale launch and before a full scale launch. The amount of black powder needed for ejections will be estimated using models before initial ground testing but will be refined after the ground tests.		
Sub-scale Test Flights	First Subscale test launch is scheduled for early November		

Milestone Review Flysheet

nstitutior

Milestone

Additional Comments