Penn State Critical Design Review

Project Odyssey

January 25th, 2016

Overview

- Team introduction
- General overview
- Structures
 - Rocket design
- Avionics and Recovery
 - Recovery system
- Payload
 - FOPS
 - Kiwi
- Propulsion
 - Motor Choice
- Safety

- Mission Overview
 - Budget
 - Timeline
- Conclusion
- Appendix

Team Introduction

- Exec Committee
 - Luke Georges (President)
 - Evan Kerr (Vice-President)
 - Justin Hess (Treasurer)
 - Laura Reese (Safety Officer)
 - Brian Lodge (Outreach Chair)
- Structures Subsystem
 - Anthony Colosi
 - Kurt Lindhult
 - Kartik Singhal
- Avionics and Recovery Subsystem
 - Gretha Dos Santos
 - Evan Kerr

- Payload
 - Torre Viola
 - Daniel Yastishock
- Propulsion Subsystem
 - Alex Parkhill
 - Trevor Moser

Structures – Vehicle Dimensions

- Total Length:
 - With Fins: 147" ≅ 12.3'
 - Nose Cone Tip to Tail Cone: 146"
- Outer Diameter: 6.079"
- Total Mass = 38.69 lb

Structures – Mass Statement and Mass Margin

Component	Mass (oz)
Nosecone with aluminum tip	40
Airframe	79.7
Acrylic	18.2
FOPS	40
KIWI	19
Avionics Bay	28
Other (motor, fins, Hardware, epoxy)	362.1

 Currently our design includes 10% margin of increase which can be increased or decreased prior to launch for unforeseen mass changes

Structures – Key Design Features

- Von Karman nosecone
- Aluminum nosecone tip for durability
- External 3D printed fin brackets
- 3/16 inch fiberglass fins
- Blue Tube 2.0 airframe
- 6 inch coupler shoulders
- 3D printed coupler transitions

Structures – Transitions

Structures – Stability Margin

- CG: 91.75 inches from the tip of nose cone
- CP: 115 inches from the tip of nose cone
- Static stability margin: 3.8 calibers
- 2.65 calibers off the launch rail
- Rail Exit Velocity: 75.8 ft/s
- Thrust to Weight: 7.83

Launch Vehicle OpenRocket Simulation

Structures – Status of Verification: Structures

- Reusable Launch Vehicle Design
 - Modular & durable components for repair
- Four Section Design with Single Stage
 - Even mass distribution for uniform forces
- Preparation within 4 hours
 - Screws for rapid assembly/diagnostics

Structures – Upcoming Material Testing

- Tensile Testing with varying fastener placement
- Creation of 6061 Aluminum bulk plates for attachment
- Previous Testing on G12
 Fiberglass sinframes are single

Fiberglass airframe specimen

Avionics and Recovery – Subscale Flight Results

Summary:

- Apogee: 2467 ft
- Descent Time: 95 seconds
- Deployment: Anomaly at apogee
 - Main and drogue deployed
 - Too few shear pins in the main coupler

Lessons Incorporated:

- Include more shear pins in main coupler
- Do more extensive ground testing

Avionics and Recovery – Subscale Flight Results

Avionics and Recovery – Avionics Bay Design

Fiberglass board

3D Printed Board Prototype

Avionics and Recovery – Avionics Bay Design

3D Printed board

Avionics and Recovery – Avionics Bay Design

3D Printed Faraday Cage Sleeve

Avionics and Recovery – Wiring Diagram

- Two independent altimeters
- Redundant Altimeter will be at a delay

Avionics and Recovery – Parachute selection

	Drogue	Main
Parachute Type	18" Classic Elliptical	72" Iris Ultra Standard
Parachute Cd	1.5	2.2
Harness Type	½" Tubular Kevlar	½" Tubular Kevlar
Harness Length	30'	40'
Charge mass (black powder)	4g	5g

Avionics and Recovery – Deployment Method

Avionics and Recovery – Velocity and Altitude Models

Avionics and Recovery – Kinetic Energy

Section	Weight (lbf)	Kinetic Energy (ft*lbs.)	Wind Velocity (mph)	Drift Distance (ft)
			0	0
Nosecone	8.40 41.5	41.5	5	768.4
Central Body	9.26	45.7	10	1537
•			15	2305
Booster Section6.7241.5	41.5	20	3774	

Avionics and Recovery – Testing

Deployment Charge Testing

- Ground test black powder charges prior to launch
- Testing occurs at either High Pressure Combustion Lab (HPCL) or at launch field
 - Under supervision from mentor/level 2 NAR member

Avionics Bay Simulations

- Use vacuum chamber to test fully integrated avionics bay
- Determine pressure port sizes and test for altimeter functionality prior to launch

Payload – FOPS Design Overview

- Reservoir balloon fills main chamber once specimen is loaded
- Elastic bands restrain holding chamber movement
- Clear chamber allows for observation of payload

Payload – Kiwi Design Overview

- Autogiro design ensures stability
- GPS and IMU direct Kiwi to predetermined landing point
- Parachute will be used at altitude of 100' or in case of emergency
- Will be ejected from rocket at apogee

Payload – Kiwi Sectional View

Payload – Kiwi Electronic Schematics

Payload – Kiwi Electronic Schematics

Payload – Kiwi Flight Software Flowchart

Payload – Kiwi Flight Software Flowchart

Payload – Subscale Launch Analysis

- A scoop-shaped corn chip used as a test subject did not survive launch and recovery
- Difficulty loading the chip is considered to be the cause of breakage
- After discussion, a new loading method was determined to be the most likely solution

Propulsion – Preliminary Motor Selection

Designation	Apogee	Velocity off	Impulse	Weight	Thrust/Weight
	(ft.)	rail (ft./s)	(lbf-s)	(oz.)	Ratio
Cesaroni L1350 (3 Gr.)	5231	75.8	962	125.92	7.83

The L1350 is the Cesaroni motor that achieves a simulated apogee closest to the goal of 5280 feet.

Propulsion – Primary Motor (L1350) Thrust Curve

Propulsion – Full Scale Flight Simulation

Propulsion – Static Motor Testing

Static Motor Testing

Static Motor Testing will be conducted in the coming weeks for calibration of test equipment.

Propulsion – Wind Tunnel Testing

Wind tunnel testing will be conducted on a subscale model when space is available.

Safety – Overview

- All subsystems have created launch checklists to be filled out before subscale and fullscale launches
- Major risks and failure modes were identified and mitigation plans were developed
- Member safety training and lab safety are being improved
 - All Leads and Executives have official lab training from the Penn State Environmental Health and Safety (EHS) Office
 - All members take online EHS lab safety modules

Mission Overview - Budget

Expected Costs: 2016-2017		
Fullscale	\$1,776.35	
Subscale	\$277.65	
Propulsion	\$1,183.00	
Travel	\$7,000.00	
Outreach	\$300.00	
Miscellaneous Equipment	\$750.82	
Total	\$11,287.82	

Expected Income 2016-2017		
Aerospace Engineering Department	\$5,000.00	
Mechanical Engineering Department	\$1,000.00	
Samuel A. Shuman Endowment in Engineering	\$8,700.00	
Club Fundraising	\$1,500.00	
The Boeing Company	\$500.00	
Total	\$16,700.00	

Questions?