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Team Introduction

Exec Committee
— Luke Georges (President)
— Evan Kerr (Vice-President)
— Justin Hess (Treasurer)
— Laura Reese (Safety Officer)
— Brian Lodge (Outreach Chair)

Structures Subsystem

— Anthony Colosi

— Kurt Lindhult

— Kartik Singhal
Avionics and Recovery
Subsystem

— Gretha Dos Santos

— Evan Kerr

Payload

— Torre Viola

— Daniel Yastishock
Propulsion Subsystem
— Alex Parkhill

— Trevor Moser



Structures — Vehicle Dimensions

e Total Length:

With Fins: 1477 = 12.3’

Nose Cone Tip to Tail Cone: 146"
e OQOuter Diameter: 6.079”
e Total Mass=38.69 Ib

| 47.000 |




Structures — Mass Statement and Mass Margin

Component

Nosecone with
aluminum tip

Airframe
Acrylic

FOPS

KIWI
Avionics Bay

Other (motor, fins,
Hardware, epoxy)

Mass (0z)

40

79.7
18.2
40
19
28

362.1

Currently our design
includes 10% margin of
increase which can be
increased or decreased
prior to launch for
unforeseen mass
changes



Structures — Key Design Features

Von Karman nosecone

Aluminum nosecone tip for durability
External 3D printed fin brackets

3/16 inch fiberglass fins

Blue Tube 2.0 airframe

6 inch coupler shoulders

3D printed coupler transitions




Structures — Transitions
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Structures - Stability Margin
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e Static stability margin: 3.8
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® 2.65 calibers off the launch rail
e Rail Exit Velocity: 75.8 ft/s
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Structures — Status of Verification: Structures

® Reusable Launch Vehicle Design

o Modular & durable components for repair
® Four Section Design with Single Stage

o Even mass distribution for uniform forces

® Preparation within 4 hours

o Screws for rapid assembly/diagnostics




Structures — Upcoming Material Testing

® Tensile Testing with varying
fastener placement

® Creation of 6061 Aluminum bulk
plates for attachment

® Previous Testing on G12

Fiberglass airframe specimen




Avionics and Recovery — Subscale Flight Results

Summary:
o Apogee: 2467 ft
o Descent Time: 95 seconds
o Deployment: Anomaly at apogee
m Main and drogue deployed
m Too few shear pins in the main coupler
Lessons Incorporated:
o Include more shear pins in main coupler
o Do more extensive ground testing



Avionics and Recovery — Subscale Flight Results
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Avionics and Recovery — Avionics Bay Design

Fiberglass board 3D Printed Board Prototype

AR




Avionics and Recovery — Avionics Bay Design

3D Printed board
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Avionics and Recovery — Avionics Bay Design

3D Printed Faraday Cage Sleeve




Avionics and Recovery — Wiring Diagram

Main Parachute Black Powder Charge

e Two independent altimeters

e Redundant Altimeter will be Ejection Charge Ejection Charge
at a delay
Switch
Switch
)
3
\ I T
" Stratologger Altimeter Stratologger Altimeter I+
Bat 9V Bat 9V

Drogue Parachute Black Powder Charge

I I I I
Ejection Charge Ejection Charge




Avionics and Recovery — Parachute selection

Parachute 18" Classic 72" Iris Ultra
Type Elliptical Standard
ParachuteCd 1.5 2.2

Harness Type ’%2” Tubular %" Tubular

Kevlar Kevlar
Harness 30’ 40’
Length
Charge mass 4g 5g
(black

powder)



Avionics and Recovery — Deployment Method

2. Drogue Deploy
Apogee

P Main Chute
- Avionics Bay
™~ Drogue Chute gbgd;:nféiloy

1. Launch
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Avionics and Recovery — Velocity and Altitude Models
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Avionics and Recovery — Kinetic Energy

Section Weight (Ibf) Kinetic Energy Wind Velocity Drift Distance (ft)
(ft*Ibs.) (mph)
0 0
Nosecone 8.40 41.5 5 768.4
Central Body 9.26 45.7 10 1537
15 2305
Booster Section 6.72 41.5 20 3774
Kinetic Energy at Landing vs. Necessary Parachute Radius
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Avionics and Recovery — Testing

Deployment Charge Testing

e Ground test black powder charges prior to launch
® Testing occurs at either High Pressure Combustion Lab

(HPCL) or at launch field
o Under supervision from mentor/level 2 NAR member

Avionics Bay Simulations
e Use vacuum chamber to test fully integrated avionics bay
e Determine pressure port sizes and test for altimeter
functionality prior to launch



Payload — FOPS Design Overview

® Reservoir balloon fills main
chamber once specimen is
loaded

e Elastic bands restrain holding
chamber movement

® C(Clear chamber allows for

observation of payload



Payload — Kiwi Design Overview

e Autogiro design ensures
stability

e GPS and IMU direct Kiwi to
predetermined landing point

® Parachute will be used at <
altitude of 100’ or in case of

emergency
e Will be ejected from rocket
at apogee



Payload — Kiwi Sectional View




Payload — Kiwi Electronic Schematics
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Laptop

Payload — Kiwi Electronic Schematics

USB Port

Emergency PWR Off I

S—_ [, —
Arduino
3.3V D7
DO (RX)
D1 (TX)
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Payload — Kiwi Flight Software Flowchart
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Payload — Kiwi Flight Software Flowchart

shutdown signal

Send Check Emergency Send system
Signal to Kiwi Switch Pressed? Yes

Location and

Display Kiwi's
velocity data




Payload — Subscale Launch Analysis

e A scoop-shaped corn chip used as a test subject did not
survive launch and recovery

e Difficulty loading the chip is considered to be the cause of
breakage

e After discussion, a new loading method was determined to
be the most likely solution



Propulsion — Preliminary Motor Selection

The L1350 is the Cesaroni motor that achieves a simulated apogee closest to the
goal of 5280 feet.



Propulsion — Primary Motor (L1350) Thrust Curve
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Propulsion — Full Scale Flight Simulation

Full Scale Flight Simulation
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Propulsion — Static Motor Testing

Static Motor Testing

Static Motor Testing will be conducted in Cantilevered Beam

the coming weeks for calibration of test
equipment.

LoadCell —

Motor Casing —— ~ \ I-Beam (Not Shown)

Retainer



Propulsion — Wind Tunnel Testing

Wind tunnel testing will be conducted on a subscale model when space is available.

Expanded view of wind tunnel test set up (not to scale).

S-shaped Load Cell

\ Internal Bulk Head.

Sub-scale Rocket
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Safety — Overview

e All subsystems have created launch checklists to be filled out
before subscale and fullscale launches

® Major risks and failure modes were identified and mitigation plans
were developed
e Member safety training and lab safety are being improved
o All Leads and Executives have official lab training from the
Penn State Environmental Health and Safety (EHS) Office
o All members take online EHS lab safety modules



Mission Overview - Budget

Expected Income 2016-2017

Expected Costs: 2016-2017

Aerospace
Engineering
Department

$5,000.00

Mechanical
Engineering
Department

$1,000.00

Samuel A.
Shuman
Endowment in
Engineering

$8,700.00

Club Fundraising

$1,500.00

Fullscale $1,776.35
Subscale $277.65
Propulsion $1,183.00
Travel $7,000.00
Outreach $300.00
Miscellaneous $750.82
Equipment

Total $11,287.82

The Boeing
Company

$500.00

Total

$16,700.00




Questions?



