

USLI Critical Design Review Report 2016-2017 Project Odyssey

The Pennsylvania State University 46 Hammond Building State College, PA 16802 January 13, 2017

Table of Contents

Table of Co	ntents 2
List of Acro	1yms 5
List of Varia	bles 6
List of Figur	es7
List of Table	s
Section 1: G	eneral Information
1. impo	Adult Educator 11
	Safety Officer 11
	Toom Loador 11
	NAR Contact
2: Team	n Roster and Structure
	Technical13
Section 2: S	ummary of CDR Report14
1: Team	າ Summary15
2: Vehio	cle Summary15
	Size and mass
	Motor choice
	Recovery system
	Rail Size15
3: Paylo	ad Summary
	Summary of the Payload Experiment15
4: Miles	tone Review Flysheet
Section 3: C	hanges Made Since PDR18
1: Vehio	cle Design
2: Reco	very System 19
	General:19
	Parachute Sizing:
	Avionics Board:19
3: Paylo	pads19
4: Proje	ct Plan
Section 4: D	esign and Verification of the Launch Vehicle21
1: Missi	on Statement
2: Final	Design Decisions
	Motor Selection
	Nosecone

	Transitions and Acrylic	. 24
	Airframe	. 26
	Bulkheads and Centering Rings:	. 29
	Camera cover:	. 30
	Fin brackets:	. 31
	Fins:	. 32
	Tail cone:	. 33
	System level design review	. 35
	Suitability of shape and fin style for mission	. 35
	Proper use of materials in fins, bulkheads, and structural elements	. 37
	Verification of sufficient motor mounting and retention	. 38
	Mass Estimates	. 38
3: Subsca	le Flight Results Avionics Results	. 39 . 40
	Propulsion Results	. 41
	Payload Results	. 41
	Scaling Factors and Decisions	. 41
	Error between predictions and test results	. 41
	Sub-scale flight and its effect on full-scale design	. 42
4: Recove	ry Subsystem Components of the Recovery System	42 42
	Parachute Size Estimation	. 47
	Proof of Redundancy	. 50
5: Missior	n Performance Predictions Motor Performance Analysis	50 50
	Stability Analysis	. 52
	Recovery Predictions	. 55
	Kinetic Energy Calculations	. 55
	Drift Calculations	. 56
Section 5: Safe	ety	57
1: Launch	Concerns and Operation Procedures Recovery Preparation	. 58 . 58
	Structures Preparation	. 59
	FOPS Launch Checklist	. 59

Kiwi Launch Checklist 60
Motor Preparation
Setup on Launcher61
Ignition Insertion61
Troubleshooting62
Post flight inspection63
2: Safety and Environment
Failure Modes and Effects Analysis67
Environmental Concerns77
Overall Project Risk Management78
Section 6: Payload Criteria
1: Selection, Design and Rationale of payload82
FOPS:
Kiwi:
Section 7: Project Plan
1: Lesting
Payload Testing 03
Drag coefficient testing
Static Motor testing
2: Requirements Compliance
Team Derived Requirements108
3: Budget and Timeline
Budget:
Funding:
Project Timelines119
Works Cited
Appendix A: RECOVERY DESCENT PROFILE CALCULATOR
Appendix B: MSDS for Black Powder
Appendix C: MSDS for Pyrodex 147

List of Acronyms

A&R	Avionics and Recovery
CATO	Catastrophe at Takeoff
CFD	Computational Fluid Dynamics
EHS	Environmental Health and Safety
FAA	Federal Aviation Administration
FEA	Finite Element Analysis
FOPS	Fragile Object Protection System
GPS	Global Positioning System
HPCL	High Pressure Combustion Lab
LTRL	LionTech Rocket Labs
MDRA	Maryland Delaware Rocketry Association
MSDS	Material Safety Data Sheet
NAR	National Association of Rocketry
NASA	National Aeronautics and Space Administration
NFPA	National Fire Protection Association
PPE	Personal Protective Equipment
PSC	Pittsburgh Space Command
PSU	The Pennsylvania State University
RDPC	Recovery Descent Profile Calculator
RSO	Range Safety Officer
STEM	Science Technology Engineering Math
STTR	Small Business Technology Transfer
TRA	Tripoli Rocket Association
UPAC	University Park Allocation Committee
USLI	University Student Launch Initiative

List of Variables

C_d	=	Coefficient of Drag
D	=	Drag
V	=	Velocity
KE	=	Kinetic Energy
m	=	mass
M_{t}	=	total mass under parachute descent
M_{m}	=	mass of heaviest component descending under parachute
g	=	acceleration due to gravity on the surface of the Earth
Т	=	Thrust
ρ	=	Air density (assumed 0.002378 slugs/ft ³)
А	=	Area of the rotor
V_{tip}	=	The velocity at the tip of the rotor
C_{lavg}	=	The average coefficient of lift
Ω	=	Rotation rate in rad/s
r	=	Radius
V_{f}	=	Forward velocity
V_{fnd}	=	Non-dimensional forward velocity

List of Figures

Figure 1: Thrust Curve for the Cesaroni L1350 motor	. 23
Figure 2: Von Karman Nose Cone Engineering Drawing	. 24
Figure 3: Dimensioned Drawing of the Nose Cone to Acrylic Transition	. 25
Figure 4: Dimensioned Drawing of the Acrylic to Main Body Tube Transition	. 26
Figure 5: Dimensioned Drawing of the full-scale Vehicle Assembly	. 28
Figure 6: Dimensional Drawing of the Down-Body-Camera Cover	. 30
Figure 7: Dimensioned diagram of a Fin Bracket	. 31
Figure 8: Dimensioned drawing of a Fin	. 32
Figure 9: Dimensioned Drawing of the Tail Cone	. 33
Figure 10: Comparison of Geometries and Comparable Drag Coefficients	. 34
Figure 11: Fin Planform Dimension References	. 36
Figure 12: Altitude results from subscale simulation	. 40
Figure 13: Flight Profile of the subscale during descent	. 40
Figure 14: Fiberglass board (Left) vs 3-D printed board prototype (right)	. 43
Figure 15: Full-scale 3-D printed board	. 44
Figure 16: Full Scale 3-D Printed Avionic Board	. 44
Figure 17: Sleeve for Faraday Cage Assembled Avionics Bay	. 46
Figure 18: Diameter of the main parachute vs. desired kinetic energy at landing	. 50
Figure 19: Full-scale Flight Simulation	. 51
Figure 20: OpenRocket Thrust Curve Simulation	. 52
Figure 21: Full-scale OpenRocket Model	. 52
Figure 22: Full-scale OpenRocket Stability Simulation for 12 ft rod	. 53
Figure 23: Full-scale OpenRocket Stability Simulation for 8 ft rod	. 54
Figure 24: Descent profile of the rocket from RDPC	. 55
Figure 25: FOPS Drawing	. 82
Figure 26: FOPS Dimensions	. 83
Figure 27: Exterior View of Kiwi Vehicle	. 84
Figure 28: Kiwi vehicle dimensions	. 84
Figure 29: Cross Section view of Kiwi Vehicle	. 85
Figure 30: Fastening mechanism for the electronic components	. 86
Figure 31: Ground station wiring schematic	. 86
Figure 32: Schematic for the electrical systems onboard the gyrocopter	. 87
Figure 33: Kiwi Ground Station (GS) Software Diagram	. 88
Figure 34: Kiwi's onboard software flow diagram	. 89
Figure 35: Tensile Test Setup for G12 Fiberglass Specimen	. 91
Figure 36: Force vs. Displacement of 3-inch diameter G12 Fiberglass Specimen	. 92
Figure 37: Calculation of Yield Stress from Tensile Test Data	. 93
Figure 38: Diagram of Wind Tunnel Test Setup	. 95

Figure 39: Static Motor Test Setup	
Figure 40: Executive Timeline Page 1 of 4	119
Figure 41: Executive Timeline Page 2 of 4	120
Figure 42: Executive Timeline Page 3 of 4	121
Figure 43: Executive Timeline Page 4 of 4	122
Figure 44: A&R Timeline Page 1 of 2	123
Figure 45: A&R Timeline Page 2 of 2	124
Figure 46: Structures Timeline Page 1 of 2	125
Figure 47: Structures Timeline Page 2 of 2	126
Figure 48: Propulsion Timeline Page 1 of 2	127
Figure 49: Propulsion Timeline Page 2 of 2	128
Figure 50: Payload Timeline Page 1 of 2	129
Figure 51: Payload Timeline Page 2 of 2	130

List of Tables

Section 1: General Information

1: Important Personnel

Adult Educator Michael Micci - micci@psu.edu - (814-863-0043) Safety Officer Laura Reese - ler5201@psu.edu Team Leader Luke Georges - lag5461@psu.edu NAR Contact Alex Balcher NAR L2 Certification - alex.balcher@gmail.com - #96148SR NAR Sections: Pittsburgh Space Command (PSC) #473

2: Team Roster and Structure

Lion Tech Rocket Labs has approximately 88 active members, ranging from freshman to senior undergraduates and graduate students. However, it is unexpected that all of these students will be able come to the competition due to travel expenses and necessary accommodations. The team is divided into administrative and technical branches for managing resources and completing tasks.

Administrative

The administrative branch is composed of the President, Vice-President, Treasurer, Secretary, Outreach Chair, Webmaster and Safety Officer. These individuals are responsible for actively providing space for the technical branch to be able to function and managing the team as a whole. The position holder and their respective duties are shown in Table 1.

Name	Position	Proposed duties
Luke	President	Communicates with project stakeholders, organizes meetings and keeps team on schedule. Guides team in the overall design and construction of the systems.
Evan	Vice President	Assists President in managerial tasks, meetings with stakeholders and team. Coordinates integration between subsystems.
Justin	Treasurer	Arranges fundraising events, communicates with sponsors and manages funds for the project
Scott	Secretary	Records information discussed in meetings and communicates with the general body of the club in the form of reminders and meeting recaps via email
Brian	Outreach	Organizes events for the club to engage with the community and share experience, knowledge and passion in STEM fields
Tanay	Webmaster	Manages team website, uploads project deliverables and meeting notes
Torre	Safety Officer	Ensures team follows safety regulations and implements safety plan

Table 1: Administrative Infrastructure

Technical

The technical branch is responsible for the design, fabrication, testing, and flight operations of the payloads and flight vehicle. The technical branch is divided in to four main subsystems: Avionics and Recovery, Payload, Propulsion, and Structures. Table 2 displays the officer positions and subsystem duties within the technical branch. Because the team is large, a description of what each subsystem's duties are is given in place of a description of each member's duties. The officers themselves take a leadership role in the subsystems; they guide, teach and work alongside their team to complete their duties. The general members of the club are spread out among each of the four subsystems, under the technical officers.

	Position	Duties
Evan	A&R	Avionics and Recovery creates the avionics bay for the flight vehicle,
	Leadership	tests altimeters, ejection charges and parachutes. On launch days
Gretha		A&R ensures proper parachute packing and successful vehicle
		recovery.
Torre	Payload	Payload designs and creates science packages for the project. These
	Leadership	tend to involve computing and electrical components within the flight
Dan		vehicle. Payload ensures these packages are functioning properly
		when preparing for launch.
Alex P.	Propulsion	Propulsion selects motors for the vehicle, performs flight analysis and
	Leadership	drag estimates. Propulsion is normally in charge of motor handling
		and insertion on launch days.
Kurt	Structures	Structures designs and creates the flight vehicle, tests materials and
Anthony	Leadership	ensures all necessary components of the vehicle are compatible and
7 and 10 mg		flight ready. Structures is in charge of final assembly of the rocket for
Kartik		launch.

Table 2: Technical Infra	astructure
--------------------------	------------

Section 2: Summary of CDR Report

1: Team Summary

Team – LionTech Rocket Labs Address – 46 Hammond Building, University Park, PA 16802 Mentor – Alex Balcher – NAR L2 – #96148SR

2: Vehicle Summary

Size and mass

The current launch vehicle design will result in a launch vehicle with an overall length of 147 inches, and a total mass of 30.81 pounds without the motor and 38.69 pounds with the motor at launch. These values are smaller than expressed in previous reports due to the shrinking of several components, allowing for a reduction necessary airframe length. The outer diameter of the airframe will be 6.079" and will be constructed out of Blue Tube 2.0.

Motor choice

The motor selected for full scale is the Cesaroni L1350 motor. This motor provides the rocket with an apogee of 5231 ft and an off the rail velocity and stability of 75.8 ft/s and 2.65 calibers respectively.

Recovery system

The recovery system will utilize a dual-deployment landing system where the drogue will be deployed at apogee and the main will be deployed at 700ft above the ground. This landing system along with properly sized parachutes will allow the rocket to land within the kinetic energy limit of 75ft-lbs. The avionics bay consists of two independent altimeters with corresponding power supplies, switches, and charges one of which will be for redundancy. In order to not overwhelm the body of the rocket, one of the altimeters will set off the ejection charges at a delay. The avionics bay will be contained in a coupler in the center of the rocket with parachutes on both ends of it. The rocket will have an 18" Classical Elliptical as the drogue parachute and a 72" Iris Ultra Standard as the main parachute.

Rail Size

The launch vehicle will use a 1515 rail. It is capable of launching on an 8-foot launch rail, however for safety and increased off the rail stability and velocity the rail length chosen is 12-feet

3: Payload Summary

Summary of the Payload Experiment

The two payloads LTRL is flying in this competition are FOPS, Fragile Object Protection System, and Kiwi, a gyrocopter.

FOPS uses a protection bay filled with non-Newtonian fluid, a solution of cornstarch and water, to protect the unknown fragile object from the forces of rocket flight. The object will be suspended in the fluid using flexible plastic, re-sealable bag connected to each end of the

protection bay via elastic bands. The launch vehicle will also contain and launch an autonomous autogyro (Kiwi), which will guide itself to a predetermined location using an on-board GPS.

Milestone Review Flysheet										
Institution	Institution Pennsylvania State University					Milestone CDR				
	Veh	icle Properties				Motor Properties				
Total Le	ngth (in)		147			Motor N	/lanufacturer	C	Cesaroni	
Diame	ter (in)		6.079			Motor	Designation		L1350	
Gross Lift O	ff Weigh (lb)		38.69			Max/Aver	age Thrust (Ib)	Avg: 303.4		
Airframe	Material	В	lue Tube 2.0			Total In	npulse (lbf-s)		962	
Fin M	aterial	G10	FR4 Fiberglas	ss		Mass Bef	ore/After Burn	261	.6g/1270g	
Di	ag		0.628			Liftoff	Thrust (lb)		340	
	Sta	bility Analysis					Ascen	t Analysis		
Center of	Pressure (in fr	om nose)	115	5		Ma	ximum Veloxity (ft/s)	675	5
Center o	f Gravity (in fro	om nose)	91.7	′5		Ma	ximum Mach Nur	nber	0.6	1
Stat	ic Stability Ma	rgin	3.8	8		Maxim	Maximum Acceleration (ft/s^2)			Э
Static Stabil	ity Margin (off	launch rail)	2.65			Target Apogee (From Simulations)			523	1
Thru	st-to-Weight F	Ratio	7.83			Stable Velocity (ft/s)		95		
Rail S	Size and Lengtl	n (in)	1.5/144			Distance to Stable Velocity (ft)		3.5	;	
Rail	Exit Velocity (ft/s)	75.8							
	Recovery	v System Prope	rties				Recovery Sy	stem Propertie	es	
	Dro	gue Parachute					Main	Parachute		
Manufacti	urer/Model	Fruity	Fruity Chutes Elliptical			Manufacturer/Model Fruity Chute Iris Ult			tra	
Si	ze	1	8" Diameter				Size	72"	' Diameter	
Altitud	le at Deployme	ent (ft)	528	0		Altit	ude at Deployme	nt (ft)	700	J
Velocity	at Deployme	nt (ft/s)	-			Veloc	Velocity at Deployment (ft/s)		95	
Tern	ninal Velocity (ft/s)	95			Terminal Velocity (ft/s)		t/s)	19.52	
Recov	ery Harness M	aterial	Kevlar			Recovery Harness Material		terial	Kevlar	
Harnes	ss Size/Thickne	ess (in)	0.5			Harness Size/Thickness (in)		0.5		
Recove	Recovery Harness Length (ft)					Recovery Harness Length (ft)		40	ļ	
Harness/Airframe 1/2" Interfaces		' Steel Eye Bolt			Harness/Airframe 1/2" Interfaces		1/2" S	Steel Eye Bolt		
Kinetic Energy of	Forward Body	Aft Body	Section 3	Section 4		Kinetic Energy	Nose/Body Tube	Avionics Bay	Booster	KIWI

4: Milestone Review Flysheet

Each Section (Ft-Ibs)	1651	2728			of Each Section (Ft-lbs)	51.42	49.64	52.44	9.22
Recovery Electronics				Recovery Electronics					
Altimeter(s)/Timer(s) (Make/Model) StratoLogger CF		CF	Rocket Locators (Make/Model)		Garmin Astro 320				
		Single level redundancy		Transmitting Frequencies		MURS (151.820 MHz - 154.600 MHz)			
Redundancy Plan	ancy Plan	event		Pyrodex Mass Drogue Chute (grams)		5			
Pad Stay T Config	ime (Launch juration)		2 hours Pyrodex Mass Main Chute (grams)		4				

Section 3: Changes Made Since PDR

1: Vehicle Design

Upon the transition from sub-scale to full-scale, several changes were made to the structure of the rocket to boost stability and flight performance as well as contribute to structural integrity sufficient for vehicle criteria. For example, fin shape was altered and fin brackets were designed to best reduce the effects of fin flutter. Other changes were made to internal components such as increasing the size of couplers to reduce the risk of failure at section interfaces. These changes are elaborated upon in the upcoming design sections.

2: Recovery System

General:

The main changes since PDR are the sizes of the parachutes and the design of the avionics board. The avionics board is now more compact and LTRL has confirmed the ability to successfully 3-D print boards. The design of the board is included later in this report and parachute sizing is also covered in depth.

Parachute Sizing:

A more thorough look was taken at parachute sizing. The coefficients of drag used in the model to predict the subscale flight recovery were found by doing simple drop test experiments with the parachutes. However, these numbers proved to be inaccurate, as shown by the comparison between the predicted descent profile and the actual descent profile of the subscale launch. The parachute sizes are now smaller and will drift less.

Avionics Board:

Since PDR, the design for the avionics board has been finalized. The final design for the avionics board will consist of a 3-D printed board in a new configuration in order to account for design concerns addressed in PDR. The new configuration is a triangular structure with three all-thread rods in which the altimeters will rest on the top of a horizontal platform, while the batteries lie underneath this platform. This configuration was decided upon in order to add additional strength to the avionics coupler as a whole, by using three all-thread rods, as well as to hold all components of the avionics board more securely. In addition, the plane that batteries are in is now horizontal which eliminates the safety concern of the battery terminal being removed. Specifically, this configuration will eliminate the concerns that launch and deployment event forces can dislodge the battery terminals from the electrical harness.

3: Payloads

The method of loading FOPS has been changed from inserting the specimen into a chamber filled with dilatant to inserting the specimen into an empty chamber and then allowing an on-board reservoir to fill the chamber. The second payload will be a gyrocopter instead of a coaxial

helicopter. The details of the new design can be found later in the report. Additional safety features are included in the gyrocopter that were not included in the coaxial helicopter.

4: Project Plan

The project plan has been updated to more accurately reflect the plans for the second half of the project. In addition, the plan now has a greater level of detail compared to PDR. The timeline now includes meeting times, as well as timelines for each subsystem rather than a broad timeline for the entire project. The system level timelines provide more detail and better represent the actual activities of the club. Furthermore, a Google Calendar was created for the club. The calendar is accessible by all leads and allows them to record what was accomplished in each meeting and plan what needs to be completed in future meetings. This will allow better record keeping and for easier access to information pertaining to what each subsystem has done and when.

Section 4: Design and Verification of the Launch Vehicle

1: Mission Statement

LionTech Rocket Labs believes in providing an opportunity to be a part of high powered rocketry and engineering design processes to any students who are interested, regardless of background or experience.

LTRL is strives to excel in the USLI competition using previous experiences combined with new innovations and ideas; however, the success of the organization is not directly tied to this. Instead, the success of the organization is based on:

- Members gaining valuable experience in rocketry, teamwork and outreach
- Outreach activities spreading information about both the club and STEM fields
- Conducting innovative design and research to improve the club and project

2: Final Design Decisions

Motor Selection

The motor selected for full scale is the Cesaroni L1350 motor. This motor was chosen because it offers the closest apogee to the target apogee amongst the three candidate motors. Furthermore, reliability and safety are two of the most important characteristics when selecting motors, and based on prior experience and observation, Cesaroni motors have been consistent in this regard.

The L1350, which is a 67% L-Class motor that utilizes a variant of ammonium perchlorate composite propellant known as C-Star. The current weight of the rocket with the primary motor inside of it is 619 oz and has a thrust to weight ratio of approximately 7.83. The L1350 motor achieves a 5231 ft apogee and an off the rod velocity of 75.8 ft/s based on the current rocket configuration in OpenRocket. This software is used as an estimate along with the manufacturer motor specifications until the motor characteristics are clarified through static motor testing at The Penn State University High Pressure Combustion Lab. Motor testing is discussed in more detail in section 7.1. The manufacturer's thrust curve, as shown in Figure 1, displays a thrust curve without any extreme peaks and maintains close to the average thrust of approximately 303 lbs. This is a desired thrust curve because it will be easier to model due to the lack of extreme peak thrust with respect to the average thrust. The thrust curve also displays a total impulse of 962 lbf-s and an engine burn time of about 3.25 seconds.

Figure 1: Thrust Curve for the Cesaroni L1350 motor

Nosecone

For the final design of the launch vehicle, the nosecone material was chosen to be fiberglass. This is due to the fact that in comparison to plastic, fiberglass has superior durability necessary to withstand both predicted and unforeseen forces that could act on the nosecone. This superior durability and strength makes fiberglass the superior option, even taking into account the increased cost and weight of the component. In addition, the nosecone tip was chosen to consist of a separate aluminum component over an integrated fiberglass tip. An aluminum tip has superior ductility and structural stiffness in comparison to a fiberglass counterpart. In addition, a separate aluminum component would allow to easy replacement of the component should it experience any structural or aerodynamic imperfections, instead of having to replace the entire nosecone. The profile of the nosecone was chosen to be the Von Karman shape over an ogive profile. This is due to the Von Karman's mathematical formulation to have a lower overall drag coefficient than an Ogive profile [1]. Because of this, the launch vehicle has increased aerodynamic performance. The only drawback to the Von Karman profile is its greater overall length in comparison, necessitating an increase in length and thus weight of the nosecone component, but this consideration is well worth the decrease in drag coefficient.

Figure 2: Von Karman Nose Cone Engineering Drawing

The dimensioned drawing of the nosecone is shown in Figure 2. The overall specifications for nosecone are as follows:

- 5.5:1 length to diameter ratio
- 5.5-inch outer diameter
- 30.25-inch length
- 3-inch shoulder (5.4-inch diameter)
- 73-ounces (including all the components housed within nosecone)

Transitions and Acrylic

The final material choice for both the nosecone to acrylic transition, and the acrylic to main body tube transition, will be a 3D-printed PLA thermoplastic. No viable superior material option to PLA thermoplastic was found for printing the components using the techniques of additive manufacturing, or 3D-Printing. This was primarily due to the ease of manufacturing PLA thermoplastic parts and the readily available resources for 3d-printing using PLA thermoplastic. Experiences using PLA thermoplastic for components in the past year has resulted in adequate durability and strength, given expected loads during flight and recovery.

Figure 3: Dimensioned Drawing of the Nose Cone to Acrylic Transition

The forward transition is shown and dimensioned in Figure 3. The specifications for this transition are as follows:

- 1.5-inch exposed length
- 1.75-inch shoulder length
- 5.5-inch forward diameter and 5.75-inch max diameter
- 1.49 ounces

The acrylic section of the vehicle contains the FOPS payload assembly. It also contains the transition stabilizing coupler made from blue tube 2.0. Refer to Figure 25 in the FOPS payload description for renderings of the acrylic section. The specification for the acrylic section is as follows:

- 12-inch length
- 5.75-inch outer diameter

• 65.9 ounces

Figure 4: Dimensioned Drawing of the Acrylic to Main Body Tube Transition

The acrylic to main body tube transition is shown in Figure 4. This section will compose of a 3Dprinted PLA thermoplastic section. PLA thermoplastic will be used for the same reasons as given in the previous 'Nosecone to Acrylic transition' section. The specifications for this transition are as follows:

- 3-inch length
- 5.75-inch forward diameter and 6.079-inch aft diameter
- 3.13 ounces

Airframe

The airframe for the launch vehicle will be constructed from Blue Tube 2.0. This option was primarily chosen over fiberglass due to results of a selection matrix constructed during the preliminary design phase. The selection matrix can be found below in Table 3.

		Fibergla	ass	blue tube 2.0		
Attributes	Weights	Rating	Weighted	Rating	Weighted	
Cost	35%	2	0.7	3	1.05	
Strength	20%	3	0.6	2	0.4	
Mass	20%	1	0.2	3	0.6	
Handling	20%	2	0.4	4	0.8	
Looks	5%	3	0.15	2	0.1	
Total	100%		2.05		2.95	

Table 3: Selection Matrix for Launch Vehicle Airframe Material

Due to the performance with the given metrics and weightings, Blue tube 2.0 can be surmised to be the overall superior option when choosing a material for the airframe of the launch vehicle, especially in the metrics of price and handling, which includes the level of safety achievable for cutting and sanding the material.

In addition to the aforementioned selection matrix, material testing on Blue Tube 2.0 Airframe will take place in order to determine its tensile strength. This test methodology has been previously used in an experiment on a tubing section of G12 Fiberglass, and results were obtained as to the tensile yield force and corresponding yield stress of the airframe specimen. Similar testing will be performed on a specimen of Blue Tube 2.0 with an outer diameter of 6.079 inches. Specifications for the previous Fiberglass test can be found below in section 3.4.1.

The main separation point of the airframe will be between the main body tube and acrylic airframe section with shear pins between those points. Screws will be inserted through the airframe and into the Avionics bay section to secure the two sections together.

Figure 5: Dimensioned Drawing of the full-scale Vehicle Assembly

The full launch vehicle assembly is shown in Figure 5. The airframe aft of the acrylic to body transition is split into several parts, the forward section, avionics bay, drogue section, drogue to booster coupler, and the booster section.

The specifications for these sections are as follows:

Forward Airframe Section

- 28-inch length
- 6.079-inch outer diameter
- 59.7 ounces

Avionics Bay Coupler

- 4-inch length
- 6.079-inch outer diameter
- 66.5 ounces (mass includes all internal components)

Drogue Airframe Section

- 32-inch length
- 6.079-inch outer diameter
- 81.5 ounces

Drogue to Booster Coupler

- 12-inch length
- 5.973-inch outer diameter
- 11.7oz

Booster Section

- 32-inch length
- 6.079-inch outer diameter
- 135 ounces

Bulkheads and Centering Rings:

The bulkheads are made up of plywood and sequester sections of the launch vehicle. Because of this thicker material choice, the higher surface area results in higher epoxy adhesion.

Figure 6: Dimensional Drawing of the Down-Body-Camera Cover

The chosen camera cover is made of 3D-printed PLA thermoplastic and supports the camera which sits externally on the rocket. There will be a small hole in the airframe to allow the camera's power and data wires to traverse inside the main body. A dimensional drawing of the camera cover is shown in Figure 6.

Camera cover:

Fin brackets:

The fin brackets will be 3D printed and one is shown in Figure 7.

Figure 7: Dimensioned diagram of a Fin Bracket

Fins:

Refer to Figure 8 for a dimensioned drawing of the fins. The specifications are as following:

- 3/16" thick
- Fiberglass Construction
- 3 fins

Figure 8: Dimensioned drawing of a Fin

The Pennsylvania State University

Tail cone:

Figure 9: Dimensioned Drawing of the Tail Cone

Figure 9 is a dimensioned drawing of the tail cone. The tail cone is attached to the motor retainer and gives improved motor retention, and aerodynamics for the launch vehicle.

<u>∗ </u>					_
V.	* Corresponds to thin	to thin plat	te		
front e	front edge:		LID	CD	
			0.5	1.2	
			1.0	0.9	
			2.0	0.7	
			4.0	0.7	
Elliptical rod					
L L				C_D	
		L/D	Lamin	ar T	urbulent
→ () D		2	0.60)	0.20
		4	0.35	5	0.15
		8	0.25	5	0.10

Figure 10: Comparison of Geometries and Comparable Drag Coefficients

A comparison of the fluid flow behind different geometries can be found in Figure 10. Without a tail cone the launch vehicle is better represented by the rounded leading edge flat plate. With the tail cone adding a rounded taper to the aft of the vehicle, the vehicles geometry becomes closer to that of the elliptical rod. The elliptical rod has a 50% lower drag coefficient than the rounded flat plate at a reference L/D of 4. Modeling both geometries gives similar results to those shown in Figure 10, with a much lower coefficient of drag with a rounded trailing edge.

System level design review

	Verification	Verification	Status
1.4	The launch vehicle shall be designed to be recoverable and reusable. Reusable is defined as being able to launch again on the same day without repairs or modifications.	Materials and construction methods used by the club will allow for the repeated use of the vehicle. Full-scale test flights of the launch vehicle will be completed.	Full-scale design of the launch vehicle has been completed, construction of the launch vehicle will begin in the coming days.
1.5	The launch vehicle shall have a maximum of four (4) independent sections. An independent section is defined as a section that is either tethered to the main vehicle or is recovered separately from the main vehicle using its own parachute.	The flight vehicle's design will consist of four sections in total. Three attached sections will consist of a forward payload section, a drogue parachute section, a booster section. Kiwi will also serve as an independent section.	The Design of the launch vehicle has been completed.
1.6	The launch vehicle shall be limited to a single stage.	The vehicle contains a single stage three grain motor.	Simulation using OpenRocket has been completed, including only one stage of thrust.
1.7	The launch vehicle shall be capable of being prepared for flight at the launch site within 4 hours, from the time the Federal Aviation Administration flight waiver opens.	Vehicle is easily assembled and disassembled by using screws and couplers to fit each section together, as well as attaching necessary payloads to the airframe.	The launch vehicle design has been finalized, and includes procedures to allow for efficient assembly of the launch vehicle.
1.14	The launch vehicle shall have a minimum static stability margin of 2.0 at the point of rail exit.	The launch vehicle has a stability margin of 2.65 when exiting a 12 foot rail.	Simulation using OpenRocket has been completed, resulting in an acceptable rail exit stability.
1.15	The launch vehicle shall accelerate to a minimum velocity of 52 fps at rail exit.	The launch vehicle will have a velocity of 75.8 when exiting a 12-foot rail.	Simulation using OpenRocket has been completed, resulting in an acceptable rail exit velocity.

Table 4: System Level Requirement Verification

Suitability of shape and fin style for mission

The fin shape for the launch vehicle is suited for the loads expected during the duration of the mission. The launch vehicle will feature tapered swept fins that are 3/16 of an inch in

thickness. The design of the fins would allow for reduced fin flutter over other fin designs. The fins will protrude only 7.1 inches beyond the main airframe, and the thickness of the fins has been increased to 3/16 of an inch from ½ of an inch in the preliminary design. These factors, in addition to the fin brackets extending along the entire length of the fins, the fin flutter potential should be greatly reduced. The New England Rocketry Association has developed an algorithm using Microsoft Excel to calculate fin flutter velocity. Figure 11 and Table 5 below show this methodology and the corresponding equations used.

Figure 11: Fin Planform Dimension References

This program calculates the fin flutter velocit	y. It must l	be greater than					
the maximum rocket velocity. If not, the fins	are liable t	o come off!					
Enter parameters: b,C,c,t,h – in Column C by	replacing	placeholder value	es				
Notes:							
*Correct units are given in Column D	·						
*Shear Modulus of fiberglass = 425,000 psi							
* The Altitude of Max Velocity, h, can be obt	ained from	a plot in RockSim	of				
altitude vs. velocity							
Shear Mod	G=	425,000	psi				
in span b = 8.0000 in							
Root chord	C=	11.0000	in				
---	------	------------	----------	--------			
Tip chord	c=	7.0000	in				
Fin thickness t =	t=	0.1875	in				
Alt of Max V	h=	3375	ft				
Computations							

S=0.5*(C+c)*b	S=	72.0000					
AR = ((b)^2)/S	AR=	0.8889					
r = c/C	r =	0.6364					
T=59-0.00356*h	T=	46.9850					
P(pressure)	P=	13.0051					
Sound speed a=		1103.8114	feet/sec				
Denom1 [= (1.337)*((AR)^3)*(P)*(1 + r)]		19.9825					
Denom2 [= $2*(2+AR)*(t/C)^{3}$]		0.00002861					
******		0.00002002					
Sound Speed*SQRT(G/(Denom1/Denom2))						
Fin Flutter Velocity Vf =	Vf =		861.1	ft/sec			
Max Rocket Velocity MRV =	MRV=		674	ft/sec			
Fin Flutter Velocity Vf > MRV Maximum Rocket Velocity							

Proper use of materials in fins, bulkheads, and structural elements

The materials used to construct the launch vehicle are appropriate in order to allow for mission success. The main airframe sections, as well as coupler components, will be constructed from Blue Tube 2.0, which will be able to provide ample structure to the launch vehicle and its enclosed components. The Acrylic airframe section will have a $\frac{1}{8}$ inch wall thickness, which will give proper structure to the fore portion of the airframe and protect the FOPS payload. The airframe transition components as well as the fin brackets will be created from 3D-printed PLA, which through use on previous launch vehicles will be able to provide adequate resistance to expected forces throughout the duration of the flight. Both internal and external bulkheads will be constructed of birch plywood, and will provide capacious support when mounted to the airframe and coupler components. Finally, the chosen fin material is G10 Fiberglass sheet which will be 3/16 inches thick, which should provide sufficient structural integrity.

Verification of sufficient motor mounting and retention

The motor mounting for the launch vehicle will be provided by a motor retainer and 3 centering rings spaced along the motor retainer for support. The motor retainer will be constructed out of Blue Tube 2.0, while the centering rings will be constructed out of birch plywood. There is not a motor retention block present in the final design since there will be a bulkhead placed in the aft portion of the camera section, which will be placed just fore of the motor retainer. This bulkhead will perform adequately in the role of a motor retention block in place of a dedicated motor retention block.

Mass Estimates

Table 6 contains a list of mass estimations for everything making up the fully assembled launch vehicle.

Part	Mass (ounces)	# of items	sub-total mass
Structures			
Nosecone with aluminum tip	40	1	40
Acrylic	18.2	1	18.2
Body tube, main	24.3	1	24.3
Body tube, drogue	27.7	1	27.7
Booster body tube	27.7	1	27.7
Bulkhead, inner transition	2.04	1	2.04
Bulkhead, inner	3.33	3	9.99
Bulkhead, outer	3.28	3	9.84
Transition, nose cone to payload	1.49	1	1.49
Transition, payload to main body	3.13	1	3.13
Transition stabilizing coupler	4.38	1	4.38
Coupler, drogue to motor	11.7	1	11.7
AV bay body tube	3.46	1	3.46
AV Bay coupler	16.4	1	16.4
Motor Inner tube	10.8	1	10.8
Centering ring	1.81	3	5.43
Fin set	43.3	1	43.3
Tail cone	6.66	1	6.66

Table 6: Mass Estimates of Launch Vehicle by Subsystem

Motor Retainer	1.89	1	1.89
Camera/cover	9.75	1	9.75
Ballast (10% Dry weight)	55	-	55
Hardware	12	-	12
Payload		-	
Helicopter Payload	19	1	19
FOPS	40	1	40
Avionics & Recovery		-	
Drogue Parachute	7.72	1	7.72
Shock cord, drogue	12	1	12
Avionics Bay	28	1	28
Shock cord main	16	1	16
Main parachute with blanket	19.4	1	19.4
GPS	6	1	6
Total (ounces)	-		493
Total (pounds)	-		30.81

3: Subscale Flight Results

The subscale launch vehicle was tested on November 13th at the NAR certified Pittsburg Space Command club field in Grove City PA. The temperature on that day was a high of 54 degrees and low to intermediate erratic winds. Figure 12 shows the results of a simulation with these conditions that yielded a similar flight profile to the actual flight data shown in Figure 13.

Figure 12: Altitude results from subscale simulation

Avionics Results

A StratoLogger 100 model commercial altimeter was included in the avionics bay of the subscale for deployment of the parachutes and for recording the flight profile. The altimeter recorded a flight apogee of 2467 ft. A couple seconds after apogee the drogue deployed. The momentum from the drogue deployment also deployed the main parachute. This was attributed to using an insufficient number of shear pins on the main parachute coupler. Figure 13 shows the flight profile of the rocket during descent.

Figure 13: Flight Profile of the subscale during descent

The observed descent time was 95 seconds while the predicted descent time was around 85 seconds. The difference in these times may be accounted for by taking a closer look at the coefficient of drag of the parachutes. It is likely that the parachutes coefficients of drag were higher in reality than those used in the model.

The coefficient of drag used in the simulation for the drogue was 0.88. The coefficient of drag for the main used in the simulation was 1.5. These were found by dropping objects with known masses with these parachutes from a known height and observing the descent time. This method of collection for the coefficients of drag lends to some inaccuracies. Therefore, for the full scale, coefficients of drag will be determined by the manufacturer data or more careful experimentation.

The issue of unintentional main deployment at apogee will be resolved by using more shear pins and conducting more thorough ground testing.

Propulsion Results

Using OpenRocket, the coefficient of drag was predicted to be 0.628 for both the subscale and full scale rocket. The predicted apogee of subscale was 2969 ft, and the flight apogee was 2467 ft. There are several possible reasons for such a large discrepancy in the apogee such as winds and last minute changes to the rocket. Due to this discrepancy it is unclear if the OpenRocket coefficient of drag prediction is accurate or if any other prediction method would yield accurate results without being able to account for more variables. Section 7.1 discusses another method to experimentally determine the coefficient of drag.

Payload Results

FOPS did not adequately protect the fragile object during the subscale launch. The design will compensate for this failure by adjusting the shape of the plastic bag used so that the shape of the bag fits better inside the protection chamber, minimizing additional stress caused by the bag. An on-board reservoir will be used to fill the chamber after the insertion of the object(s).

Scaling Factors and Decisions

When scaling the sub-scale up to full-scale, our scaling factors were determined based upon manufactured blue tube and acrylic materials. The only variable held constant is the thickness of the blue tube, again by virtue of manufactured pre-sets. Some altercations needed to be made to the scaled fins to accommodate a new stability. Several of the internal components are scaled as well, such as the Avionics Bay and Couplers.

Error between predictions and test results

In terms of the vehicle's structure and its effect on flight performance, error between actual and predicted flight data is likely due to flight conditions or incorrect mass statements of internal components still under construction such as our Kiwi payload. Some other sources of error would be with additional weight of adhesives and fasteners, or imperfect (symmetrical) geometry when manufactured.

Sub-scale flight and its effect on full-scale design

The flight of our subscale launch vehicle and its flight data has confirmed our overall design. With said data we are able to pursue full-scale design and flight projections.

4: Recovery Subsystem

Components of the Recovery System

The components of the recovery system are the avionics board, the avionics bay structure, the parachutes and their corresponding harnesses, the altimeters, the faraday cage, and the method of parachute deployment.

The altimeters and their corresponding power supplies are mounted onto the avionics board. In previous competitions, A&R has used fiberglass sheets for the avionics board due to its strength and durability. This comes at a cost of weight and safety hazards involved with cutting and sanding fiberglass. An alternative to fiberglass is to 3-D print the board. The 3-D printed board is significantly lighter and would be a more effective use of space. However, PLA, one of the stronger and more common 3-D printing filaments, is susceptible to heat. Its glass transition temperature is between 50 and 60 degrees Celsius ^[1], which the rocket can certainly reach on a hot day in Alabama while waiting on the launch pad. Testing will have to be done to ensure that the mechanical properties of PLA are still sufficient should the rocket reach these temperatures. These two concepts are compared in Table 7, where the 3-D printed board edges out the fiberglass board.

		Fiberglass Board		erglass Board 3-D Printed Boa	
Category	Weight	Score	Weighted	Score	Weighted
Cost	1	1	1	1	1
Legacy	1	3	3	1	1
Strength	3	3	9	2	6
Precision	3	1	3	3	9
Complexity	2	2	4	1	2
Mass	3	1	3	3	9
Thermal Resistance	2	3	6	1	2
Total			29		30

Table 7: Trade study comparing the fiberglass avionics board with a 3-D printed design

To test if an additively manufactured avionics board is viable, a small board was printed for use on the subscale. This board performed without incident, verifying the choice of going with an additively manufactured board. The full-scale rocket will use a 3-D printed board due to this selection matrix and the success of the subscale launch. The 3-D printed boards are strong and secure enough to withstand the forces exerted during the parachute deployment events and the heat endured while waiting on the launch pad. The different design options are shown in

Figure **14** where the left is made out of fiberglass and the right is the 3-D printed board.

Figure 14: Fiberglass board (Left) vs 3-D printed board prototype (right)

Ultimately, a triangular design was created for use in the full scale. This design can be seen in Figure 15.

Figure 15: Full-scale 3-D printed board

This triangular design was the result of over four design interactions and improvements. Early problems with the printing of the material were overcome and the final design is compact, safe, and highly integrated into the rocket. Figure 16 shows a successfully printed avionics board.

Figure 16: Full Scale 3-D Printed Avionic Board

Since the avionics bay will be housed in a coupler, there will be all-threads and bulkheads to hold the avionics board in place and protect it from the ejection charges. There are two options for the all-threads, aluminum and steel. Aluminum all-threads are lighter than steel but also not as strong. In 2016, LTRL launched a rocket, Valkyrie, of similar height and weight using aluminum all-threads. Hence, data from that launch can be used to determine if aluminum all-threads are strong enough for this year's rocket. Valkyrie also had a 120" diameter main parachute. To find a conservative estimate for maximum force exerted on the avionics bay during recovery, a scenario involving full and immediate main parachute deployment can be used. Using Equation 1^[2] and assuming standard sea level conditions and a coefficient of drag of 2, the drag of the parachute can be calculated to be 1045 lbf.

$$D = \frac{1}{2}C_d \rho V^2 \pi r^2 \tag{1}$$

The all threads must be capable of withstanding this force during deployment. Typically, two %" all threads are used. The stress in each all thread can easily be calculated by dividing the force by the area. This stress works out to be 4731 psi. This is far below the yield strength of Aluminum 6061-T6 which is 40,000 psi ^[3]. This works out to be a factor a safety of 8.5. Therefore, Aluminum 6061-T6 will be used in the full-scale rocket. For the bulkhead, the two options are wood and fiberglass. In most previous launches, fiberglass bulkheads have been used. However, fiberglass bulkheads have several drawbacks

and wooden ones are better as long as they are strong enough. From previous launch data,

wooden bulkheads have been shown to be strong enough to withstand the forces from parachute deployment. Using table 6, it is clear that wooden bulkheads are a better choice for the rocket and hence they will be used in the full-scale rocket.

		Fiberglass Bulkhead		Wooden Bulkhead	
Category	Weight	Score	Weighted	Score	Weighted
Cost	1	1	1	3	3
Legacy	1	3	3	3	3
Strength	3	3	9	2	6
Precision	3	1	3	2	6
Complexity	2	2	4	3	6
Mass	3	1	3	3	9
Total		-	23		33

Table 8: Selection matrix for choosing bulkhead material.

The switches, altimeters, and the power supply are the avionics equipment. The two switches in the full-scale rocket will be 1" diameter key switches. Those switches have been used in the vast majority of rockets that LTRL has built in the past two years and have never failed. The wires that connect the key switches to the altimeters will be soldered onto the key switches to ensure that they remain connected. The altimeters used will be two SL CF altimeters because of their reliability, ease of use, and affordability. These are an upgraded model of the previous altimeters LTRL has used which were the StratoLogger SL 100 altimeters that were very reliable and lead to many successful launches. The SL CF altimeters weigh 0.07 ounces [4]. Each altimeter will use a fresh 9V battery as its power supply.

The Faraday Cage is a crucial component of the avionics coupler because it protects the electronics in the avionics bay from any interference. This prevents the accidental deployment of the separation charges at the launch pad around other rockets. Traditionally, that Faraday Cage was a thin mesh metal sheet that was rolled and fit into the coupler. However, this made it difficult to access the avionics equipment and attach the key switch. It would also scratch the avionics bay and any hands that tried to adjust the bay. For the full-scale rocket, there will be a 3-D printed sleeve that a thin sheet of aluminum can slide into and remain undisturbed (Figure 17). The sleeve allows the assembly of the avionics bay and coupler to be easier and ensures that the Faraday Cage is not shifted. Additionally, the bulkheads will have a layer of aluminum on the inside to further protect the electronics.

Figure 17: Sleeve for Faraday Cage Assembled Avionics Bay

The parachutes chosen for the full-scale rocket are an 18" Fruity Chutes Classic Elliptical for the drogue parachute and a 72" Fruity Chutes Iris Ultra Standard for the main parachute. These parachutes were chosen because they will allow the rocket to descend within the kinetic energy limit of 75 ft-lbs without drifting more than 2500'. More information about the parachute selection is in the following section, Parachute Sizing Estimation.

The rocket separation points in the full-scale rocket are fixed to the interface between the body and the nose cone and the interface between the bottom body tube and the booster section. This is opposed to the separation points being located at points directly adjacent to the avionics bay. The reason these separation points are chosen to for parachute ejection assurance. If the separation points are adjacent to the avionics bay, then the separation charges, located on the bulkheads of the avionics bay, will push the parachute further into the body tubes. While the velocity of the components separating most likely will pull the parachute out, this is an additional risk that can be avoided by placing the separation points at the right locations. The separation points could be located adjacent to the avionics bay if dangling charges are used to ensure the charges force the parachute from the body tube, but this method also has added complications, especially during assembly. An additional advantage of having one of the separation points at the interface between the booster section and the body tube is that the body tube remains connected to the avionics bay instead of the booster section, which is usually one of the most massive parts of the rocket already, thus reducing the necessary parachute size to maintain a safe landing velocity.

The last major recovery system component is the parachute deployment mechanism. The main choices for this component are black powder ejection, Pyrodex ejection, and CO₂ cartridge ejection. Each system has its own advantages and disadvantages and are weighed in Table

9, which highlights the selection process of the deployment mechanism based on various important selection criteria.

_		Black Powder		Pyrodex		CO ₂ Cartridge	
Category	Weight	Score	Weighted	Score	Weighted	Score	Weighted
Cost	1	3	3	3	3	2	2
Legacy	3	3	9	2	6	1	3
Reliability	3	3	9	2	6	2	6
Member	2	3	6	2	4	1	2
Experience							
Form Factor	1	2	2	2	2	1	1
Complexity	2	3	6	2	4	1	2
Safety	3	1	3	2	6	3	9
Total		-	38		31		25

 Table 9: Selection Matrix for the parachute deployment mechanism

The full-scale rocket will use black powder because of its reliability and the team's familiarity with it. The team has calculated the amount for black powder needed for each section using models but will confirm if it is the proper amount through ground tests and test launches.

Parachute Size Estimation

The parachute size needed to safely land the rocket while remaining below the kinetic energy limit can easily be calculated using Equation 2.

$$V = \sqrt{\frac{2 * KE}{m}}$$
(2)

$$D = \sqrt{\frac{M_m M_t g}{C_d K E \rho \pi}} \tag{3}$$

Then, this velocity can be inserted into the terminal velocity equilibrium equation, Equation 3, to find the diameter needed for the main parachute. The computer calculations used to find the necessary diameters is shown in Appendix A: MATLAB Recovery Model.

Figure 18 shows the plot for necessary diameter of the main vs. kinetic energy at landing calculated with the MATLAB code.

Figure 18: Diameter of the main parachute vs. desired kinetic energy at landing

Proof of Redundancy

The avionics system design includes multiple layers of redundancy. First and foremost, there are two altimeters. Each altimeter is linked to its own separate main and drogue charge. Each altimeter is also powered by its own battery. Therefore, even with the failure of a battery, altimeter, e-match, or charge ignition in one of the systems, the other system is completely independent and should still operate correctly. The deployment charges are also staggered so that they do not go of simultaneously, a precaution taken to avoid overpressure events. The redundancy ensures that the parachutes will deploy and that the rocket will not have ballistic descent.

5: Mission Performance Predictions

Motor Performance Analysis

Figure 19 shows the flight profile simulation from ignition to landing. The altitude, vertical velocity, and vertical acceleration are simulated over time. In Figure 19, it can be observed that the predicted altitude will be just under 5250 ft, this apogee prediction includes the maximum ballast weight allowed in the rocket. Which, will allow for fine tuning the apogee if there are greater winds than in the model, which were 4.47 mph with a small average deviation and medium turbulence level.

Figure 19: Full-scale Flight Simulation

It is known that OpenRocket over-predicts drag during simulations, therefore it can be assumed that the actual apogee would be higher. Two methods will be used to compensate for this over prediction, discussed in section 7.1.

Figure 20 shows the OpenRocket simulation for the L1350 motor thrust curve. It can be observed that features in Figure 20 resemble those in the manufacturers thrust curve in Figure 1. For example, the time and magnitude of peak thrust in both plots are between 1500 and 1550 Newtons at 1 to 1.25 seconds. Additionally, there are similar distinct graphical features such as the spike at ignition which both show to be approximately 1500 Newtons. Finally, there is a second feature at approximately 2.75 seconds which shows the thrust approaching a constant value of about 1300 Newtons before quickly decreasing. These multiple correlations show reasonable agreement between the provided information and the predictions.

The Pennsylvania State University

Stability Analysis

The current OpenRocket model has a calculated center of gravity location about 91.75 inches from the tip of the nosecone and a center of pressure of 115 inches from the nose cone, as seen in Figure 21.

Figure 21: Full-scale OpenRocket Model

This puts the center of gravity about 23.25 inches forward of the center of pressure, which corresponds to a static stability margin of 3.8 calibers, 2.65 calibers off a 12 ft launch rail and 2.56 calibers off an 8 ft launch rail. Figure 22 and Figure 23 describes the center of gravity, center of pressure, and the stability margin from lift off until the stability becomes relatively constant when launched from 12 ft or 8 ft launch rails respectively.

Figure 22: Full-scale OpenRocket Stability Simulation for 12 ft rod

The Pennsylvania State University

Figure 23: Full-scale OpenRocket Stability Simulation for 8 ft rod

Recovery Predictions

Recovery predictions were made using a computer program developed to estimate necessary parachute sizes and calculate the descent profile of a rocket based on mass and parachute characteristics. This program, dubbed the Recovery Descent Profile Calculator (RDPC) is written in MATLAB and uses a force balance integration method to calculate a descent profile. At each time step, the altitude and velocity are used to find the force of drag the parachutes are exerting on the rocket system. This drag force and the force of gravity are then summed to get a net force, from which the acceleration can be calculated. This acceleration is used to find a velocity at the next time step, after which the process continues until the rocket hits the ground.

Using the selected parachute sizes, RDPC was used to estimate the descent profile of the rocket. Figure X shows the estimates velocity and altitude vs time during descent for the main rocket body.

Figure 24: Descent profile of the rocket from RDPC

Kinetic Energy Calculations

Each section of the rocket landing independently is required to have a kinetic energy less than 75 ft-lbs. There are four main components of the rocket that will be landing independently. The mass of each component, the velocity upon landing, and the kinetic energy upon landing calculated from RDPC is shown in Table 10. The Nose Cone, Avionics Bay, and

Booster section will be tethered together and attached to the drogue and main parachute during descent. Kiwi will descent under autorotation of the blades until it reaches 500 feet, at which time the parachute will deploy. Kiwi's landing velocity will be 25.2 feet per second and the kinetic energy of Kiwi will be 9.22 ft-lbs. The highest kinetic energy at landing is the booster section, which will land with approximately 52.44 ft-lbs of energy.

	Nose Cone & FOPS	Avionics Bay/ Middle Section	Booster Section	Kiwi
Mass (oz)	139	134	142	17
Landing Velocity (ft / s)	19.52	19.52	19.52	25.17
Landing Kinetic Energy (ft-lbs)	51.42	49.64	52.44	9.22

Table 10: Shows the kinetic energy of each rocket component during landing

Drift Calculations

The RDPC also calculates the drift distance that the rocket will undergo in certain wind conditions ranging from 0 to 20 mph winds. The main and drogue parachutes were specifically selected to keep the drift within 2500 ft under all wind conditions. Table 11 shows the drift calculated by RDPC during descent under different wind conditions.

Table 11: Drift distance vs wind speed

Wind Speed (mph)	0	5	10	15	20
Drift Distance (ft)	0	559.7	1119	1679	2239

Section 5: Safety

1: Launch Concerns and Operation Procedures

Recovery Preparation

Checked and initialed by two Recovery subsystem members and the Safety Officer after completion

Key Switch	OFF Position
Batteries	OUT
Вау	Wired
Batteries	Installed
Вау	Assembled
E-matched	Assembled
Gun Powder	Measured
Note: Drogue - 4.0 grams black powder	
Main – 5.0 grams black powder	
Measured Charge	Added to blast cap
Wadding	Added to blast cap
Recovery Harness	Assembled
Parachutes	Folded
Nomex Blankets	Fixed to Shock Cord
Folded Chute	Powdered
Recovery Harness and Chutes	Inserted into body tube
Rocket	Assembled
Shear Pins	Installed

Recovery Subsystem Members

Safety Officer

Structures Preparation

Checked and initialed by two Structures subsystem members after completion

Rail Buttons	Aligned and secured to airframe using screw
Avionics Bay	Fastened to Main and Drogue Sections Using Screws
FOPS	Placed in Acrylic Airframe Section
Nose Cone	Screwed to Acrylic Transition Coupler
Acrylic to Main Transition	Shear pinned to Main Section
Booster Section	Shear pinned to the drogue section
Motor Retainer	Screw on tail cone
Visual Inspection	Screws tightened and assessed for cracks

Structures Subsystem Members

FOPS Launch Checklist

Checked and initialed by two Payload	subsystem members after completion
Materials Bag	Sealed
Dilatant	Fills Chamber
Chamber	Checked for leaks, bolts are secured
Chamber	Secured into rocket (Structures Lead Signature required)

Payload Subsystem Members

Structures Lead

_

_

Kiwi Launch Checklist

Electrical Connections	Secure
Kiwi Vehicle	Assembled (Payload Lead Signature Required)
Power switch	in the ON Position

Warning: Next step involves explosives and should be conducted away from bystanders and under the supervision of an experienced team member. Wear safety goggles.

Parachute	Tested
Parachute	Folded correctly and stowed (Payload Lead Signature Required)
WARNING: INCORRECTLY STOV	VING PARACHUTE MAY LEAD TO UNCONTROLLED DESCENT
Parachute Door	Latched and secure
Radio	Connection Established
Rotors	Unobstructed by the padding and vehicle walls
Kiwi vehicle	Properly padded and inserted into the rocket
Kiwi vehicle	Secured

Payload Subsystem Lead

Vehicle: _____

Parachute: _____

Motor Preparation

Checked and initialed by one Propulsion subsystem member and one NAR certified member

Smoke Trail Grain Assembly	Loaded into forward closure
Forward Closure	O-Ring inserted
Nozzle Holder	O-Rings inserted
Nozzle	Inserted into nozzle holder
Lower Retaining Ring	Sealed on bottom of casing
Nozzle/Nozzle Holder Assembly	Inserted into casing
Casing Liner	Inserted into casing
Motor Grains (3)	. Inserted into casing liner and spaced with O-rings
Forward Insulating Disk	Inserted into casing
Forward Closure/Smoke Trail Grain Assembly	Inserted into casing
Upper Retaining Ring	Sealed on top of casing
Closure Wrench	Used to firmly tighten both retaining rings
Motor Casing	Installed in motor retainer
Exterior Closure	Sealed on base of casing

Propulsion Subsystem Member

NAR Certified Member and Cert Level

Setup on Launcher

Rail	Pull to horizontal position
Rail	Clean with WD 40 before placing Rocket
Rocket	Slide the rail buttons carefully through the rail guides
Launcher	Set the rail with the Rocket to the desired angle
Motor	place the charges into the motor

Ignition Insertion

Performed by one Propulsion subsystem member and one Propulsion subsystem lead.

E-match	Twist the leads together if not done
Ignition circuit	Check to make sure it is deactivated
Nozzle Cap	Thread E-match ignition end through the side hole, from outside to inside
E-match	Feed through nozzle up to top of the motor
Nozzle Cap	Place over end of nozzle, securing E-match in place
E-match leads	Separate two leads to at least one foot in distance
E-match leads	Connect each lead to the ignition circuit
E-match leads	Ensure that the leads will not contact each other

Troubleshooting

Problem	Resolution
Altimeter does not	1. Put key switch in off position and try to turn it on again. If it still
turn on	does not turn on, go to step 2.
	2. Disconnect and reconnect the power supply and all of the wires
	connected to the power supply and key switch. Then turn the key
	switch into the on position. If it still does not turn on, go to step 3.
	day.
Altimeter does not	1. Turn the altimeter off and on again and wait for continuity beeps.
emit continuity	If it still does not emit continuity beeps, go to step 2.
beeps	2. Ensure that the altimeter is wired correctly and has power. If it
	still does not emit continuity beeps, go to step 3.
	3. Remove and replace the altimeter.
Parachute does	1. Unpack the parachute
not fit in rocket	2. Pack the parachute more tightly
	3. Cover the parachute with Nomex chute protector
	4. Apply baby powder onto the chute protector
	5. Place parachute and the chute protector in the rocket
Failure to ignite.	1. Wait for the RSO to give the all clear.
	2. Remove AND Disconnect the E-match.
	3. Check launch circuit for continuity.
	4. Inspect the E-match.
	see if it was correctly assembled.
	6. Inspect the fuel grains for damage or irregularities. Replace if
	necessary.
	7. If no problem was found consider consulting the RSO or the
	mentor.
	8. Reassemble and reinstall the motor.
	9. Try launching again.
Motor cannot be	1. Fully read the instructions twice.
properly	2. Completely disassemble the motor.
assembled	3. Reassemble the motor step by step exactly as the instructions
	state.
	4. If problem persists contact the RSO/Mentor/Motor Vendor.

Post flight inspection

- 1. Read the maximum altitude and velocity from the altimeters at landing
- 2. Confirm that the altimeters have consistent data
- 3. Make sure parachutes are not damaged from the ejection charges
- 4. Make sure all ejection charges have detonated
- 5. Connect altimeters to a computer and ensure that the flight when as predicted
- 6. Understand and explain any variations from the modeled flight path

2: Safety and Environment

Personal Hazard Analysis

All team members have taken Penn State's lab safety course containing information safety regulations for working with hazardous materials. Safe working habits will be enforced when working on any project. The team safety officer is responsible for ensuring all team members are informed of any hazards and abide by the guidelines for accident avoidance.

Safety procedures were developed by consulting the Material Safety Data sheets (MSDS) attached to the end of this report. All NAR regulations pertaining to high power rocket safety are followed. Operator's manuals are also available to members to consult prior to using any unfamiliar equipment. More experienced individuals will be in the lab during construction, so no one is ever in a situation where they are unsupervised while using a tool for which they are not properly trained to use.

Table 12 shows the hazards that may be encountered during this project, their respective mitigations and the verifications for the mitigation. The likelihood and impact of each hazard is ranked on a scale of 1-5. The necessary PPE for hazard mitigation have been purchased, and their locations are known to team members. As part of launch day activities, all team members present are informed of potential safety issues at high-power rocket launches, proper safety oriented conduct and range safety regulations.

Hazard	Cause	Effect	Likeliho od	Severit y	Mitigation	Verificatio n
Blue tube and sheet machining and sanding	Inhalation of small particulate s	Dust particles can cause respiratory irritation and damage	3	2	Use face mask and shop vacuum, maintain adequate ventilation	Visual verification prior to machining or sanding

Table :	12:	Personnel	Hazard	Analy	ysis

Power Tool Use	Flying debris	Cuts, possible eye injury	2	3	Wear safety glasses, follow tool safety instruction s	Visual Verification and education of team members about possible precaution s
Solder iron use	Tip of solder iron becomes very hot	Personnel are burned, Potential fire hazard if left on near flammable	1	3	Personnel will be instructed in safe use before soldering. Solder iron should not be left on unattende d	Verify that personnel have been trained in solder iron use. Verify whether solder iron is hot before leaving room.
Black Powder	Material is a fire hazard and explosive	Fire, personal injury, equipment damage	2	5	Only qualified people are permitted to handle these materials. Use only in small quantities and away from sparks and statics.	Secure Black powder so that only the qualified personnel have access.
Pyrodex	Material is a fire hazard and explosive	Fire, personal injury, equipment damage	1	4	Only qualified people are permitted to handle these materials.	Secure Pyrodex so that only qualified personnel have access.

					Use only in small quantities and away from sparks and statics.	
Spray paint use	Inhalation of aerosol and solvent vapors	Skin and or respiratory irritation	2	2	Use PPE and adequate ventilation	Visual PPE inspection, use of specialized painting booth on campus
Use of adhesives (e.g. JB Weld)	Inhalation of solvent vapors	Respirator y irritation	2	2	Use PPE and adequate ventilation	Visual PPE inspection
Motor misfire	Possible unexpecte d explosions	Personal injury, equipment damage	1	5	Wait for a safe period of time, disarm ignition sources.	Ensure that the motor is inserted properly.
Unfired ejection charges after launch	Possible unexpecte d explosions	Personal injury, equipment damage	1	5	Ensure that ignition charge is inserted properly and connected securely. Ensure altimeters are working correctly	Verify that ignition charge is inserted properly and connected securely. Verify altimeters are working correctly
Pre-firing of ejection	Possible unexpecte	Personal injury,	1	5	Ensure no one is	Verify no one is

charges prior to launch	d explosion	equipment damage			standing behind or in front of rocket once charges have been placed in the rocket. Ensure that ignition charge is inserted properly and connected securely. Ensure altimeters are working correctly	standing behind or in front of rocket once charges have been placed in the rocket. Verify that ignition charge is inserted properly and connected securely. Verify altimeters are working correctly
Unstable or dangerous rocket flights at launches	Rocket hitting personnel or equipment	Injury to personnel or equipment	2	5	Obey launch officials, pay attention during launch, pre-launch safety briefings	Use the preflight and launch safety checklists.
Improperly loaded equipment during transport	Equipment moves during transport	Damage to equipment, possible injury to personnel	2	3	Proper packaging and securing of all transport equipment	Use the packing check list.
Rockets may fall without	Rockets have high kinetic	Damage to equipment,	1	4	Instruct all personnel on launch	Verify all personnel understand

parachute deploymen t at launches	energy due to lack of parachute deploymen t	injury to personnel			day safety, keep equipment and vehicles a safe distance from the launch pad	launch day safety before taking them to a launch. Verify all equipment and vehicles are stored a safe distance from the launch pad.
--	---	------------------------	--	--	---	--

Failure Modes and Effects Analysis

To ensure a safe and effective launch, an assessment of possible failures has been made. By analyzing the cause of the failure, precautionary steps will be taken to reduce the risk of failure. Table 13 shows the preliminary set of failure modes. The likelihood and impact of each failure mode is ranked on a scale of 1-5.

Failure Mode	Cause	Effect	Likelihoo d	Impa ct	Mitigation	Verification
		-	Rocket		-	
Motor does not stay retained	Ejection charges push motor out of rear of rocket	Motor does not remain in rocket	1	5	Use of active motor retention, Use of lower impulse motor	Computer modelling and full scale test
Cascading fracture of body tube	Body tube fractures due to extreme stress around bolt hole	Catastrophi c failure of airframe	1	4	Simulation of expected stresses, materials testing	Compare the simulations to the Tensile test results
Crack along outer	Body tube cracks due to torsional stress and	Functional / structural inadequacy	2	3	Reducing the stress concentration	Simulation of expected stresses,

Table 13: Failure Modes and Effects Analysis

seam of body tube	bending moment					materials testing
Unwanted separation of coupler from body tube	Premature shear pin failure	Undeployed parachutes, uncontrolle d descent	3	2	Screw adequate number of screws	Visual inspection , pre-flight check
Fracture crack in coupler	Torsional stress and/or bending moment	Aerodynami c inconsisten cy and/or structural failure	2	2	Simulation of stresses, materials testing	Visual inspection , pre-flight check
Nosecone tip removal	Extreme impact	Aerodynami c instability, instability, sky debris	1	4	Simulation of expected stresses, material testing	Pre Flight check
Fin fracture crack	Extreme or repeated impact, bending moment	Aerodynami c instability, structural failure	2	2	Simulation of expected stresses, material testing	Visual inspection , pre-flight check
Fins separate from the fin brackets	Insufficient epoxy strength, loosening of bolts	Sky debris	1	5	Epoxied well with the fin brackets	Simulation of expected stresses, material testing, pre- flight check
Fin brackets loosening from the body tube	Insufficient epoxy strength	Aerodynami c instability, structural failure	1	3	Screwed and epoxied adequately	Visual inspection, pre-flight check
Fin brackets separate from body tube	Insufficient epoxy strength	Sky debris	1	5	Removing the dust from the body tube before epoxying	Simulation of expected stresses, materials testing, pre- flight check
Fracture crack in bulkheads	Material Defect, stress on eyebolt	Structural Failure,	2	5	Simulation of expected stresses,	Visual Inspection,

	threads, insufficient epoxy strength	pressure leakage			material testing	Pre-flight check	
All-threads shear	Insufficient all thread strength	Unwanted separation of rocket	1	5	Simulation of expected stresses, visual Inspection	Pre-flight check	
Airframe zippers	During ejection shock cord cuts into body tube	Rocket body is damaged	2	3	Deploy parachute precisely at apogee with altimeters	Computer modelling and motor testing to confirm the motor thrust characteristic s	
Fin flutter	Width of fins is too small	Aerodynami c instability, structural failure	2	3	Increase in width of the fins	Simulation of expected stresses	
Payload							
Payload causes sudden change in center of gravity for the rocket	Shifting shear thickening liquid causes a sudden change in center of gravity for the rocket	Rocket becomes unstable	1	3	A set amount of shear thickening liquid will be used. Any liquid will be suspended in the center of the fragile materials protection bay.	FOPS will be flown in test rocket launches to ensure it does not affect the center of gravity.	
Kiwi loses balance and is no longer able to sustain flight	Kiwi loses balance	Kiwi guided section free falls to the ground	3	4	Kiwi will be made with an overall density low enough to ensure a low terminal velocity during free fall. The design of Kiwi will use ballast	Kiwi will undergo multiple test flights with different starting orientations to ensure that the vehicle can	

					to prevent sudden attitude change	reach and maintain stability.
Drive Shaft failure occurs while Kiwi is in flight	Drive shaft failure	Kiwi guided section falls under parachute to the ground	2	4	Kiwi will be equipped with a parachute that will ensure the vehicle meets kinetic energy requirements	Parachute testing will be performed to ensure the vehicle will meet Kinetic energy requirements
Kiwi loses GPS contact	Kiwi loses GPS contact	Kiwi guided section does not reach proper location	1	5	In case of directional failure, Kiwi will be programmed to descend at a low velocity and be equipped with a tracking GPS	Test the range of the tracking GPS and test the GPS failure mode of the Kiwi flight computer.
Kiwi loses contact with Ground Station	Communicati on Failure	Kiwi cannot be shut down in case of emergency	2	3	If Kiwi loses contact with the Ground Station, it will deploy its parachutes and shutdown.	Kiwi's communicati on systems will be tested at extreme ranges
Kiwi gets tangled in parachute cords	Kiwi gets tangled in parachute cords	Kiwi guided section free falls to ground, other rocket section also does not descend under parachute	2	4	Care will be taken in the packing of Kiwi in the rocket body to ensure ease of exit without interference. In case of entanglement, Kiwi will be designed to be light enough to	Test launches as well as independent tests will verify the ability of the parachute to open correctly

					ensure paracord operation		
Payload Integration							
Integration Failure	Lack of communicatio n between subsystems	One or more subsystems do not function properly when integrated	2	4	Hold weekly subsystem leads meetings to promote cross subsystem communicatio ns	Routine testing will ensure rocket systems will work together	
		Launch S	upport Equ	ipment			
Motor does not ignite	Motor does not ignite on launch day	Rocket does not lift off pad	2	5	Use recommended igniters. Store motors properly to avoid oxidation.	Motor testing using the igniters that will be used at the competition	
Launch Operations							
Motor CATOs	Motor casing or components rupture	Damage to rocket	1	5	Inspect motor grains prior to installation. A certified member will assemble the motor with another observing.	Motor testing using the competition casing	
Premature airframe separation	Drag separation or internal pressure causes separation	Airframe separates without parachute deployment	1	3	Pressure relief holes and use of nylon shear pins	There will be prior testing and the launch checklist will have at least 2 members of A&R verify that there are the correct number of	

						shear pins and grams of black powder in the blast caps
Drogue chute fails to deploy	Drogue chute either does not leave the tube or doesn't unravel	Kinetic energy at main chute deploymen t is higher than expected	2	3	Ground test recovery system for optimal ejection strength	The launch checklist will have two members of A&R ensure that the parachute is packed correctly and there is sufficient black powder in the blast caps for the parachute to deploy.
Main chute fails to deploy	Main chute either does not leave tube or doesn't unravel	Kinetic energy of rocket at ground impact is too high	2	4	Maintain sufficient airflow to deploy main chute from deployment bag	The launch checklist will have two members of A&R ensure that the parachute is packed correctly and there is sufficient black powder in the blast caps for the parachute to deploy.
Main chute	Main chute deploys at apogee	Kinetic energy during	3	3	Proper labeling of wires, ground	Two members of A&R will
deploys first		main chute deploymen t is too high			test, use correct number of shear pins	verify that the parachutes are in the correct segment of the rocket and that all of the wires are going to the correct charges and altimeters.
--	--	--	---	---	--	--
Main and drogue get tangled together	Main chute gets deployed below drogue and tangles	Rocket descent is unstable, kinetic energy at ground impact is too high	2	4	Use adequate lengths of recovery harness	There will be prior test launches where the length of the shock cord will be confirmed to work. The shock cords will be at least 10 ft different in length.
Ejection charges do not ignite	No parachute deployment	Ballistic descent, ground impact kinetic energy is too high	2	5	Use fresh batteries for each launch, check altimeter continuity	Two members of A&R will confirm that the charges are loaded correctly, the batteries are new, and the altimeter has continuity beeps

Ejection charges ignite early/late	Ejection occurs before/after apogee	Parachute deploymen t not as expected, possible uncontrolle d descent	2	3	Properly sized vent holes	Two members of A&R will verify that the e- matches are connected to the correct ports on the altimeters and there will be redundancy to ensure that it deploys.
Parachute gets burned	Ejection charges damage parachute	Parachute does reduce kinetic energy as much as expected	1	3	Use Nomex/Kevla r chute protector	Two members of A&R will verify that the parachute is completely protected by the chute protector.
Recovery harness burns	Ejection partially or fully burns through harness	Ballistic descent of rocket	1	4	Use heat resistant recovery harness material	The only shock cords that are purchased are made out of Kevlar and these will be verified to be strong enough during the ejection of the parachutes.

Recovery harness attachme nt breaks	Bulkhead, U- bolt or harness breaks	Uncontrolle d rocket descent	2	3	Adequately size recovery harness, flight test	There will be modeling done before any launches and there will be test launches that will confirm that the bulkheads and U-bolts are strong enough
High kinetic energy at landing	Parachutes undersized, or intentionally deployed at incorrect altitude	Rocket lands at an excessive velocity	2	4	Accurate estimate, OpenRocket	There will be modelling to confirm that the parachutes will be the correct size and A&R will receive confirmation from NASA about the parachutes chosen
Altimeter doesn't detect pressure change	Altimeter is unable to detect pressure change during ascent	No data is recorded and ejection charges are not fired, ballistic descent of rocket	1	5	Properly sized vent holes away from airflow obstructions	The vent hole size will be checked several times in practice launches and the hole will be of adequate size compared to previous similar

						rockets that we have successfully launched.
Loss of power	Battery dies or wires become unattached	Altimeter does not record data, ejection charges are not fires, rocket descends ballistically	2	4	Use fresh batteries that can withstand rocket accelerations, redundant altimeters	New batteries will be used on launch day and two A&R members will confirm that the batteries are connected and wired securely.
Parachute gets tangled	Parachute is not packed correctly	Lowered coefficient of drag, kinetic energy of the rocket would be above target levels	2	3	Pack parachute correctly and have it confirmed by at least two other A&R members	Two members of A&R will confirm that the parachutes are packed correctly.
Ejection charges are not sufficient	Rocket fails to deploy one or both of the parachutes	Higher kinetic energy when landing, potentially ballistic descent	1	4	Do ground testing to ensure that the ejection charges will separate the rocket	The ground tests and previous launches will confirm the proper amount of black powder to use and two members of A&R will confirm that the charges

are pac correct

Environmental Concerns

One of the main environmental concerns includes the disposal of toxic substances, due to use of such substances in rocket construction. All toxic substances will be disposed in accordance with local laws and regulations by Penn State Environmental Health and Safety (EHS). During a launch, measures will be taken to minimize changes to the local environment due to the emission of hot, toxic gases from the rocket motor during launch. A safe radius around the pad will be cleared of combustible materials. High winds during rocket flight could adversely impact the landing guidance system. Table 14 below summarizes this risks, ranking the likelihood and impact on a scale of 1-5.

Environmental Hazard	Cause	Effect	Likelihood	Impact	Mitigation	Verification
Solvent, paint or other toxic substance released to environment	Improper disposal of used chemicals	Potential contamination of environment	2	3	Contact relevant personnel in building	Penn State EHS is contacted and notified
Motor gases	Hot, toxic gases released during takeoff	Contamination of environment, air pollution hazard	4	2	Follow all launch safety regulations	Checklist for safety regulation to be completed prior to launch
High winds (>10 mph) during recovery	High wind makes operation of recovery helicopter system difficult	Rocket section is driven off course and lands in hazardous location	3	4	Emergency parachute to safely land rocket, launch in low wind conditions	Visual verification, wind speed monitor
Motor burning into ground	Titanium sponges, motor burning out without	Cause fire at launch pad or surrounding area	1	4	Not using motors with titanium sponges, securely retaining	Ensure that "Skidmark" and similar motors are not used, test motor

Table 14: Environmental Hazards

	launching the vehicle				the motor into the booster	retention system
Ejection charge fails to go off during launch	Altimeter failure	Charge could go off on ground and cause a fire	1	5	Redundant altimeters	Follow standard launch procedure checklist
Parachutes exposed to ejection charges	Nomex Chute Protector doesn't fully cover the parachutes	Parachutes catch on fire which could spread if still lit when vehicle lands	1	5	Properly cover parachutes with Nomex cover	Follow launch procedure checklist
FOPS leaks fluid outside the rocket body	Physical damage to FOPS fluid containment or transfer section	Chemical damage occurs to local area/watershed	3	2	Organic materials (cornstarch) will be used for dilatant	Test flights will ensure the ability of external FOPS components to survive landing
Kiwi rotor or propeller spins after landing	Programming error	Damage to local flora	2	1	Test Kiwi before initial launch	Examine robustness of programming

Overall Project Risk Management

There are several concerns with the overall project, mostly related to budget and personnel management. These are presented in Table 15 below.

Table 15:	Overall Project	Risks

Risk	Cause	Effect	Likelihood	Impact	Mitigation
Labor leaves/graduates	Seniors graduate or students stop attending meetings	There are no longer enough students available to perform the necessary work	High	Medium	Recruitment at beginning of each semester. Team building activities.

Club loses funding	One or more sources can no longer provide funding	There is not enough money to pay for transportation or necessary parts/equipment	Low	High	Dedicated member to track expenses and make funding contracts possible.
Project falls behind schedule	Team fails to build critical components in a timely manner	Major milestones are not met in time	Medium	Medium	Weekly status meetings, follow project plan
Failure to acquire transportation	Transportation to Alabama not acquire	Team is unable to travel to the competition	Low	High	Have plan to carpool if necessary
Injury of team personnel	Hazards outlined in Table 13	Team member is injured	Low	High	Inform and enforce team safety
Project over budget	Testing/fabrication/ travel costs exceed expectations	Project cost exceeds amount of money projected.	Low	Medium	Compare prices from different vendors, avoid excess shipping costs
Damage during testing	Accident/malfunction during testing	Catastrophic damage to rocket	Medium	Medium	Ground testing, maintain stock of spare parts
Club loses facilities	University revokes club access to lab	Club loses access to 46 Hammond	Low	High	Maintain clean environment and proper storage of materials
Parts are unavailable	Parts needed for rocket are not available commercially	Rocket cannot be completed using planned parts	Low	Medium	Use non - exotic

					materials and check for availability. Order parts far in advance
Theft of equipment	Parts or testing equipment gets stolen	Rocket construction becomes more difficult, excess cost to the club	Low	Medium	Only subsystem leaders and officers will have card access to the LTRL lab

Section 6: Payload Criteria

1: Selection, Design and Rationale of payload

FOPS:

Due to the inadequate performance of the prototype system in the subscale launch, a new method of inserting the specimen before the liquid was developed. The shear thickening liquid remains the main method of protection; however, the open-cell foam which was featured in the original design was removed, eliminating much of the gross acceleration isolation. A spring system is used to fulfill the purpose of the open-cell foam. This design retains the force-distribution abilities of the dilatant while employing the spring system's acceleration isolation abilities. The drawing for FOPS is contained in Figure 25 below.

Figure 25: FOPS Drawing

The exterior of FOPS is integrated into the body of the rocket, and is attached to the materials bag (shown in black) by elastic bands or springs. These bands allow the bag to be isolated from the shocks and forces of launch and recovery, while still restraining the motion of the bag. The dilatant will fill the space between the materials bag and the exterior of the bay. It will be held in a reservoir (shown in black above the FOPS bay) until after the fragile object is placed into the materials bag. Once the object is secure, the FOPS bay valve will be opened manually from the exterior, and the non-Newtonian fluid will flow into the bay. FOPS dimensions are shown in Figure 26.

Figure 26: FOPS Dimensions

As evident by the drawing dimensions, the materials bag is large enough to contain the unknown fragile object(s) of dimensions 3.5 x 6 inches. FOPS will act as a section of rocket body, and be independent of other systems, as it does not require power or actuation and is completely contained within the FOPS bay. The max acceleration for the rocket is 8 G's, and this system is designed to handle this acceleration.

Kiwi:

Originally, Kiwi was designed as a coaxial helicopter. After further research into the nature of coaxial rotor mechanisms, the design was changed to an autogiro, or gyrocopter, which uses a large, unpowered rotor on the top of the craft to provide lift. The drag of forward motion on the rotor is greater on the leading edge than the trailing edge, which exerts a moment that turns the rotor and generates downward thrust. A small powered propeller on the rear of the craft provides forward thrust. Simpler mechanical systems and increased stability make the autogiro preferable to the coaxial helicopter as a small-scale autonomous vehicle for use in this competition. Figure 27 shows the full body view of Kiwi.

Figure 27: Exterior View of Kiwi Vehicle

Kiwi will be powered by a front propeller and steered by a rear rudder, both shown in the above figure. The top rotor will provide lift to slow the descent of the vehicle. Kiwi weighs 17 oz, and its terminal velocity will cause Kiwi to be below the kinetic energy requirements even if it falls without parachutes. The Kiwi dimensions are shown in Figure 28 below.

Figure 28: Kiwi vehicle dimensions

The size of the front propeller is 3 inches due to space constraints. Using equations 4-6 below, the forward velocity was determined:

$$V_{tip} = \omega r \tag{4}$$

$$T = \frac{1}{2} \rho A V_{tip}^2 C_{lavg}$$
(5)

$$V_f = V_{fnd} \sqrt{\frac{T}{2\rho A}} \tag{6}$$

The ideal forward velocity was found to be 94 ft/s, however, this number does not account for drag or the downwash of the top rotor. The top rotor will provide lift, and be 1-foot-long due to size constraints set by the Kiwi Bay. A view of Kiwi's interior is shown in Figure 29 below.

Figure 29: Cross Section view of Kiwi Vehicle

The white cylinder at the bottom front of the vehicle contains the parachute, which will be used for landing and in case of emergencies. The shelves shown in the interior of the vehicle will be used to hold the electrical components in place. The electrical schematic is shown later in the report. The fasteners used to hold the electronics are shown in Figure 30 below.

Figure 30: Fastening mechanism for the electronic components

The shelves will be equipped with loops (shown in blue) so that the electrical components can be secured to the shelves via zip ties (shown in gray). Securing the components in this way will allow for easy adjustment of the components and a reduction of weight.

Kiwi will be encased in a shell within the rocket body. This shell acts to restrain Kiwi during the ascent of the rocket, protecting it from impact against the walls of the rocket. When the rocket reaches apogee and the body opens, the shell's two sections separate, and allow Kiwi to exit the rocket body and begin descending. After its exit, Kiwi acts independently from the rocket. Below are the electrical schematics used in the Kiwi system. The schematic for the ground station for the Kiwi system is shown in Figure 31.

Figure 31: Ground station wiring schematic

The ground station contains a laptop, a Leonardo Arduino, and an Xbee radio. The Laptop is used for interfacing with and powering an Arduino. The Arduino is equipped with an Xbee which allows the team and Kiwi to communicate. The team will use the Xbee to send messages to Kiwi to ensure that the communication link has not been lost. If the link is lost, the Kiwi flight computer will deploy the parachute and power off all systems. Additionally, the Ground Station Arduino is equipped with an Emergency PWR off button. Pressing this button will transmit a message to the Kiwi flight computer that will deploy the parachute and shut down all systems. The schematic for the electrical systems on board the Kiwi vehicle are is shown in Figure 32.

Figure 32: Schematic for the electrical systems onboard the gyrocopter

A Mini Pro Arduino will act as the flight computer on board Kiwi. It will receive data from the GPS and IMU to determine Kiwi's location, speed, and direction of movement. The Mini Pro will have an indicator LED which will be visible from the outside of the vehicle to show that the system is receiving power. The flight computer will be powered by a Lipo Battery through a voltage regulator. The system will be activated by flipping an exterior switch which will connect the battery to the voltage regulator. An additional Lipo battery will power the motor that drives the propeller. The battery will also have an external switch to connect it to the voltage regulator. The motor will be connected to an electronic speed controller, which will receive signals from the Arduino. A servo will control the rudder, as directed by the Arduino to adjust the direction of the vehicle's flight. The Arduino will use an Xbee radio to communicate with the ground station. The phototransistor will be used to determine when Kiwi has exited the rocket.

The flight computer will also be equipped with an e-match to eject the parachute. There will also be a completely separate altimeter system, including batteries, an altimeter, and an e-match, on board Kiwi, for redundancy. This altimeter will automatically trigger an e-match at 150 feet to ensure the safe recovery of the Kiwi. Figure 33 shows the software flow diagram of the Ground Station.

Figure 33: Kiwi Ground Station (GS) Software Diagram

The ground station is mainly used for monitoring Kiwi's stability and flight path and to provide a way to remotely shutdown the vehicle and deploy the parachutes. The system begins by sending the communication check signal to the vehicle. It then checks if the emergency button has been pressed. If it has, the ground station will send a shutdown message to Kiwi, which will initiate a shutdown sequence on the vehicle. If the emergency button has not been pressed, the laptop will display the received location and velocity data from Kiwi so the team can monitor the flight of the vehicle. The Kiwi on board software flow diagram is shown in Figure 34.

As shown in the diagram, the flight computer will not power the propellers unless the ground station signal has been received, the altitude is over 100 feet, the target coordinates have been received, and a photoelectric sensor reports that Kiwi is outside the rocket. Once all of these criteria have been met, the autogiro will wait thirty seconds and then activate the propellers. After verifying that Kiwi is still in communication with the ground station, a shutdown signal has not been received, and that the altitude is greater than 150 feet, the flight computer will check that the vehicle is on the correct trajectory. If the trajectory is correct, the Xbee will send the GPS coordinates and the velocity of the vehicle so the team can ensure the flight is stable. If the trajectory is not correct, the proper adjustments will be made and then the Location and velocity data will be sent to the team. If the communication check signal has not been received in a specific number of iterations, a shutdown signal has been received, or the altitude of Kiwi is less than 150 ft, the flight computer will deploy the parachute by activating the e-match, and turn off all systems.

Figure 34: Kiwi's onboard software flow diagram

Section 7: Project Plan

1: Testing

Airframe Material Testing:

Material testing is to be completed alongside full-scale construction which will help verify that the launch vehicle is capable of withstanding the expected loads from launch through to touchdown. Lab facilities at Research Building West at Penn State will be used for the testing to create an apparatus which requires the machining of aluminum bulk plates in order to hold the test specimen to the tensile test machine. Previously, a similar tensile test had been conducted on a G12 fiberglass airframe specimen as seen in Figure 35 and Figure 36.

The greatest failure mode for the airframe is in tension where screws are used to hold them together. During testing, aluminum bulk plates were attached to the 3-inch diameter G12 fiberglass tube using four and six screws on each respective bulk plate. The whole specimen was then attached to the tensile test machine using two aluminum rods 0.77 inches in diameter, as seen in Figure 35.

Figure 35: Tensile Test Setup for G12 Fiberglass Specimen

Figure 36: Force vs. Displacement of 3-inch diameter G12 Fiberglass Specimen

The tensile test machine continuously applied axial load until specimen failure. Data obtained from the tensile testing machine resulted in a yield force of approximately 3,780 pounds, as noted in Figure 36.

This yield force resulted in a corresponding yield stress of approximately 42.7 ksi, as calculated in Figure 37. This is due to the fact that the failure of the specimen occurred on the side of the fiberglass that had 4 screws, increasing the stress at those points.

$$\sigma_{f} = \frac{yield \ force}{Area} = stress \ at \ failure$$

$$\sigma_{f} = \frac{3782 \ pounds \ * 2}{\pi \ * \ 0.188 in \ * \ 4screws \ * \ 0.075 in}$$

$$\sigma_{f} = 42.69 \ ksi$$

Figure 37: Calculation of Yield Stress from Tensile Test Data

This test methodology is slotted to be performed on a specimen of Blue Tube 2.0 airframe by February 11th, 2017. Preparations have been made for reserving lab space and the equipment necessary for carrying out the test. The necessary bulk plates will be constructed during the coming days and will consist of machined 6061 Aluminum bar stock. After the creation of the bulk plates, testing will be able to commence in relatively short order, and data will be analyzed for comparison of Blue Tube 2.0 Against The existing data from the G12 Fiberglass specimen mentioned above.

Test (7.1.1)	Objective (7.1.2)	Success Criteria (7.1.2)	Variable (7.1.2)	Methodology (7.1.2)	Completed? (Y/N)
FOPS: Impact test.	To determine if the dilatant will be able to protect the object	The fragile object does not break.	The height at which the system is dropped	FOPS is dropped from increasing height.	Y
FOPS: Optimal Concentration Determination	Determine which concentration is the most effective at reducing forces on the fragile object	The least amount of stress compared to the other concentrations is measured by the force sensor	The concentration of the fluid	Force sensors are placed in different concentrations of the non- Newtonian Fluid and dropped from	Ν

Payload Testing

Table 16: Payload Test Overview

				the same height.	
Kiwi: Stability Test	Determine if the orientation of Kiwi will affect its ability to stabilize itself	Kiwi is able to correctly orient itself at all different starting attitudes	The beginning orientation of Kiwi	Kiwi is dropped from a set height at different orientations	Ν
Kiwi: Parachute Test	To determine if the parachute can safely slow the descent of Kiwi regardless of orientation	The parachute fully opens during descent regardless of orientation	The beginning orientation of Kiwi	Kiwi's parachute is activated at different orientations	Ν
Kiwi: Remote Turn off Distance Test	To determine the height at which Kiwi's parachute can be activated and the vehicle can be powered off in case of emergencies	Kiwi is powered off and the parachute is successfully deployed	The height at which the team attempts to power off Kiwi	The emergency power off button is activated midway through Kiwi's descent off of a parking deck	Ν

At this point in time, the team has only completed the first test in Table 16 for FOPS. The test procedure was to drop a cylindrical container filled with the dilatant and the fragile object (an egg) off of increasing levels of a parking deck. This test was a success, as the system protected the fragile object from any damage during each test run. This test served as proof of concept, and allowed LTRL to move forward with designing a system which would use the dilatant as its main source of protection.

Drag coefficient testing

Two experimental methods will be used to compensate for the high drag estimation in OpenRocket. One, through multiple full scale test launches it will be experimentally determined how much the actual apogee differs from simulations. If enough launches are performed than

compensation for factors such a wind should be possible. If not, then this method will not be as effective but it will still prove useful in predicting apogee in the specific winds pertaining to each launch.

Two, by implementing wind tunnel testing on the subscale rocket. By taking drag force readings at varying wind speeds in the controlled tunnel environment, a drag coefficient profile can be developed as a function of rocket velocity. Due to limitations of the tunnel, the velocity will range from zero to approximately 120 ft/s. Now, although this velocity range is much lower than the maximum predicted rocket velocity, because the prediction does not exceed Mach 0.61, incompressibility will be assumed. Due to said assumption extrapolation is possible between the low speed tests and the much higher flight speeds. This testing has not yet occurred but will be performed in the Penn State Aerospace Department's Boundary Layer Tunnel in the coming months. Figure 38 is a schematic (not to scale) of the test setup.

Static Motor testing:

To further validate the flight predictions, section 3.4.1, the motor characteristics mentioned in section 3.1.2 are experimentally validated. This will be done under the supervision of trained and experienced researchers. During the testing characteristics such as burn time, peak thrust, average thrust, impulse, and the overall shape of the thrust curve will be determined for each tested motor and then compared to the specifications given by the manufacturer. This will ensure that the predictions based on the manufacturer specifications will not have error

resulting from incorrect motor characteristics. The testing will use three L1350 motors in order for a standard deviation to be calculated for the various motor characteristics mentioned above. The standard deviation will also be used to verify consistency between motors and the given specifications. Figure 39 shows the motor testing setup. The I-Beam not shown in the figure is used to secure the entire assembly to ground during the static test firings. During which time all data will be collected via the 500 lb. load cell from within a concrete bunker. Static motor testing has not yet occurred, but is planned for the coming weeks.

Figure 39: Static Motor Test Setup

2: Requirements Compliance

Requirement Verification

Requirement Number	Method of Verification	Verification		
1.1	Demonstration	The onboard payload will be delivered to an apogee of 5,280 feet above ground level in a test launch.		
1.2	Inspection	The vehicle shall carry two StratoLogger CF barometric altimeters, which are commercially available, for recording the official altitude.		
1.2.1	Inspection	The official altitude shall be reported via a series of beeps from the official scoring altimeter post launch.		
1.2.2	Inspection	The vehicle will have a second altimeter to provide dual redundancy for all deployment charges.		
1.2.3	Inspection	At the LRR, a NASA official will mark the altimeter that will be used for the official scoring.		
1.2.4	Inspection	At the launch field, a NASA official will obtain the altitude by listening to the audible beeps reported by the official competition, marked altimeter.		
1.2.5	Inspection	All audible electronics, other than the official scoring altimeter shall be capable of turning off.		
1.2.6.1-4	Inspection	All competition scoring rules as listed in the handbook are understood and shall be followed.		
1.3	Inspection	All recovery electronics shall be powered by commercially available 9V batteries.		
1.4	Demonstration	Materials and construction methods used by the club allow for the repeated use of the vehicle. Demonstrated by the multiple launches required by the test vehicle.		
1.5	Demonstration	Flight vehicle's design consist of three sections to contain the parts for payload, avionics and recovery, and propulsion respectively as seen by the separation points during launch.		
1.6	Inspection	The vehicle contains a single stage three grain motor.		

Table 17: Vehicle Requirements

1.7	Demonstration	Vehicle is easily assembled and disassembled by using screws and couplers to fit each section together.
1.8	Demonstration	The launch vehicle shall be capable of being prepared for launch in a period of 4 hours. And capable of remaining in launch-ready configuration at the pad for a minimum of 1 hour without losing the functionality of any critical on-board component.
1.9	Testing	The launch vehicle shall be capable of being launched by a standard 12-volt direct current firing system. Engine firing will be tested by propulsion prior to first flight.
1.10	Demonstration	The launch vehicle shall require no external circuitry or special ground support equipment to initiate launch. Demonstrated through launch of subscale.
1.11	Inspection	The launch vehicle shall use a commercially available solid motor propulsion system using ammonium perchlorate composite propellant (APCP) which is approved and certified by the National Association of Rocketry (NAR), Tripoli Rocketry Association (TRA), and/or the Canadian Association of Rocketry (CAR).
1.11.1	Testing	(As of PDR the selected motor is the L1350) Final motor choices shall be made by the Critical Design Review
1.11.2	Inspection	In the event the motor needs to be changed after CDR it shall be approved by the NASA Range Safety Officer (RSO)
1.12.1	Analysis	The minimum factor of safety shall be 4:1 with supporting design documentation included in all milestone reviews.
1.12.2	Analysis	The low-cycle fatigue life shall be a minimum of 4:1.
1.12.3	N/A	Each pressure vessel shall include a solenoid pressure relief valve that sees the full pressure of the tank. Our design does not contain any pressure vessels.
1.12.4	N/A	Full pedigree of the tank shall be described, including the application for which the tank was designed, and the history of the tank, including the number of pressure cycles put on the tank, by

		whom, and when. Our design does not contain any pressure vessels.
1.13	Testing/Analysis	Current selection is rated at an impulse of 4280 Ns (67% of the maximum L class motor 5120 Ns allowed for use in university competition)
1.14	Simulation	The stability margin at point of static exit currently sits at 2.25 calibers, exceeding the 2.0 required stability margin. These stability margins were simulated using OpenRocket.
1.15	Simulation	The vehicle will have a minimum velocity of 76.6 ft/s at rail exit. (Min allowable is 52 ft/s)
1.16	N/A	A subscale launch for the vehicle is currently scheduled for November 13th, 2016.
1.16.1	Simulation/Inspection	Subscale design will resemble a 1:2 scale of the full size launch vehicle as shown in our OpenRocket models.
1.16.2	Inspection	The subscale shall carry an altimeter for apogee altitude reporting.
1.17	N/A	A checklist shall be made to ensure that the sub- requirements of 1.17 shall all be followed
1.18	Inspection	No structural protuberance will be located forward of the burnout center of gravity.
1.19.1	Inspection	The vehicle will not include forward canards.
1.19.2	Inspection	The launch vehicle shall not utilize forward firing motors.
1.19.3	Inspection	The launch vehicle shall not utilize motors that expel titanium sponges.
1.19.4	Inspection	The launch vehicle shall not utilize hybrid motors.
1.19.5	Inspection	The launch vehicle shall not utilize a cluster of motors.
1.19.6	Analysis	The launch vehicle shall not utilize friction fitting for motors, instead utilizing a tail cone for motor retention
1.19.7	Analysis	The launch vehicle will reach approximately Mach 0.6, below the Mach 1 maximum requirement. This

		value was simulated using OpenRocket. Value will also be verified after test launches.
1.19.8	Simulation	The vehicle ballast will not exceed 10% of vehicle weight. The current simulation includes a 10% ballast.

Requirement Number	Method of Verification	Verification
2.1	Demonstration	A drogue will deploy at apogee and a main will deploy at 700ft. Demonstrated through full scale test launch.
2.2	Demonstration	LTRL will ground test ejection charges before any subscale or full scale launch. There will be ground tests before any initial launches.
2.3	Analysis	The parachutes will be correctly sized so that each component of the rocket lands within the kinetic energy constraint of 75ft-lbs. The current parachute selection has the rocket well under the kinetic energy limit.
2.4	Inspection	The recovery system wiring will be completely independent of any payload components.
2.5	Inspection	There will be two independent altimeters, power supplies, and ejection charges for dual redundancy.
2.6	Demonstration	Motor ejection will not be used to separate the rocket. The altimeter will control the ejection charges.
2.7	Inspection	Each altimeter will have a separate key switch that will be accessible from the outside of the rocket in order to arm each altimeter independently.
2.8	Inspection	Each altimeter will have an independent battery.
2.9	Demonstration	Each key switch will be able to stay in the on position while on the launch pad.
2.10	Demonstration	Removable sheer pins will be used to keep the rocket together for both parachute compartments until the ejection charges cause separation.
2.11	N/A	There will be a GPS unit installed that will constantly send the position of the rocket.
2.11.1	Inspection	All sections of the rocket will be tethered together, but if any are not, they will have independent GPS units. Specifically KIWI will fall independent with a second GPS unit.
2.11.2	Inspection	The GPS unit will be functional on launch day. There will be a spare GPS unit in case of any electronic failures before the launch.

Table 18: Recovery System Require

2.12	Inspection	The recovery system electronics will be in a faraday cage as to not interfere, and not be interfered with by any component of the rocket or other rockets.
2.12.1	Inspection	The recovery system will be in a coupler without any other payloads or electronic components.
2.12.2	Testing	The faraday cage will protect the recovery system from any interference. Testing before launch will confirm this requirement.
2.12.3	Testing	The faraday cage will protect the recovery system from any interference. Testing before launch will confirm this requirement.
2.12.4	Testing	The faraday cage and being in its own coupler will protect the recovery system from any interference. Testing before launch will confirm this requirement.

Requirement Number	Method of Verification	Verification
3.1.1	Inspection	The rocket will carry a fragile specimen protection experiment as a payload.
3.1.2	Demonstration	At the launch, an additional autonomous autogyro payload will be flown in the rocket, but will not be submitted for scoring.
3.1.3	Inspection	The autogyro payload will be included in reports so that the safety of the project can be reviewed by overseeing engineers.
3.1.3	Inspection	The autogyro payload will be equipped with its own GPS.
3.1.3	Analysis	The autogyro payload will be equipped with an emergency parachute system to ensure that it comes down in accordance with the kinetic energy requirements.
3.4.1	Demonstration/ Analysis	A chamber filled with dilatant will house a flexible bag, which will contain and protect the fragile materials. The chamber will be suspended by elastic bands in order to provide gross acceleration dissipation.
3.4.1.1	Demonstration	All specimens will be placed in separate bags and inserted into the dilatant, which will cushion each specimen individually.
3.4.1.2	Analysis	The cushioning provided by the dilatant, combined with the acceleration dissipation of the elastic bands will ensure that any material placed inside the chamber will be able to survive the accelerations and shocks of launch, landing, and recovery.
3.4.1.3	Inspection	A sealable materials bag inside the chamber will allow for insertion of specimens, while the dilatant will allow for objects to be of unknown size and shape.
3.4.1.4	Testing/Inspection	All dilatant for cushioning will be permanently housed inside the rocket during preparation, with enough volume left inside the bay between the elastic regions and materials chamber to permit for displacement due to specimen volume. All specimens will be sealed in watertight bags.
3.4.1.5	Inspection	The material chamber will be large enough to house a 3.5" by 6" cylinder.

Table 19: Experimental Requirements

3.4.1.6 Analysis	The mass of the objects will be accounted for in the estimations of flight, as well as the accelerative forces on the materials chamber.
------------------	--

Requirement Number	Method of Verification	Verification
4.1	Demonstration	The team will use launch and safety checklists. The team will demonstrate the use of launch and safety checklists during all launches.
4.2	N/A	Laura Reese is listed as safety officer
4.3	N/A	The safety officer will perform all responsibilities as listed.
4.3.1	Inspection	The safety officer will monitor the team with an emphasis on safety.
4.3.1.1	Inspection	The safety officer will monitor the team during design of the vehicle and launcher.
4.3.1.2	Inspection	The safety officer will monitor the team during construction of the vehicle and launcher.
4.3.1.3	Inspection	The safety officer will monitor the team during assembly of the vehicle and launcher.
4.3.1.4	Inspection	The safety officer will monitor the team during ground testing of the vehicle and launcher.
4.3.1.5	Inspection	The safety officer will monitor the team with an emphasis on safety during the subscale launch tests.
4.3.1.6	Inspection	The safety officer will monitor the team with an emphasis on safety during the full-scale launch test.
4.3.1.7	Inspection	The safety officer will monitor the team with an emphasis on safety during the launch day.

Table 20: Safety Requirements

4.3.1.8	Inspection	The safety officer will monitor the team with an emphasis on safety during the recovery activities.
4.3.1.9	Inspection	The safety officer will monitor the team with an emphasis on safety during educational activities.
4.3.2	N/A	The safety officer will implement all procedures developed by the team for construction, assembly, launch and recovery activities.
4.3.3	N/A	The safety officer will manage and maintain current versions of the team's hazard analyses, failure modes analyses, procedures and chemical inventory data.
4.3.4	N/A	The safety officer will assist in the writing and development of the team's hazard analyses, failure modes analyses and procedures.
4.4	N/A	The team's mentor is Alex Balcher
4.5	N/A	The team will abide by the rules and guidance of the RSO.
4.6	N/A	The team will abide by all rules set forth by the FAA.

Requirement Number	Method of Verification	Verification
5.1	Demonstration	Students on the team will do 100% of the project, including design, construction, written reports, presentations, and flight preparation with the exception of assembling the motors and handling black powder or any variant of ejection charges, or preparing and installing electric matches.
5.2	Demonstration	The team provided a project plan including project milestones, budget and community support, checklists, personnel assigned, educational engagement events, risks, and mitigations. The team will follow the project plan.
5.3	N/A	Foreign National Team members will be identified to NASA by Preliminary Design Review.
5.4	Demonstration	The team members attending the launch will be identified by Critical Design Review.
5.4.1	N/A	Only actively engaged team members will come to launch week activities.
5.4.2	N/A	One mentor will come to launch week activities.
5.4.3	N/A	At most two adult educators will come to launch week activities.
5.5	Demonstration	The team will engage at least 200 participants in educational, hands-on science and math related activities throughout the year and write reports on these events. The reports will be submitted at most two weeks after the activity.
5.6	Inspection	The team has developed a website for the competition. The website will be kept up to date throughout the competition.
5.7	Demonstration	Teams will post, and make available for download, the required deliverables to the team website by the due dates specified in the project timeline.
5.8	Demonstration	All reports shall be delivered in pdf format.

Table 21: General Requirements

5.9	Demonstration	Every report shall include a table of contents outlining major sections and their respective sub-sections.
5.10	Demonstration	Every report shall include page numbers at the bottom of the page.
5.11	Demonstration	The team shall provide proper video conference equipment needed to perform a video teleconference with the review board.
5.12	Demonstration	The flight vehicle will be capable of launching using the launch pads provided by the launch service provider.
5.13	Demonstration	The team will meet the Architectural and Transportation Barriers Compliance Board Electronic and Information Technology (EIT) Accessibility Standards.

Team Derived Requirements

Each subsystem, as well as the safety officer, derived project specific requirements as listed below. These are an extension beyond the general requirements given and will be used by the club to target specific aspects of the project.

1 Payload				
1.1 Fragile material is recovered from the bay is the same condition as received.	Testing	Test the materials protection system with various fragile objects vulnerable to bending, breakage, collapse, and liquid damage		
1.2 No materials will leave the materials bay until recovery	Inspection	Perform pre-flight check on rocket and during material bay loading		
1.3 The protection payload does not cause the vehicle to become unstable.	Inspection/Analysis	Observe the vehicle's flight during subscale and full-scale test launches.		
1.4 Kiwi becomes stable upon exit of the rocket.	Inspection/Analysis	Observe Kiwi's flight during subscale and full-scale test launches.		
1.5 Kiwi lands within 5 feet of the landing point.	Testing	Measure the distance between Kiwi's actual landing site and Kiwi's attempted landing site.		
1.6 All parts of the fragile object protection system and Kiwi remain intact and fully functional during the duration of the rocket flight.	Testing	Include the protection system in subscale and full-scale test launches to test how the parts of the system withstand forces placed on them by the vehicle's flight.		
1.7 All FOPS and Kiwi systems can be used in another flight.	Inspection/Analysis	Determine if the systems are structurally sound enough to be flown again		
2 Avionics and Recovery				
2.1 The redundant altimeter will be at a delay	Demonstration	The redundant altimeter will be at a slight delay.		

Table 22: Derived Requirements
as to not overwhelm the body tube.		
2.2 There will be backup electronics in case of failure on launch day.	Demonstration	The team will have backup altimeters and GPS units in case of failure before launch.
2.3 Pressure port will be adequately sized.	Testing	There will be ground testing and test launches to ensure that the pressure port is a proper size.
2.4 Structural materials will be strong enough to maintain integrity throughout descent and landing.	Testing	There will be estimations and testing done to ensure the integrity of the structure throughout parachute ejections and landing.
2.4.1 Avionics board will remain structurally sound throughout launch, descent, and landing.	Testing	The PLA avionics board will be tested prior to launch in high stress and high heat conditions.
2.4.2 3D printed AV Bay cover will be secured to the body tube coupler in such that the avionics bay as a whole will remain secured.	Testing/Demonstration	The avionics bay cover/coupler will be secured with a high factor of safety through the use of both epoxy and steel screws.
2.5 All electrical connections will be tightly secured throughout launch.	Inspection	On launch day all electrical connections between the altimeters, batteries, and e- matches will be double checked.
2.5.1 Battery terminal connections will remain tight throughout the launch.	Inspection	Design iterations of avionics bay moved batteries to a horizontal position within the rocket to account for inertial forces. Batteries are tightly secured eliminating any connection dislocations during flight.
2.6 Faraday cage will completely enclose the avionics bay.	Demonstration	Our faraday cage will extend completely around the perimeter of the avionics bay as

		well as above and below in order to provide complete coverage.
	3 Propulsion	
3.1 Modeling for prediction of target apogee	Analysis	Assessments will be conducted to minimize point loss in the target altitude category.
3.1.1 Validation of manufacturer's data	Testing	Static motor testing will be conducted to accurately model vehicle flight.
3.1.2 Vehicle Drag Assessment	Testing	Wind tunnel drag modeling will be conducted on a subscale model of the final launch vehicle to calculate an accurate coefficient of drag.
3.2 Handling and risk mitigation	Testing	Retaining hardware will be assessed using 3D scanning to inspect for deformation. Motors and igniters stored safely and handled appropriately at all times.
	4 Safety	
4.1 Team members take safety course	Demonstration	All team members will complete the Penn State lab safety course
4.2 Lab safety plan in place	Demonstration	An official university Unit Safety Plan will be completed to ensure a safe lab environment
4.3 Proper lab safety equipment will be worn at all times.	Demonstration	It is a club and University requirement for all members to wear safety equipment in the lab.
4.4 Explosives will be stored in a safe environment.	Demonstration	All motors and black powder charges are stored at Penn State's High Pressure Combustion Lab in a

		commercial grade explosive safe.
4.4.1 All handling of explosive material will be supervised by a level 2 NAR certified member.	Demonstration	LTRL will ensure that a level 2 certified member will monitor all procedures on launch day.
	5 Structures	
5.1 Improve aerodynamics of launch vehicle	Testing	Components will be selected to maximize aerodynamic efficiency.
5.1.1 Camera cover aerodynamically efficient	Testing	Streamlines the protruding camera. Confirmed through wind tunnel testing.
5.1.2 Transition couplers aerodynamically efficient	Testing	3D printed transition pieces designed in order to streamline aerodynamics between different diameter sizes.
5.2 Materials testing for airframe selection	Testing	Airframe materials will be evaluated for tensile strength to verify structural integrity.
5.3 Launch vehicle fins will be removable	Demonstration	Fins on launch vehicle will be able to be removed without disassembly of the launch vehicle.
5.3.1 Fin brackets used for removable fins, will survive flight and landing impacts.	Demonstration/Testing	Fin brackets have been tested for durability and demonstrated through use during the subscale flight.
5.4 Visually confirm payload status	Inspection	Launch vehicle will contain transparent section of airframe to obtain visual status of FOPS.
5.5 Recording of launch	Demonstration	On-board camera will record the entirety of the launch of the rocket.
5.6 Fins will not flutter during flight	Analysis	Fin thickness was increased to 3/16" to eliminate fin flutter.

5.7 Fins strength testing	Testing	Fins will be tested on shear strength.
---------------------------	---------	--

3: Budget and Timeline

Line Item Expenses

Full Scale								
Structures								
J-B Weld Adhesive 8270, Fast Hardening, 10 Ounce Tube	2	\$20.12	\$40.24					
6" Blue Tube	2	\$66.95	\$133.90					
6" Blue Tube Full Length Coupler	1	\$66.95	\$66.95					
5.5" Blue Tube Coupler	1	\$18.95	\$18.95					
Centering Rings 75mm (fits Blue Tube) to 6.0" (2 Pack)	2	\$13.55	\$27.10					
75mm Blue Tube	1	\$29.95	\$29.95					
Bulkheads Inner	6	\$7.61	\$45.66					
Bulkheads Outer	6	\$8.93	\$53.58					
3/16" G10 Structural Fiberglass Sheet, 24" x 24"	2	\$76.32	\$152.64					
5.5" Von Karman nose cone	1	\$116.33	\$116.33					
Optically Clear Cast Acrylic Tube, 6" OD x 5-3/4" ID, 1' Length	1	\$47.98	\$47.98					
Freight Charges(Predicted)	1	\$100.00	\$100.00					
Payload								
Arduino Nano	1	\$25.00	\$25.00					
GPS	1	\$80.00	\$80.00					
IMU	1	\$20.00	\$20.00					
Rudder	1	\$5.00	\$5.00					
Propeller	1	\$5.00	\$5.00					

Table 23: Projected Line Item Expenses

Top rotor	1	\$5.00	\$5.00
Miscellaneous (motors, servos, electrical connectors, etc.)	1	\$150.00	\$150.00
A&R			
StratoLogger CF Altimeter	3	\$54.95	\$164.85
Iris Ultra 72" Compact Parachute	1	\$265.00	\$265.00
18" Classical Elliptical Parachute	1	\$53.00	\$53.00
Shock Cord 100'	1	\$133.22	\$133.22
21" Nomex Blanket	1	\$21.00	\$21.00
13" Nomex Blanket	1	\$16.00	\$16.00
Subscale			
Structures			
J-B Weld Adhesive 8270, Fast Hardening, 10 Ounce Tube	2	\$20.12	\$40.24
Blue Tube 75/48	1	\$29.95	\$29.95
ARR Blue AC-75x48" FLC	1	\$31.95	\$31.95
Mad Cow 2 6" 41 V/K Fiberglass			
IVIAU COW 2.6 4.1 VK FIDEIGIASS	1	\$28.95	\$28.95
Bulkhead - 75mm (1/pk)	1 5	\$28.95 \$3.83	\$28.95 \$19.15
Bulkhead - 2.56" BT-80 (1/pk)	1 5 2	\$28.95 \$3.83 \$2.99	\$28.95 \$19.15 \$5.98
Bulkhead - 2.56" BT-80 (1/pk) Bulkhead - 2.6" (Thick/Thin) BT-80 (1/pk) 1/4" Ply	1 5 2 1	\$28.95 \$3.83 \$2.99 \$2.99	\$28.95 \$19.15 \$5.98 \$2.99
Mad Cow 2.8 4:1 VK Fiberglass Bulkhead - 75mm (1/pk) Bulkhead - 2.56" BT-80 (1/pk) Bulkhead - 2.6" (Thick/Thin) BT-80 (1/pk) 1/4" Ply ARR Blue Coupler AC- 2.56"	1 5 2 1 1	\$28.95 \$3.83 \$2.99 \$2.99 \$9.25	\$28.95 \$19.15 \$5.98 \$2.99 \$9.25
Mad Cow 2.84.1 VK FiberglassBulkhead - 75mm (1/pk)Bulkhead - 2.56" BT-80 (1/pk)Bulkhead - 2.6" (Thick/Thin) BT-80 (1/pk) 1/4" PlyARR Blue Coupler AC- 2.56"Structural Fiberglass (FRP) Sheet 1/8" Thick, 12" x 12"	1 5 2 1 1 2	\$28.95 \$3.83 \$2.99 \$2.99 \$9.25 \$10.17	\$28.95 \$19.15 \$5.98 \$2.99 \$9.25 \$20.34
Mad Cow 2.84.1 VK FiberglassBulkhead - 75mm (1/pk)Bulkhead - 2.56" BT-80 (1/pk)Bulkhead - 2.6" (Thick/Thin) BT-80 (1/pk) 1/4" PlyARR Blue Coupler AC- 2.56"Structural Fiberglass (FRP) Sheet 1/8" Thick, 12" x 12"Optically Clear Cast Acrylic Tube 2-3/4" OD x 2-1/2" ID, 1' Length	1 5 2 1 1 2 1 2 1	\$28.95 \$3.83 \$2.99 \$2.99 \$9.25 \$10.17 \$40.04	\$28.95 \$19.15 \$5.98 \$2.99 \$9.25 \$20.34 \$40.04

Propulsion			
Cesaroni L1350 (3 Gr.)	4	\$209.00	\$836.00
Cesaroni J290	2	\$80.00	\$160.00
75mm Pro75-3G Casing	1	\$187.00	\$187.00
Miscellaneous Equipment			
Sharpie Fine Point Permanent Markers, 12-Pack	1	\$6.75	\$6.75
GREAT GLOVE NM50015-L-BX Nitrile Powder Free 4-5 mil General Purpose, Large, Blue (Pack of 100)	1	\$8.74	\$8.74
Loew Cornell 1021254 Woodsies Craft Sticks, 1000- Piece	1	\$4.05	\$4.05
Blue Sky 100 Count Plastic Cups, 5 oz, Clear	1	\$5.24	\$5.24
Dremel Cutoff Wheel 1-1/2	2	\$22.99	\$45.98
Safety Glasses Intruder Multi Color Clear Lens	1	\$11.99	\$11.99
3M 8000 Particle Respirator N95, 30-Pack	2	\$13.95	\$27.90
Label Maker	1	\$24.99	\$24.99
Soldering iron	1	\$23.97	\$23.97
Solder and Flux kit	1	\$18.67	\$18.67
Silicone	1	\$6.58	\$6.58
Duct Tape	2	\$7.98	\$15.96
Misc. (Bolts, Nuts, Washers, All-threads)	1	\$50.00	\$50.00
Miscellaneous Expenses		\$500.00	\$500.00

Budget:

The projected expenditures for the 2016-2017 school year are included in Table 24. This table lists all expected costs for the club.

The full scale and subscale sections include the cost of building materials for the rocket plus additional supplies for material testing. The given subscale and full scale costs are final as all parts have been purchased. These exact prices can be seen in the line item expense table. Propulsion encompasses all motors needed for subscale and full scale flights as well as additional motors of multiple sizes for motor testing. The specific motors are listed as line items and the total cost given reflects the summation of these line-items.

Travel costs are mainly attributed to the Alabama trip during spring semester, however additional funding is required to cover fuel costs for other test launches throughout the school year.

Outreach costs must also be taken into account and can include travel to outreach locations as well as any supplies needed for the event.

Miscellaneous equipment includes all tools, equipment, and supplies needed for construction of the rocket. The current cost encompasses all parts shown in the line-item estimate as well as an additional \$500.00 for unexpected costs in the future.

Expected Costs 2016-2017						
Full Scale	\$1,776.35					
Subscale	\$277.65					
Propulsion	\$1,183.00					
Travel	\$7,000.00					
Outreach	\$300.00					
Miscellaneous Equipment	\$750.82					
Total	\$11,287.82					

Table 24: Updated Annual Expenses

Funding:

Funding for the USLI competition will be mainly provided through various academic sponsors who provide our club with financial aid. Table 25 shows the funding received from these various sources.

The Aerospace Department of Penn State has been the main sponsor of LTRL and they will continue to support our club this year. They have agreed to provide a donation of \$5,000.00. The Mechanical Department of Penn State has also agreed to support our club due to the large number of mechanical students involved. They have provided a donation of \$1,000.00 to the club.

This year our club is proud to have received the Samuel A. Shuman Endowment in Engineering. This endowment is given to groups who work to advance education in engineering as well as improve the students experience. The money from this endowment will go directly towards the USLI Competition and travel to Alabama in order to provide our members with the best experience possible. This endowment was given to LTRL in the amount of \$8,700.00. Yearly dues and fundraising opportunities gathered throughout the school year will also provide funding on the scale of around \$1,500.00.

The Boeing Company has supported our club in the past and has agreed to give a donation of \$500.00 for this school year.

Since the club has received the Samuel A. Shuman Endowment in Engineering, there is no longer a need to continue to pursue additional sources of income. The income received this year has been very substantial and will easily cover our expected costs for this year's competition. The club also hopes to save some funding to jumpstart our preparation for next year's competition. Even though the club have been very successful in receiving funding this year, LTRL still wishes to continue developing new and existing relationships with academic departments. The Mechanical Engineering Department at Penn State supported our club this year and they are one department that LTRL wishes to solidify a relationship with in order to plan ahead for future years. The College of Engineering and Engineering Undergraduate Council (EUC) are two groups that have been contacted and seem interested in helping fund the club in future years. Again the club plans to develop relationships with these groups in order to diversify our funding pool for the future.

Due to LTRL's success in acquiring additional funding, our goals for the year have been expanded in order to further student participation, learning, and development. LTRL is currently looking into ways to do this that may include more club launches of the current and past subscale rockets, as well as club driven research or activities aimed towards expanding students' knowledge of rocketry. NAR certifications are another example of how the club will continue to encourage students to diversify their experience within the club beyond one specific subsystem.

2016-2017 Income						
Aerospace Engineering Department	\$5,000.00					
Mechanical Engineering Department	\$1,000.00					
Samuel A. Shuman Endowment in Engineering	\$8,700.00					
Club Fundraising	\$1,500.00					
The Boeing Company	\$500.00					
Total	\$16,700.00					

Table 25: Expected Income

The Pennsylvania State University

Project Timelines

ID	Task Name	Duration	Start	Finish	3rd Quarter	Sen	4th Quarter	ls	t Quarter	Mar	2nd Qu	arter May
1	Executive Timeline	172 days	Mon 8/29/16	Mon 4/24/17	Jui Hug	- ocp				Trial 1		, may
2	Team Meetings	147 days	Mon 9/5/16	Mon 3/27/17		1111				1111		
3	All Hands 1	1 day	Mon 9/5/16	Mon 9/5/16		1						
4	Leads Meeting 1	1 day	Mon 9/12/16	Mon 9/12/16								
5	All Hands 2	1 day	Mon 9/19/16	Mon 9/19/16								
6	Leads Meeting 2	1 day	Mon 9/26/16	Mon 9/26/16								
7	All Hands 3	1 day	Mon 10/3/16	Mon 10/3/16			I					
8	Leads Meeting 3	1 day	Mon 10/10/16	Mon 10/10/16			1					
9	All Hands 4	1 day	Mon 10/17/16	Mon 10/17/16			1					
10	Leads Meeting 4	1 day	Mon 10/24/16	Mon 10/24/16								
11	All Hands 5	1 day	Mon 10/31/16	Mon 10/31/16			8					
12	Leads Meeting 5	1 day	Mon 11/7/16	Mon 11/7/16			l I					
13	All Hands 6	1 day	Mon 11/14/16	Mon 11/14/16			1					
14	Leads Meeting 6	1 day	Mon 11/21/16	Mon 11/21/16			8					
15	All Hands 7	1 day	Mon 11/28/16	Mon 11/28/16			8					
16	Leads Meeting 7	1 day	Mon 12/5/16	Mon 12/5/16			1 - E					
17	Winter Break	22 days	Sat 12/10/16	Sun 1/8/17				_				
18	Leads Meeting 8	1 day	Mon 1/9/17	Mon 1/9/17								
19	All Hands 8	1 day	Mon 1/16/17	Mon 1/16/17								
20	Leads Meeting 9	1 day	Mon 1/23/17	Mon 1/23/17								
21	All Hands 9	1 day	Mon 1/30/17	Mon 1/30/17								
22	Leads Meeting 10	1 day	Mon 2/6/17	Mon 2/6/17					1			
23	All Hands 10	1 day	Mon 2/13/17	Mon 2/13/17								
		Task			nactive Summary	0	Extern	al Tasks				
		Split		I	Manual Task		Extern	al Milest	one 🔶			
Proje	t: LTRL Executive Gantt	Milestone	•	I	Duration-only		Deadli	ine	+			
Chart		Summary	· -	1	Manual Summary Ro	ollup	Progre	ess	_			
Date:	Friday January 13, 2017	Project Su	ummary	1	Manual Summary	-	Manua	al Progre	55			
		Inactive T	ask		Start-only	C						
		Inactive N	Ailestone 💧	I	Finish-only	a.						

Figure 40: Executive Timeline Page 1 of 4

ID	Task Name	Duration	Start	Finish	3rd Quarter Jul Aug	Sep	4th Quarter Oct Nov	Dec	1st Quar Jan	ter Feb Ma	2nd Q r Apr	uarter May
24	Leads Meeting 11	1 day	Mon 2/20/17	Mon 2/20/17								
25	All Hands 11	1 day	Mon 2/27/17	Mon 2/27/17								
26	Leads Meeting 12	1 day	Mon 3/6/17	Mon 3/6/17								
27	All Hands 12	1 day	Mon 3/13/17	Mon 3/13/17								
28	Leads Meeting 13	1 day	Mon 3/20/17	Mon 3/20/17						I		
29	All Hands 13	1 day	Mon 3/27/17	Mon 3/27/17							1	
34	PDR	25 days	Mon 10/17/16	Fri 11/18/16								
30	Test Launches	70 days	Sat 11/5/16	Sun 2/12/17			-					
31	Subscale Launch	1 day	Sat 11/5/16	Sat 11/5/16			1					
32	MDRA Launch 1/14	2 days	Sat 1/14/17	Mon 1/16/17					11			
33	Full Scale Launch	2 days	Sat 2/11/17	Sun 2/12/17								
36	CDR	27 days	Mon 12/26/16	Tue 1/31/17						1		
37	CDR Report	15 days	Mon 12/26/16	Fri 1/13/17								
38	Summary of CDR report	15 days	Mon 12/26/16	Fri 1/13/17								
39	Changes made since PDR	15 days	Mon 12/26/16	Fri 1/13/17								
40	Vehicle Criteria	15 days	Mon 12/26/16	Fri 1/13/17					-			
41	Safety	15 days	Mon 12/26/16	Fri 1/13/17					-			
42	Payload Criteria	15 days	Mon 12/26/16	Fri 1/13/17					-			
43	Launch Opertation	15 days	Mon 12/26/16	Fri 1/13/17								
44	Project Plan	15 days	Mon 12/26/16	Fri 1/13/17								
45	CDR Draft due	0 days	Sun 1/8/17	Sun 1/8/17					1/8			
		Task			Inactive Summary		l	External Tasl	ks			
		Split			Manual Task			External Mile	estone	•		
Projec	t: LTRL Executive Gantt	Milestone	•		Duration-only			Deadline		+		
Chart	Eriday January 12, 2017	Summary		1	Manual Summary Roll	lup		Progress				
Date:	inday January 15, 2017	Project S	ummary	1	Manual Summary		1	Manual Prog	gress			
		Inactive T	ask		Start-only	E						
		Inactive N	/ilestone 🔷		Finish-only	ц,						

Figure 41: Executive Timeline Page 2 of 4

ID	Task Name	Duration	Start	Finish	3rd Quarter Jul Aug	Sep	4th Quarter Oct Nov	Dec	1st Quarter Jan Feb Mar	2nd Qi Apr	uarter May
47	CDR Presentation	17 days	Mon 1/9/17	Tue 1/31/17							
48	Power Point Slides	5 days	Mon 1/9/17	Fri 1/13/17							
49	Practice Presentation	11 days	Fri 1/13/17	Fri 1/27/17							
50	Presentation Dat	9 days	Tue 1/17/17	Fri 1/27/17							
46	CDR Final due	0 days	Fri 1/13/17	Fri 1/13/17					1/13		
51	CDR Complete	0 days	Tue 1/31/17	Tue 1/31/17					1/31		
52	FRR	34 days	Wed 2/8/17	Fri 3/24/17						1	
53	FRR Q&A	0 days	Wed 2/8/17	Wed 2/8/17					♦ 2/8		
54	FRR Report	17 days	Mon 2/13/17	Mon 3/6/17							
66	FRR Draft due	0 days	Sun 2/26/17	Sun 2/26/17					♦ 2/26	•	
62	FRR Presentation	20 days	Mon 2/27/17	Fri 3/24/17						1	
64	Practice Presentation	15 days	Mon 3/6/17	Fri 3/24/17						1	
63	Power Point Slides	12 days	Sun 2/26/17	Mon 3/13/17							
65	Presentation Dat	13 days	Wed 3/8/17	Fri 3/24/17						1	
67	FRR Final due	0 days	Mon 3/6/17	Mon 3/6/17					♦ 3/	6	
68	Launch Week	7 days	Sat 4/1/17	Sun 4/9/17							
69	Prepare for trip	2 days	Sat 4/1/17	Mon 4/3/17							
70	Drive to Huntsvile	1 day	Tue 4/4/17	Tue 4/4/17							
71	LRR	1 day	Wed 4/5/17	Wed 4/5/17							
72	Safety Briefing	1 day	Thu 4/6/17	Thu 4/6/17							
		Task			Inactive Summary	1	0	External Tas	iks		
		Split			Manual Task			External Mile	estone 🔷		
Projec	t: LTRL Executive Gantt	Milest	one 🔶		Duration-only			Deadline	+		
Chart		Summ	nary 📕	1	Manual Summary Ro	llup 📃		Progress			
Date:	Friday January 13, 2017	Projec	t Summary	1	Manual Summary	-	1	Manual Prog	gress		
		Inactiv	ve Task		Start-only	E					
		Inactiv	ve Milestone 🛛 🔷		Finish-only	E.					

Figure 42: Executive Timeline Page 3 of 4

The Pennsylvania State University

LionTech Rocket Labs 122

ID	Task Name	Duration	Start	Finish	3rd Quarter Jul Aug	Sep	4th Quarter Oct Nov	Dec	1st Quar Jan	ter Feb M	2nd Qi Iar Apr	uarter May
73	Rocket Fair and Tou	1 day	Fri 4/7/17	Fri 4/7/17								
74	Launch Day and Banquet	1 day	Sat 4/8/17	Sat 4/8/17								
75	Backup Launch Day	1 day	Sun 4/9/17	Sun 4/9/17								
76	PLAR Due	0 days	Mon 4/24/17	Mon 4/24/17							•	4/24
77	NASA USLI Complete	0 days	Mon 4/24/17	Mon 4/24/17							•	4/24
		Task			Inactive Summary		1	External Tas	ks			
		Split			Manual Task			External Mil	estone	•		
Project	tt I TPL Evocutive Contt	Milectone			Duration-only			Deadline	cotone	Ļ		
Chart	LETTE EXECUTIVE Gant	Summan			Manual Summany Pr			Drogross		•		
Date:	Friday January 13, 2017	Droiget C				mup		Manual Draw				
		Project St	ummary I	U	Manual Summary	-	1	Manual Prog	Jress			
		Inactive T	ask		Start-only	L						
		Inactive N	/lilestone 🔷		Finish-only	3						

Figure 43: Executive Timeline Page 4 of 4

ID	Task Name	Duration	Start	Finish	September O	october Nover	nber December	January February March Apri B M F B M F B M F B
1	A&R Meetings (Fall)	71 days	Mon 9/5/16	Mon 12/12/16		11111	1111	
2	A&R Meeting 1	1 day	Mon 9/5/16	Mon 9/5/16	•			
3	A&R Meeting 2	1 day	Mon 9/12/16	Mon 9/12/16				
4	A&R Meeting 3	1 day	Mon 9/19/16	Mon 9/19/16				
5	A&R Meeting 4	1 day	Mon 9/26/16	Mon 9/26/16				
6	A&R Meeting 5	1 day	Mon 10/3/16	Mon 10/3/16				
7	A&R Meeting 6	1 day	Mon 10/10/16	Mon 10/10/16		1.00		
8	A&R Meeting 7	1 day	Mon 10/17/16	Mon 10/17/16				
9	A&R Meeting 8	1 day	Mon 10/24/16	Mon 10/24/16		1 B. 1		
10	A&R Meeting 9	1 day	Mon 10/31/16	Mon 10/31/16				
11	A&R Meeting 10	1 day	Mon 11/7/16	Mon 11/7/16				
12	A&R Meeting 11	1 day	Mon 11/14/16	Mon 11/14/16				
13	A&R Meeting 12	1 day	Mon 11/21/16	Mon 11/21/16			1 - C	
14	A&R Meeting 13	1 day	Mon 11/28/16	Mon 11/28/16			1 B. C.	
15	A&R Meeting 14	1 day	Mon 12/5/16	Mon 12/5/16				
16	A&R Meeting 15	1 day	Mon 12/12/16	Mon 12/12/16				
17	A&R Meetings (Spring)	46 days	Fri 1/20/17	Fri 3/24/17				TTTTTTTT
18	A&R Meeting 16	1 day	Fri 1/20/17	Fri 1/20/17				
19	A&R Meeting 17	1 day	Fri 1/27/17	Fri 1/27/17				•
20	A&R Meeting 18	1 day	Fri 2/3/17	Fri 2/3/17				
21	A&R Meeting 19	1 day	Fri 2/10/17	Fri 2/10/17				
22	A&R Meeting 20	1 day	Fri 2/17/17	Fri 2/17/17				•
23	A&R Meeting 21	1 day	Fri 2/24/17	Fri 2/24/17				
		Task		Ina	ctive Summary	0	External Tasks	
		Split		Ma	nual Task		External Milesto	ne \land
Project	t A & D Contt Chart	Milestone	•	Du	ration-only		Deadline	+
Date:	1/13/2017	Summary		Ma	nual Summary Rollup		Progress	
	.,,	Project Sum	mary	Ma	nual Summary		Manual Progres	s
		Inactive Task		Sta	rt-only	E		
		Inactive Mile	stone 🔷	Fir	ish-only	3		

Figure 44: A&R Timeline Page 1 of 2

Figure 45: A&R Timeline Page 2 of 2

ID	Task Name	Duration Sta	art	Finish	September	October	Novembe	December	January	February	March	Apr
1	Structures Meetings	148 days W	ed 9/7/16	Wed 3/29/1	17 1 1 1 1							
2	Structures Meeting 1	1 day W	ed 9/7/16	Wed 9/7/16								
3	Structures Meeting 2	1 day W	ed 9/14/16	Wed 9/14/1	.6							
4	Structures Meeting 3	1 day W	ed 9/21/16	Wed 9/21/1	.6							
5	Structures Meeting 4	1 day W	ed 9/28/16	Wed 9/28/1	.6							
6	Structures Meeting 5	1 day We	ed 10/5/16	Wed 10/5/1	.6	1.00						
7	Structures Meeting 6	1 day W	ed 10/12/16	Wed 10/12/	'16	1 B. C.						
8	Structures Meeting 7	1 day We	ed 10/19/16	Wed 10/19/	'16							
9	Structures Meeting 8	1 day We	ed 10/26/16	Wed 10/26/	'16							
10	Structures Meeting 9	1 day We	ed 11/2/16	Wed 11/2/1	.6							
11	Structures Meeting 10	1 day We	ed 11/9/16	Wed 11/9/1	.6							
12	Structures Meeting 11	1 day We	ed 11/16/16	Wed 11/16/	'16							
13	Structures Meeting 12	1 day W	ed 11/23/16	Wed 11/23/	'16			l				
14	Structures Meeting 13	1 day We	ed 11/30/16	Wed 11/30/	'16							
15	Structures Meeting 14	1 day We	ed 1/11/17	Wed 1/11/1	.7							
16	Structures Meeting 15	1 day We	ed 1/18/17	Wed 1/18/1	.7							
17	Structures Meeting 16	1 day We	ed 1/25/17	Wed 1/25/1	.7				- E			
18	Structures Meeting 17	1 day We	ed 2/1/17	Wed 2/1/17	,							
19	Structures Meeting 18	1 day We	ed 2/8/17	Wed 2/8/17	,							
20	Structures Meeting 19	1 day We	ed 2/15/17	Wed 2/15/1	.7							
21	Structures Meeting 20	1 day We	ed 2/22/17	Wed 2/22/1	.7							
22	Structures Meeting 21	1 day We	ed 3/1/17	Wed 3/1/17	,							
23	Structures Meeting 22	1 day We	ed 3/8/17	Wed 3/8/17	,							
	1											
		Task		In	active Summary	0	0	External Tasks				
		Split		М	anual Task			External Milesto	ne 🔷			
		Milestone	•	D	uration-only			Deadline	+			
Project: Structures Gantt Chart		Summary		м	anual Summary Rollup			Progress	_			
Date.		Project Summary		М	anual Summary		1	Manual Progress				
		Inactive Task		St	art-only	E		-				
		Inactive Milestone		Fi	nish-only	a l						

Figure 46: Structures Timeline Page 1 of 2

Figure 47: Structures Timeline Page 2 of 2

ID	Task Name	Duration	Start	Finish	September (October B M E	November B M F	December B M E	January B M	February March
1	Propulsion Schedule	122 days	Thu 9/15/16	Fri 3/3/17						
2	Intro Meeting	6 days	Thu 9/15/16	Thu 9/22/16						
3	Mentoring New Members	11 days	Thu 9/22/16	Thu 10/6/16						
4	Subscale Motor Selection	6 days	Thu 10/6/16	Thu 10/13/16						
5	Review Motor Assembly	6 days	Thu 10/13/16	Thu 10/20/16						
6	Fullscale Motor Selection	6 days	Thu 10/20/16	Thu 10/27/16						
7	Intro to DAQ System	6 days	Thu 10/27/16	Thu 11/3/16						
8	Reevaluate fullscale motor selection	6 days	Thu 11/3/16	Thu 11/10/16						
9	Preparing for motor testing	11 days	Thu 11/10/16	Thu 11/24/16						
10	Semester Review and Future Plans	6 days	Thu 12/1/16	Thu 12/8/16						
11	CDR work	6 days	Thu 1/5/17	Thu 1/12/17						
12	Intro for new semester	6 days	Thu 1/19/17	Thu 1/26/17					- I I	
13	Calibrating Load Cell	11 days	Thu 1/26/17	Thu 2/9/17						
14	Motor testing	11 days	Thu 2/2/17	Thu 2/16/17						
15	Data Analysis	6 days	Thu 2/16/17	Thu 2/23/17						
16	Plan Wind Tunnel	6 days	Thu 2/23/17	Thu 3/2/17						
	Tests									
		Teels		lass	ti			utomal Taolo	-	
		C - De		Inac	uve summary			stema Tasks	<u> </u>	
		Split	^	Mar	iuai iask			xternal Milestone		
Project: Propulsion Gantt Chart		Milestone	-	Dur	ation-only			Deadline	•	
Date:	Friday 1/13/17	Summary		Mar	ual Summary Rolli	up		rogress		
		Project Summ	hary I	I Mar	iual Summary			/lanual Progress		
		Inactive Task		Star	t-only	L _				
		Inactive Miles	tone 🗢	Fini	sh-only					

Figure 48: Propulsion Timeline Page 1 of 2

The Pennsylvania State University

ID	Task Name	Duration Sta	irt	Finish	September B M F	October B M F	November B M	December F B M	Janua F B	y M ∣ F	February B M F	March B M
17	Conduct Wind Tunnel Testing	5 days Mo	on 2/27/17	Fri 3/3/17								
18	Wind Tunnel Data Analysis	5 days Mo	on 2/27/17	Fri 3/3/17								
	-	··										
						-						
		Task			Inactive Summary			External Tasks		<u>~</u>		
		Milestone	•		Duration-only			Deadline	ne			
Proje	t: Propulsion Gantt Chart	Summary	ř.		Manual Summary Ro	allup		Progress		•		
Date:	Friday 1/13/17	Project Summary	-		Manual Summary			Manual Progress	s '			
		Inactive Task	-	-	Start-only	E	-					
		Inactive Milestone	\$		Finish-only	3						

Figure 49: Propulsion Timeline Page 2 of 2

ID	Task Name	Duration	Start	Finish	September October November December January February March April B M E D M E D M E D M E D M D D D D D D <t< th=""></t<>
1	Payload Schedule of Tasks	143 days	Thu 9/15/16	Mon 4/3/17	
2	Selection of Payloads	11 days	Thu 9/15/16	Thu 9/29/16	
3	Selection matrices for Provided Payloads	11 days	Thu 9/15/16	Thu 9/29/16	
4	Brainstorm Optional Payload ideas	6 days	Thu 9/15/16	Thu 9/22/16	
5	Selection Matrices for Optional Payloads	6 days	Thu 9/22/16	Thu 9/29/16	
6	Pick payload to be scored	1 day	Thu 9/29/16	Thu 9/29/16	
7	Pick secondary payload	1 day	Thu 9/29/16	Thu 9/29/16	
8	FOPS	121 days	Thu 10/13/16	Thu 3/30/17	
9	Build protoype payload	1 day	Thu 10/13/16	Thu 10/13/16	
10	Test prototype	1 day	Thu 10/20/16	Thu 10/20/16	
11	Build sub-scale version	11 days	Thu 10/27/16	Thu 11/10/16	
12	Test subscale version	6 days	Thu 11/3/16	Thu 11/10/16	
		Task		Ina	ctive Summary External Tasks
		Split		Ma	nual Task External Milestone 🔶
		Milestone	•	Du	ration-only Deadline 🖊
Projec	ct: Payload Gantt Chart Friday 1/13/17	Summary	· · · ·	Ma	nual Summary Rollup Progress
Date.	111uay 1/13/17	Project Sun	nmary	Ma	nual Summary Manual Progress
		Inactive Tas	ik	Sta	rt-only E
		Inactive Mil	estone 🔷	Fin	ish-only D

Figure 50: Payload Timeline Page 1 of 2

ID	Task Name	Duration	Start	Finish	September Oct B M E B	tober November M E B M E	December Janu B M E B	ary February M E B M E	March April B M E B M
13	Re-design for full-scale	6 days	Thu 11/17/16	Thu 11/24/1	6				
14	Build full-scale version	21 days	Thu 1/12/17	Thu 2/9/17					
15	Test full-scale version	<mark>6 day</mark> s	Thu 2/16/17	Thu 2/23/17				-	
16	Rebuild/Redesign as needed	21 days	Thu 3/2/17	Thu 3/30/17					
17	Kiwi	108 days	Thu 11/3/16	Mon 4/3/17					
18	Design Kiwi Structure	26 days	Thu 11/3/16	Thu 12/8/16					
19	Design Kiwi flight software	31 days	Thu 1/12/17	Thu 2/23/17					
20	Build Kiwi	31 days	Thu 1/12/17	Thu 2/23/17					
21	Test Kiwi	7 days	Thu 2/23/17	Fri 3/3/17					
22	Rebuild/Redesign as needed	18 days	Thu 3/9/17	Mon 4/3/17					
		1							
		Task			Inactive Summary	D	External Tasks		
		Split			Manual Task		External Mileste	one 🔷	
Project: Payload Gantt Chart Date: Friday 1/13/17		Milestone	•		Duration-only		Deadline	+	
		Summary			Manual Summary Roll	lup	Progress		
		Project Sum	imary		Manual Summary		Manual Progre	ss	
		Inactive Tas	k		Start-only	E			
		Inactive Mil	estone 🔷		Finish-only	3			

Figure 51: Payload Timeline Page 2 of 2

Works Cited

 Polymaker, "Polymax PLA Technical Data Sheet," 2015. [Online]. Available: http://www.polymaker.com/wp-content/uploads/2015/06/PolyMax-PLA_TDS-v1.pdf. Accessed: Nov. 1, 2016.

[2] Glenn Research Center, "Velocity during recovery," in NASA Glenn Research Center, 2008. [Online]. Available: https://www.grc.nasa.gov/WWW/k-12/VirtualAero/BottleRocket/airplane/rktvrecv.html. Accessed: Oct. 29, 2016.

[3] Arconic Corporation, "5052 and 6061 Aluminum Sheet," 2010. [Online]. Available: http://www.arconic.com/mill_products/catalog/pdf/alcoa_insert_5052and6061_final.pdf. Accessed: Nov. 3, 2016.

[4] PerfectFlite, "SL100 Altimeter," in PerfectFlite Altimeters, 2015. [Online]. Available: http://www.perfectflite.com/sl100.html. Accessed: Oct. 28, 2016.

[5] Y. A. Çengel and J. M. Cimbala, Fluid mechanics: Fundamentals and applications. Boston, MA: McGraw-Hill Higher Education, 2006, sec. Drag Coefficients of Common Geometries, p. 573.

[6] G. Crowell Sr., The Descriptive Geometry of Nosecones. Instituto de Fisica de Sao Carlos, 1996. [Online]. Available:

https://web.archive.org/web/20110411143013/http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCo ne_EQN2.PDF. Accessed: Oct. 22, 2016.

[7] Çengel, Yunus A., and John M. Cimbala. "Drag Coefficients of Common Geometries." Fluid Mechanics: Fundamentals and Applications. Boston: McGraw-Hill Higher Education, 2006. 573.

Appendix A: RECOVERY DESCENT PROFILE CALCULATOR

Contents

- Calculate necessary area of Parachute to meet certain KE on landing
- Calculating Force based results
- Calculate Drift Distance
- Calculating KE of each component at landing

```
% RECOVERY DESCENT PROFILE CALCULATOR (RDPC)
```

```
% WRITTEN BY EVAN KERR
```

- % PENN STATE LION TECH ROCKET LAB
- % AVIONICS AND RECOVERY LEAD % LATEST UPDATE: 1/10/2017

Calculate necessary area of Parachute to meet certain KE on landing

```
clc, clear, close all
%Gravitational accelteration units: m/s^2
g = 9.81;
%Density in kg/m^3
rho = 1.225;
%Temperature in fahrenheit
initialTemp = 70;
keMax = 75;
&Coefficient of drag of drogue, main, and tumbling rocket respectively
Cdd = 1.5 ;
Cdm = 2.2;
Cdr = 0.3;
%These should be in kg
mass(1) = 3.938;%For the fore
mass(2) = 3.801;% For the avionics bay (model minus chord, chutes, and copter)
mass(3) = 4.016; %For the booster
mass(4) = 1.004; %Main parachute
mass(5) = 0.559;%Drogue parachute
maxMass = max(mass);
totMass = sum(mass);
radiusMainM = ones(1,10);
keMatFtLbs = (30:1:75);
keMatJoule = keMatFtLbs*1.3358;
for i = 1:length(keMatJoule)
radiusMainM(i) = sqrt((maxMass*totMass*g)/(Cdm*keMatJoule(i)*rho*pi));
end
radiusMainFt = 3.281*radiusMainM;
radiusMainIn = radiusMainFt * 12;
```

```
figure(1);
plot(keMatFtLbs,radiusMainIn,'--o')
title('Kinetic Energy at Landing vs. Necessary Parachute Radius');
xlabel('Desired Maximum Kinetic Energy at Landing (ft*lbs)');
ylabel('Radius of Main Parachute Required (in)');
grid on;
```


Calculating Force based results

```
Rd in = 9; %radius of drogue[in]
   Rd = 0.0254*Rd in; %radius of drogue[m]
Rm in = 36; tradius of main[in]
   Rm = 0.0254*Rm in; %radius of main[m]
Rr_in = 4; #simulated radius of "tumbling" rocket parachute[in]
   Rr = 0.0254*Rr in; %simulated radius of "tumbling" rocket parachute[m]
apogeeft = 5280; tapogee altitude above ground level [ft]
    apogee = 0.3048*apogeeft;
altDrogueft = 5279; %altitude above ground level of drogue deployment[ft]
   altDrogue = 0.3048*altDrogueft;
altMainft = 700; %altitude above ground level of main parachute deployment[ft]
   altMain = 0.3048*altMainft;
| Declare Constants
altLaunchSite = 15; % Altitude above sea level of the launch site in meters
h - apogee+altLaunchSite; % Initial altitude of the rocket above sea level
h matrix(1) = h;
time(1) = 0;
```

```
dt = .01;
v(1) = 0;
a(1) = g;
i = 1; % Counter variable
Temp = 15; % Temperature in Celcius at ground level.
Weight = totMass*g;
Deployment time and counter initialization for the main and drogue
% parachutes
Kd dep = 0; % Drogue deployment factor, or how many iterations have run since the drogue was
deployed.
Td dep = 2; % Droque deployment time (how long it takes) in seconds
Td dep elapsed = 0; % Time elapsed since drogue deployment
Km dep = 0; % Main deployment factor, or how many iterations have run since the main was depl
oyed
Tm dep = 5;
Tm dep elapsed = 0;
%Drag Calculation
while(h >- altLaunchSite) % Although we are integrating over time, the check is whether the h
eight is still above ground level.
   rho_new = rhocalcestSI(h,Temp); % Calculate the density at the given altitude and tempera
ture
   Dragr(i) = .5*Cdr*rho new*v(i)^2*pi*Rr^2; % Drag of the rocket body
   Dragd(i) = .5*Cdd*rho_new*v(i)^2*pi*Rd^2; % Drag of the drogue parachute
   Dragm(i) = .5*Cdm*rho_new*v(i)^2*pi*Rm^2; % Drag of the main parachute
        if h > altDrogue % Determines which state of descent the rocket is in and adjusts acc
ordingly by adding the drags
           Drag = Dragr(i); % If the drogue has yet to deploy, the drag of the rocket is the
 only factor
        elseif h > altMain
           Kd dep = Kd dep + 1; % Increment droque deployment factor
            Td dep elapsed = Kd dep*dt; % Use the drogue deployment factor to calculate time
since drogue deployed
           Drag = Dragr(i) + Dragd(i); % Calculate drage when drogue fully deployed
           % This loop only runs right after chute deployment and models
            % the chute as opening in a linead matter
           if Td_dep_elapsed < Td_dep
               Drag = Dragr(i) + (Td dep elapsed/Td dep)*Dragd(i);
            end
        else
           Km_{dep} = Km_{dep} + 1;
           Tm dep elapsed = Km dep*dt;
           Drag = Dragr(i) + Dragd(i) + Dragm(i);
            if Tm dep elapsed < Tm dep
                Drag = Dragr(i) + Dragd(i) + (Tm_dep_elapsed/Tm_dep)*Dragm(i);
            end
       end
    i = i + 1; % Increment i, the current index value
    a(i) = {-Drag+Weight}/totMass;
   v(i) = v(i-1) + a(i) + dt;
   delh(i) = v(i)*dt;
   h = h-delh(i);
    h matrix(i) = h;
```

```
time(i) = time(i-1) + dt;
end
figure(2);
ax11 = subplot(2,1,1);
title('Descent Profile In SI Units');
plot(time,h_matrix-altLaunchSite,'LineWidth',2)
ylabel('Altitude (meters)');
xlabel('Time (seconds)');
grid on;
grid minor;
axis([0 max(time) 0 max(h matrix-altLaunchSite)*1.2]);
ax21 = subplot(2,1,2);
plot(time,v,'LineWidth',2);
ylabel('Velocity (meters/second)');
xlabel('Time (seconds)');
grid on;
grid minor;
axis([0 max(time) 0 max(v)*1.2]);
linkaxes([ax11 ax21],'x');
figure(3)
ax12 = subplot(2,1,1);
title('Descent Profile in English Units');
plot(time, (h matrix-altLaunchSite)*3.281, 'LineWidth', 2);
ylabel('Altitude (ft)');
xlabel('Time (s)');
grid on;
grid minor;
axis([0 max(time) 0 max(h_matrix-altLaunchSite)*3.281*1.2]);
ax22 = subplot(2,1,2);
plot(time,v*3.281,'LineWidth',2);
ylabel('Velocity (ft/s)');
xlabel('Time (s)');
grid on;
grid minor;
axis([0 max(time) 0 max(v)*3.281*1.2]);
linkaxes([ax12 ax22],'x');
```


Calculate Drift Distance

```
Windmph = 0:1:25; % Velocity of wind[mph]
Windfps = 1.467*Windmph;
Windmps = Windfps*0.3048;
8 Calculate drift distance in metric and standard
descentTime = max(time);
driftDistM = Windmps*descentTime;
driftDistFt = Windfps*descentTime;
% Plot drift distance
figure(4)
plot(Windmph, driftDistFt, 'LineWidth', 2);
ylabel('Drift Distance (ft)');
xlabel('Wind Velocity (mph)');
grid on;
grid minor;
title('Drift During Descent');
legend('Drift Distance (ft)');
% Output max drift distance
fprintf('The drift distance at a wind velocity of 25 mph is %6.1f ft\n\n', max(driftDistFt));
```

The drift distance at a wind velocity of 25 mph is 2798.7 ft

Calculating KE of each component at landing

```
vf = v(end); %Find final landing velocity
% Calculate the KE of each component in Joules
KEforeSI = (1/2)*v(end)^2*mass(1);
KEavSI = (1/2)*v(end)^2*mass(2);
KEboostSI = (1/2)*v(end)^2*mass(3);
% Calculate the KE of each component in Ft-lbs
KEforeST = KEforeSI*0.7376;
KEavSI = KEboostSI*0.7376;
KEboostSI = KEboostSI*0.7376;
% Print Results
fprintf('The kinetic energy of the nosecone section is %4.2f ft*lbs\n', KEforeSI;
fprintf('The kinetic energy of the avionics bay section is %4.2f ft*lbs\n', KEavSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n', KEboostSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n', KEboostSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n\n', KEboostSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n\n', KEboostSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n\n', KEboostSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n\n', KEboostSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n\n', KEboostSI;
fprintf('The kinetic energy of the booster section is %4.2f ft*lbs\n\n', KEboostSI;
fprintf('The velocity at landing is %4.2f m/s or %4.2f ft/s \n', v(end),v(end) * 3.281);
```

The kinetic energy of the nosecone section is 51.42 ft*lbs The kinetic energy of the avionics bay section is 49.64 ft*lbs The kinetic energy of the booster section is 52.44 ft*lbs

```
The velocity at landing is 5.95 m/s or 19.52 ft/s
```

Published with MATLAB® R2016a

Appendix B: MSDS for Black Powder

Goex Powder, Inc.

Material Safety Data Sheet

MSDS-BP (Potassium Nitrate)

Revised 3/17/09

	PRODUCT INFORMATION
Product Name	Black Powder
Trade Names and Synonyms	N/A
Manufacturer/Distributor	GOEX Powder, Inc.(DOYLINE, LA) & various international sources
Transportation Emergency	800-255-3924 (24 hrs - CHEM TEL)

PREVENTION OF ACCIDENTS IN THE USE OF EXPLOSIVES

The prevention of accidents in the use of explosives is a result of careful planning and observance of the best known practices. The explosives user must remember that he is dealing with a powerful force and that various devices and methods have been developed to assist him in directing this force. He should realize that this force, if misdirected, may either kill or injure both him and his fellow workers.

WARNING

All explosives are dangerous and must be carefully transported, handled, stored, and used following proper safety procedures either by or under the direction of competent, experienced persons in accordance with all applicable federal, state and local laws, regulations, or ordinances. ALWAYS lock up explosive materials and keep away from children and unauthorized persons. If you have any questions or doubts as to how to use any explosive product, DO NOT USE IT before consulting with your supervisor, or the manufacturer, if you do not have a supervisor. If your supervisor has any questions or doubts, he should consult the manufacturer before use.

	HAZARDOL	JS COMPONENTS	6	
Material or Components	%	CAS NO.	TLV	PEL
Potassium nitrate	70-76	007757-79-1	NE	NE
Charcoal	8-18	N/A	NE	NE
Sulfur	9-20	007704-34-9	NE	NE
Graphite ¹	Trace	007782-42-5	15 mppct (TWA)	2.5 mg/m ³
N/A	A = Not assigned	ed NE = Not estab	lished	

¹ Not contained in all grades of black powder.

P.O. Box 659, Doyline, LA 71023-0659, (318) 382-9300 www.goexpowder.com

	PHYSICAL DATA
Boiling Point	N/A
Vapor Pressure	N/A
Vapor Density	N/A
Solubility in Water	Good
Specific Gravity	1.70 – 1.82 (mercury method) 1.92 – 2.08 (pycnometer)
PH	6.0 - 8.0
Evaporation Rate	N/A
Appearance and Odor	Black granular powder. No odor detectable.

	HAZARDOUS REACTIVITY
Instability	Keep away from heat, sparks, and open flames. Avoid impact, friction and static electricity.
Incompatibility	When dry, black powder is compatible with most metals; however, it is hygroscopic and when wet, attacks all common metals except stainless steel.
	Black powder must be tested for compatibility with any material not specified in the production/procurement package with which they may come in contact. Materials include other explosives, solvents, adhesives, metals, plastics, paints, cleaning compounds, floor and table coverings, packing materials, and other similar materials, situations, and equipment.
Hazardous decomposition	Detonation produces hazardous overpressures and fragments (if confined). Gases produced may be toxic if exposed in areas with inadequate ventilation.
Polymerization	Polymerization will not occur.

	FIRE AND EXPLOSION DATA				
Flashpoint	Not applicable				
Auto Ignition Temperature	Approx. Range: 392°F-867°F / 200°C-464°C				
Explosive temperature (5 sec)	Ignites @ approx. 427°C (801°F)				
Extinguishing media	Water				
Special fire fighting procedures	ALL EXPLOSIVES: DO NOT FIGHT EXPLOSIVES FIRES. Try to keep fire from reaching explosives. Isolate area. Guard against intruders. Division 1.1 Explosives (heavily encased): Evacuate the area for 5,000 feet (approximately 1 mile) if explosives are heavily				
	Division 1.1 Explosives (not heavily encased): Evacuate the area for 2,500 feet (approximately ½ mile) if explosives are not				
	heavily encased. Division 1.1 Explosives (all): Consult U.S. DOT Emergency Response Guide 112 for further details.				

Unusual fire and explosion hazards	Black powder is a deflagrating explosive. It is very sensitive to flame and spark and can also be ignited by friction and impact.	
	When ignited unconfined, it burns with explosive violence and will explode if ignited under even slight confinement.	

	HEALTH HAZARDS
General	Black powder is a Division 1.1 Explosive, and detonation may cause severe physical injury, including death. All explosives are dangerous and must be handled carefully and used following approved safety procedures under the direction of competent, experienced persons in accordance with all applicable federal, state and local laws, regulation and ordinances.
Carcinogenicity	None of the components of Black Powder are listed as a carcinogen by NTP, IARC, or OSHA.

FIRST AID				
Inhalation	Not a likely route of exposure. If inhaled, remove to fresh air. If not breathing give artificial respiration, preferably by mouth-to- mouth. If breathing is difficult, give oxygen. Seek prompt medical attention. Avoid when possible.			
Eye and skin contact	Not a likely route of exposure. Flush eyes with water. Wash skin with soap and water.			
Ingestion	Not a likely route of exposure. If ingested, dilute by giving two glasses of water and induce vomiting. Avoid when possible.			
Injury from detonation	Seek prompt medical attention.			

	SPILL OR LEAK PROCEDURES	
Spill/leak response	Use appropriate personal protective equipment. Isolate area and remove sources of friction, impact, heat, low level electrical current, electrostatic or RF energy. Only competent, experienced persons should be involved in clean up procedures. Carefully pick up spills with non-sparking and non-static producing tools.	
Waste disposal	Desensitize by diluting in water. Open train burning, by qualified personnel, may be used for disposal of small unconfined quantities. Dispose of in compliance with Federal Regulations under the authority of the Resource Conservation and Recovery Act (40 CFR Parts 260-271).	

	SPECIAL PROTECTION INFORMATION		
Ventilation	Use only with adequate ventilation. (If required)		
Respiratory	None		
Eye	None		
Gloves	Impervious rubber gloves. (If required)		
Other	Metal-free and/non-static producing clothes		

SPECIAL PRECAUTIONS

- Keep away from friction, impact, and heat and open flame. Do not consume food, drink, or tobacco in areas where they may become contaminated with these materials.
- Contaminated equipment must be thoroughly water cleaned before attempting repairs.
- Use only non-spark producing tools.
- No smoking.

STORAGE CONDITIONS

Store in a cool, dry place in accordance with the requirements of Subpart K, ATF: Explosives Law and Regulations (27 CFR 55.201-55.219).

11	SHIPPING INFORM	IATION	
Proper shipping name	Black Powder		
Hazard class	1.1D		
UN Number	UN0027		
DOT Label & Placard	DOT Label	EXPLOSIVES 1.1D	
	DOT Placard	EXPLOSIVES 1.1	
Alternate shipping	Limited quantities of GOEX black powder (1# cans only) may be transported as "Black powder for small arms – flammable solid" pursuant to U.S. Department of Transportation 49 CFR.		

The information contained in this Material Safety Data Sheet is based upon available data and believed to be correct; however, as such has been obtained from various sources, including the manufacturer, military and independent laboratories, it is given without warranty or representation that it is complete, accurate, and can be relied upon. GOEX, Incorporated, has not attempted to conceal in any manner the deleterious aspects of the product listed herein, but makes no warranty as to such. Further, GOEX, Incorporated, cannot anticipate nor control the many situations in which the product or this information may be used; there is no guarantee that the health and safety precautions suggested will be proper under all conditions. It is the sole responsibility of each user of the product to determine and comply with the requirements of all applicable laws and regulations regarding its use. This information is given solely for the purposes of safety to persons and property. Any other use of this information is expressly prohibited.

For further information contact:

GOEX Powder, Incorporated P. O. Box 659 Doyline, LA 71023-0659 Telephone Number: (318) 382-9300 Fax Number: (318) 382-9303
SPECIAL PRECAUTIONS

- Keep away from friction, impact, and heat and open flame. Do not consume food, drink, or ۲ tobacco in areas where they may become contaminated with these materials.
- Contaminated equipment must be thoroughly water cleaned before attempting repairs. .
- Use only non-spark producing tools. .
- No smoking.

STORAGE CONDITIONS

Store in a cool, dry place in accordance with the requirements of Subpart K, ATF: Explosives Law and Regulations (27 CFR 55.201-55.219).

	SHIPPING INFORM	IATION	
Proper shipping name	Black Powder		
Hazard class	1.1D		
UN Number	UN0027		
DOT Label & Placard	DOT Label	EXPLOSIVES 1.1D	
	DOT Placard	EXPLOSIVES 1.1	
Alternate shipping	Limited quantities of GOEX black powder (1# cans only) may be transported as "Black powder for small arms – flammable solid" pursuant to U.S. Department of Transportation 49 CFR.		

The information contained in this Material Safety Data Sheet is based upon available data and believed to be correct; however, as such has been obtained from various sources, including the manufacturer, military and independent laboratories, it is given without warranty or representation that it is complete, accurate, and can be relied upon. GOEX, Incorporated, has not attempted to conceal in any manner the deleterious aspects of the product listed herein, but makes no warranty as to such. Further, GOEX, Incorporated, cannot anticipate nor control the many situations in which the product or this information may be used; there is no guarantee that the health and safety precautions suggested will be proper under all conditions. It is the sole responsibility of each user of the product to determine and comply with the requirements of all applicable laws and regulations regarding its use. This information is given solely for the purposes of safety to persons and property. Any other use of this information is expressly prohibited.

For further information contact: GOEX Powder, Incorporated P. O. Box 659 Doyline, LA 71023-0659 Telephone Number: (318) 382-9300 Fax Number: (318) 382-9303

4

BLACK POWDER

FRICTION TEST PA

Steel – Snaps Fiber – Unaffected

IMPACT TEST PA

16 Inches (10% Point)

ELECTROSTATIC DISCHARGE TEST

Bureau of Mines

0.8 Joules (Confined) 12.5 Joules Unconfined)

STABILITY

75° C International Heat Test – 0.31% Loss Vacuum Stability – 0. 5cc @ 100° C

BRISANCE - Sand Test 8 gm.

VELOCITY

In the open, trains of black powder burn very slowly, measurable in seconds per foot. Confined, as in steel pipe, speeds of explosions have been timed at values from 560 feet per second for very coarse granulations to 2,070 feet per second for the finer granulations. Confinement and granulation will affect the values.

CHEMICAL DECOMPOSITION

Use water to dissolve the potassium nitrate. By leeching out the potassium nitrate, the residue of sulfur and charcoal is non-explosive but combustible when dry – dispose separately.

SPECIAL REQUIREMENTS:

Black Powder is very sensitive to flame and spark and can also be ignited by friction and impact. When ignited unconfined, it burns with explosive violence and will explode if ignited under even slight confinement.

When dry, it is compatible with most metals. However, it is hydroscopic and when wet, attacks all common metals except stainless steel.

<u>CAUTION</u>: Explosives must be tested for compatibility with any material not specified in the production/procurement package with which they may come in contact. Materials include other explosives, solvents, adhesives, metals, plastics, paints, cleaning compounds, floor and table coverings, packing materials and other similar materials, situations and equipment. Explosives include propellants and pyrotechnics.

Appendix C: MSDS for Pyrodex

SAFETY DATA SHEET-PYRODEX

Section 1: Identification				
Product Identifier: Pyrodex	® (a pyrotechnic mixture in eith	er granular or pellet form)		
Manufacturer's Name: Hod	gdon Powder Company, Inc.	Informational Telepho	one Number:1-(913) 362-9455	
Address: 643	0 Vista Drive	Emerg. Phone Number	er: 1-(800) 255-3924 (Chem Tel)	
Sha	wnee, Kansas 66218			
Recommended Use: for use	in muzzleloading reloading and	shooting.		
Section 2: Hazard(s) Ident	ification			
Hazard category:	Signal Word	Hazard statement	Pictogram	
Division 1.3	Danger	Explosive, fire, blast or projection ha	zard	
Target Organ Warning:	Above OSHA levels, chronic o	exposure can cause skin irritation and dan	nage to the respiratory	
	system, and acute exposure ca	n cause skin, eye, and respiratory irritation	n.	
Section 3: Composition/in	formation on ingregients			
Com	ponent	CAS-Number	Weight %	
Charcoal		16291-96-6	8%	
Sulfur		7704-34-9	8%	
Potassium Nitrate		7757-79-1	30%	
Potassium Perchlorate		7778-74-7	30%	
Graphite		7782-42-5	<1%	
Note: Other ingredients are t	rade secrets, but can be disclose	d per 29CFR1910.1200(i)		
Section 4: First-aid measur	es			
Ingestion:	* if vomiting occurs, turn patie	ent on side to maintain open airway. Do	not induce vomiting.	
	contact a Poison control cen	ter for advice on treatment, if unsure.		
Eye Contact:	* flush eye with water for at le	ast 15 minutes.		
Inhalation;	* remove patient from area to fresh air.			
Skin Contact:	* wash the affected area with copius amounts of water. Some persons may be sensitive to product.			
Note to Physician:	* Treat symptomatically.			
Section 5: Fire-fighting me	asures			
Extinguishing media:	* For unattended fire prevention, water can be used to disburse burning Pyrodex®. Pyrodex® has its own oxygen supply; flame smothering techniques are ineffective. Water may be used on unburnt Pyrodex® to retard further spread of fire.			
Special Procedures:	* Pyrodex® is extremely flame	nable and may deflagrate. Get away and	evacuate the area.	
Unusual Hazards:	* As with any pyrotechnic, if under confinement or piled in moderate quantities, Pyrodex® can explode. Toxic fumes, such as sulfur dioxide are emitted while burning.			
Elash Baint	a not determined	0		
Flash Foint: not determined				
NEPA Patings	Health=1	Flammability=3	Reactivity=1	
Advice and PPE for Eirofic	htere	Tianinaointy-5	Accounty 1	
* Fires involving Pyrodex® should not be fought unless extinguishing media can be applied from a well protected and distant location from the point of fire. Self-contained breathing apparatus (SCBA) and protective clothing must be worn. Wash all clothes prior to reuse.				

SAFETY DATA SHEET-PYRODEX

Section 6: Accidental seleas	e medeuree				
Section 6: Accidental releas	e measures				
Personal precautions, protective equipment and emergency procedures: * Non-flammable or flame retardant clothing should be worn when cleaning up spilled material. Material is sensitive to ignition from sources such as heat, flame, impact, friction or sparks. Therefore, non-sparking utensils should be used.					
Environmental precautions:					
* Clean up spills immediately u	ising non-sparking utensils Do no	t dispose of in the ground.			
* Spill residues may be disposed of per guidelines under Secrtion 13: Disposal Considerations.					
Section 7: Handling and sto	rage				
* Avoid heat, impact, friction a	und static. Protect against heat effe	ects. Keep away from heat, open flame and ignition sources.			
* Absolutely no smoking around open powder or packages. Keep away from combustibles. Avoid electrostatic charges.					
* Keep containers closed at all	times when not being used. Keep	out of reach of children. Open and handle container with care.			
* Follow all local, state and fed	eral laws when storing this produc	t.			
Section 8: Exposure control	s/personal protection				
Personal protection for routi * Respiratory protection is not ventilation is recommended w recommended for eye protecti	ne use: normally needed. If significant du aen working with Pyrodex®. Glov on. Flame retardant outerwear suc	isting occurs, a NIOSH approved dust mask should be worn. Good wes may be worn to protect skin. Safety glasses with side shields are thas coveralls or lab coat may be worn.			
Health Hazards (Acute or chronic): * TLV is unknown for ingestion of dust. Acute oral LD ²² in rats is calculated to be 4.0 [g/kg body weight].					
Signs/Symptoms of Exposu	re: * Burning or itchi	ng of the eyes, nose or skin; shorteness of breath.			
First Aid Procedures:	* Remove the patient from expos	ure and if skin contact, wash the affected area with water			
Section 9: Physical and che	mical properties				
Physical State:	Granular solid or pellet	Soluability: Partial in water			
Appearance	Medium to dark grey	Auto-ignition Temp.: 740 deg. F (granular)/ 500deg. F (pellets)			
Odor:	Slight odor when ignited	Bulk Density: 0.75 (g/cc)			
Section 10: Stability and rea	ctivity				
General Information:	* Loading data and the instruction	ns for loading must be observed.			
Conditions to Avoid:	Avoid heat, impact, friction or static. Protect against heat effects. Keep away from heat, open flame and ignition sources. A violent burn or deflagration cound occur by above mentioned items.				
Substances to Avoid:	Avoid contact with alkaline subst	ances or strong acids.			
Section 11: Toxicological in	formation				
* LD50 Values-acute oral in rat	s is calculated to be 4.0 (g/kg body	v weight)			
* TLV unown for ingestion of dust. Some persons may be unusually sensitive to the product.					
* Routes of entry include Skin, Inhalation and Ingestion. (Acute Toxicity=Category 4) per Table A.1.1 of 29CFR1910.1200					
Section 12: Ecological infor	mation				
* Do not dispose of powder or spills promptly.	residues into any water streams o	r bodies of water. Avoid spilling powders onto any soils. Clean up any			
* No known adverse effects on marine or other aquatic organisms.					
Section 13: Disposal consid ⁴ Care must be taken to prever unused material, residues and o hazardous and non-hazardous safe distance. ⁴ Do not dispose of pourdous	erations it environmental contamination fro containers in compliance with all re waste. Powder can be burned in v	om the use of this material. The user has the responsibility to dispose of elevant laws and regulations regarding treatment, storage and disposal for ery small quantities and in very thin layer and must only be ignited from a			
· Do not dispose of powders of	lown a dram of sewer,				

SAFETY DATA SHEET-PYRODEX

Section 14: Transport in	nformation			
Label required: Explosive		Highway: Class or division: 1.3C or 4.1 Flam Solid-(if <100 pounds). UN Number: UN0499 Shipping Name: Propellant, Solid		
		Air Transport:	Forbidden!	
		Maritime IMDG		
		Class or division: 1.3C		
		UN Number: UN0499		
		Shipping Nan	ne: Propellant, Solid	
been approved by PHMS	A and copies of the approvals are or nation	n file with Environmental, He	alth and Safety Manager.	
Prepared By:	Mark Wendt, Environmental, Health and Safety Manager email: mwendt@hodgdon.com			
SDS Creation Date:	September 1, 2013			
SDS Print Date:	September 1, 2013			
Disclai	mer:			
The information provided on this Safety Data Sheet is correct to the best of our knowledge, information an belief at the date of its publication. The information given is designed only as a guide for safe handling, use processing, storage, transportation, disposal and release and is not to be considered as a warranty or quality specification. The information relates only to the specific material designated and may not be valid for sucl material used in combination with any other material or in any process, unless specified in the text.				