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Intro: cold atoms as isolated quantum systems 
Mean field experiments at various T 
Gases with correlations 
1D gases with δ-interactions: thermalization 

Outline 

  

Time scales, Integrability, 
Correlations, Thermalization 

Lightly sampled 



Cold gas experiments 

trapped gas inelastic 3-body 
collisions 

(typically) metal 
coating the 

vacuum chamber 

Any study of dynamics has to be concerned with timescales 

  

Cold gases are metastable 

Cold gases are very well isolated quantum systems 

UAC  Intensity 

p  E, U=-p.E 

light trapping magnetic trapping 

U = -B 

small complications: intensity, current, position fluctuations; 
background gas collisions; spontaneous emission 

This is usually unimportant 



S-wave interactions can be accounted for with  
the Huang pseudo-potential  
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This leads to  the Gross-Pitaevskii equation (non-linear S.E.) 

The Mean Field 

The effects of collisions are in the mean field term.   
There is nothing irreversible about it! 

The evolution is integrable, with excitations of 
 the only degrees of freedom 



Collapse and Revival 

Prepare atoms in a 
superposition of number 
states at each lattice site 

Hansch/Bloch 

These collisions are coherent 



3D BEC Integrable Evolution 

Ketterle 

Dalibard 

Q~2000 

breathing mode 

dipole mode thermal 
collision 
rate 

mean-field 
frequency 
scale 

for short enough 
time scales 



BEC Formation 

The coherence grows faster than the NBEC 

Esslinger 



Some Mean Field Non-Eq. Expts. 

Stamper-Kurn 

Magnetic dipole+ mean field 

Also: 
Cold neutral 
plasmas 
Rydberg 
blockaded gases 
Cold molecules… 

Oberthaler 

Josephson Oscillations 

Hulet 

Solitons 

Cornell 

Tkachenko 
oscillations 
 



Coupling strength 
In a Bose gas, the ratio of two energies, , governs the extent 
of correlations in a quantum gas: 
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For low , it is less energetically costly for single particle 
wavefunctions to overlap than be separated  Mean field 
theory & the G-P equation apply: weak coupling 

For high , it is less energetically costly for wavefunctions 
to avoid each other  strong coupling 

As  increases, dynamics becomes 
a quantum many-body problem 



Significance of correlations 
Weak correlations allow long range phase coherence, 
and macroscopic wavefunction phenomena  Eg., 
interference,    superfluidity,  vortices 

Ketterle Bloch Cornell 

Strongly correlated systems are 
much harder to calculate, 
especially out of equilibrium 

Esslinger  for bosons at high density in 3D, in 
optical lattices, or in reduced dimensions 

Semi-
classical 

Quantum 



Single atom dynamics 

Bloch 
Greiner 

coherence grows fast 

MISF 

Mobile  spin impurities 



1D Bose gases with variable 
point-like interactions 
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Elliot Lieb and Werner Liniger, 1963: Exact solutions for 
1D Bose gases with arbitrary (z) interactions 

A Bethe ansatz approach 
yields solutions 
parameterized by  Lieb & Liniger, Phys Rev 130 1605 (1963) 

Wavefunctions and all other (local and non-local) 
properties are exactly calculable. 

Maxim Olshanii, 1998: Adaptation to real atoms 
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a3D = 3D scattering length 
a = transverse oscillator length 
C≈1.46 a 



The Lieb-Liniger limits 
>>1 
Tonks-Girardeau 
gas 

<<1 
mean field theory                 
(Thomas-Fermi gas) 

large g1D 
low density 

small g1D 
high density 

kinetic energy 
dominates  

mean field energy 
dominates  

 eff
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Integrable systems have N 
constants of motion 
  they cannot thermalize 

Weiss 

pa, pb, pc pa, pb, pc 

(no “diffractive” collisions) 



Experimental 1D gases 

For 1D:all energies < ħω; 
  negligible tunneling 

Lattices Chips 



1D Evolution in a Harmonic Trap 
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Quantum Newton’s Cradles 

Weiss 



Steady-state Momentum 
Distributions 
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Position 

Evolution 
without 
grating 
pulses 

1st cycle average 
15  distribution 
40  distribution 

Generalized Gibbs 
Ensemble- Rigol/Olshanii 

Position 

Project 
the 
evolution 
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After dephasing 
(prethermalization), the  
1D gases reach a steady 
state that is not thermal 
equilibrium 

Each atom continues to 
oscillate with its 
original amplitude 
Lower limit: thousands 
of 2-body collisions 
without thermalization 
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Lattice depth: 63 Er 



What happens in 3D? 

Thermalization is known to occur in ~3 collisions. 

0  2  4  9  

How does thermalization begin in a 
slightly non-integrable systems? Will it 
always eventually thermalize? 



Summary 

When integrability is built into 
the interaction Hamiltonian, the 
system is robust against 
thermalization. But how robust? 

Mean field 
integrability is fragile 

A lot of non-equilibrium physics can be studied with cold atoms. 

Classical Semi-Classical Quantum 

stronger correlations 

mechanics 

statistical mechanics 

From many diverse phenomena, perhaps universal 
behavior can be identified 


