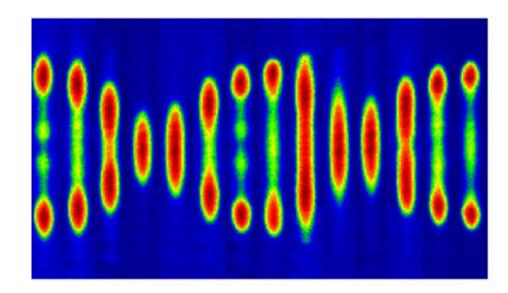
Non-Equilibrium Physics with Quantum Gases

Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania



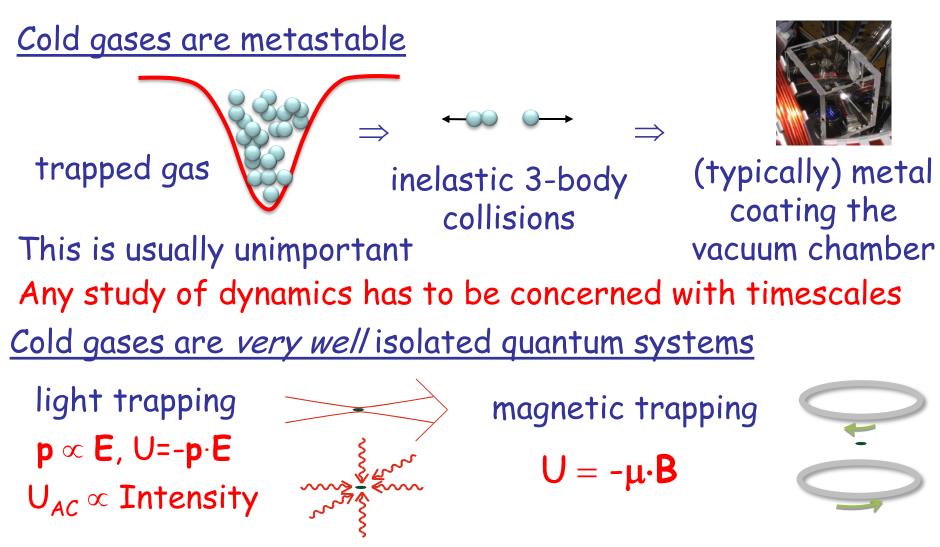
NSF, ARO, DARPA,

<u>Outline</u>

Intro: cold atoms as isolated quantum systems
Mean field experiments at various T
Lightly sampled
Gases with correlations
1D gases with δ-interactions: thermalization

Time scales, Integrability, Correlations, Thermalization

<u>Cold gas experiments</u>



small complications: intensity, current, position fluctuations; background gas collisions; spontaneous emission

The Mean Field

S-wave interactions can be accounted for with the Huang pseudo-potential $4 - \pm 2$

$$V(r) = \frac{4\pi\hbar^2}{m} a\delta^3(\vec{r})$$

•Long range behavior correct $R \propto 1 - \frac{a}{r}$

•Enforces boundary condition $\Psi(r=a)=0$

This leads to the Gross-Pitaevskii equation (non-linear S.E.)

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r}) + \frac{4\pi\hbar^2}{m}a|\Psi|^2\right]\Psi = E\Psi = \mu\Psi \qquad \Psi = \frac{1}{\sqrt{N}}\phi_0$$

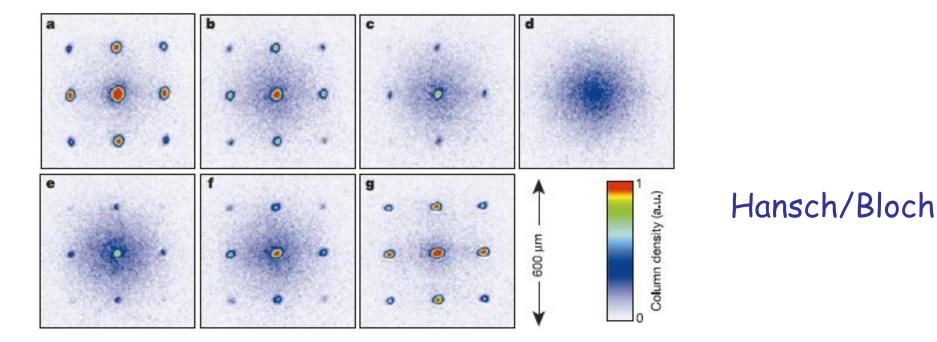
The effects of collisions are in the mean field term. There is nothing irreversible about it!

The evolution is integrable, with excitations of Ψ the only degrees of freedom

Collapse and Revival

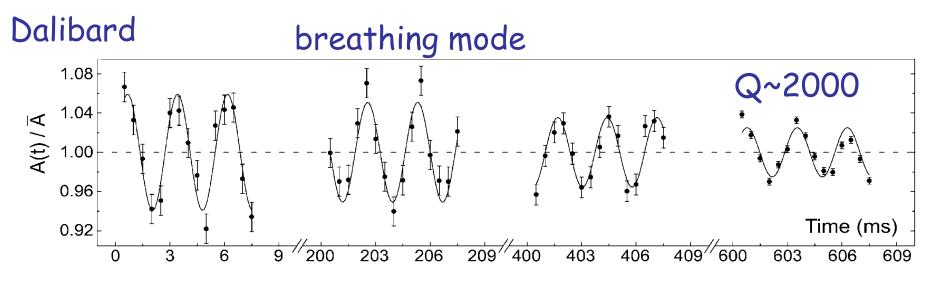
Prepare atoms in a superposition of number states at each lattice site

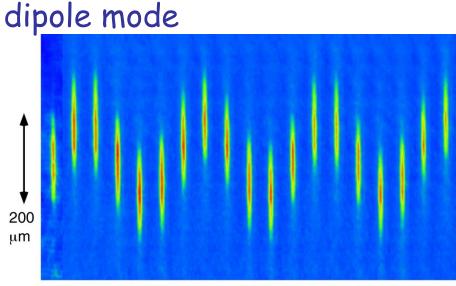
$$|\alpha\rangle(t) = \mathrm{e}^{-|\alpha|^2/2} \sum_{n} \frac{\alpha^n}{\sqrt{n!}} \mathrm{e}^{-\frac{i!}{2}Un(n-1)t/\hbar} |n\rangle$$



These collisions are coherent

3D BEC Integrable Evolution





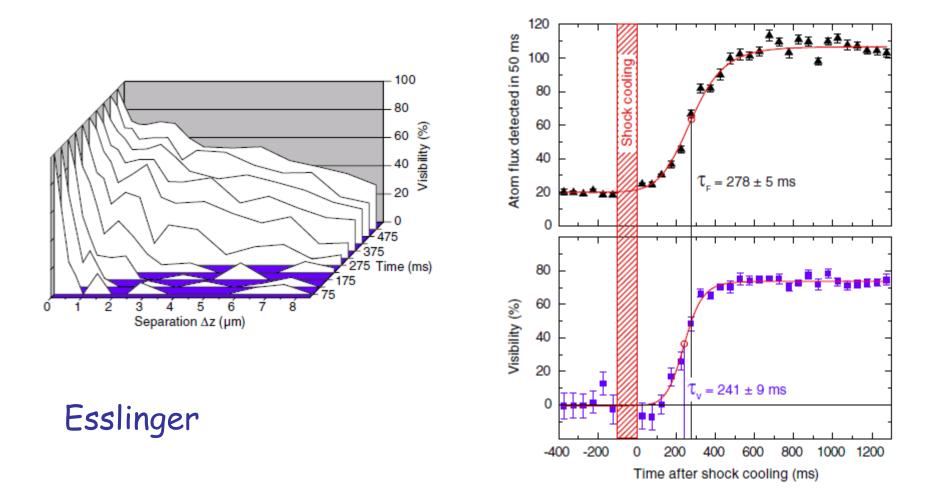
10 milliseconds per frame

Ketterle

 $\begin{array}{ll} \text{mean-field} & \text{thermal} \\ \text{frequency} & \text{collision} \\ \text{scale} & \text{rate} \\ \frac{4\pi\hbar a}{m} n_{BEC} & n_{th}\pi a^2 v \end{array}$

It's GP-simple when $\lambda_{dB} \gg a \frac{n_{th}}{n_{BEC}}$, for short enough time scales

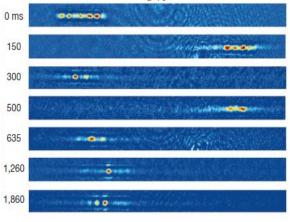
BEC Formation



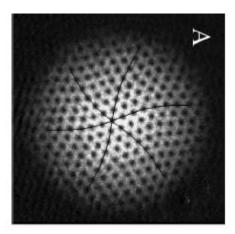
The coherence grows faster than the N_{BEC}

Some Mean Field Non-Eq. Expts.

Solitons



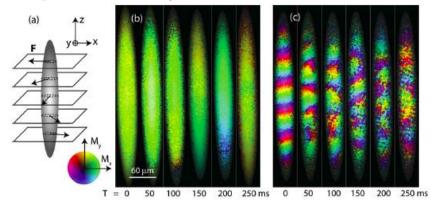
Tkachenko oscillations





Hulet

Magnetic dipole+ mean field



Stamper-Kurn

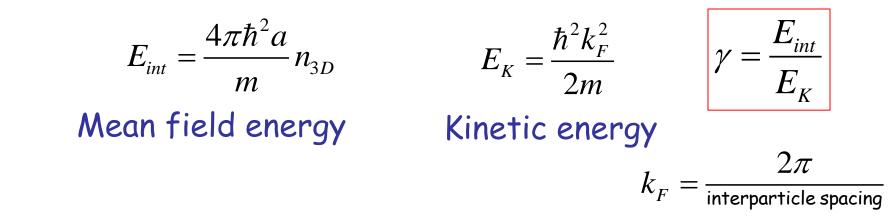
Cornell

Oberthaler

Also: Cold neutral plasmas Rydberg blockaded gases Cold molecules...

<u>Coupling strength</u>

In a Bose gas, the ratio of two energies, γ , governs the extent of correlations in a quantum gas:



For low γ , it is less energetically costly for single particle wavefunctions to overlap than be separated \rightarrow Mean field theory & the G-P equation apply: weak coupling

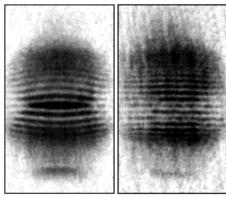
For high γ , it is less energetically costly for wavefunctions to avoid each other \rightarrow strong coupling

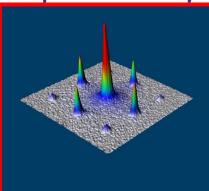
As γ increases, dynamics becomes a quantum many-body problem

<u>Significance of correlations</u>

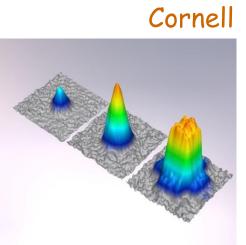
Bloch

Weak correlations allow long range phase coherence, and macroscopic wavefunction phenomena \rightarrow Eq., interference, superfluidity, vortices





Ketterle



Semiclassical

Quantum

Strongly correlated systems are much harder to calculate, especially out of equilibrium

 $\gamma\uparrow$ for bosons at high density in 3D, in optical lattices, or in reduced dimensions

Esslinger

Single atom dynamics

а

0.0

0.2

0.1

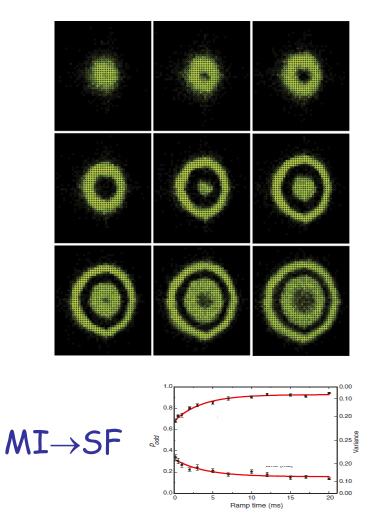
0.0 -10

Probability

с

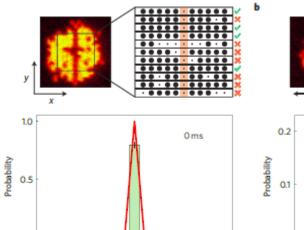
-5

-5



coherence grows fast Greiner

Mobile spin impurities



0

Position (lattice sites)

0

Position (lattice sites)

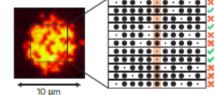
5

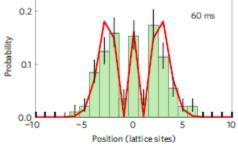
40 ms

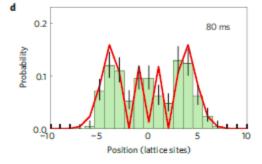
5

10

10







Bloch

1D Bose gases with variable point-like interactions

Elliot Lieb and Werner Liniger, 1963: Exact solutions for 1D Bose gases with arbitrary $\delta(z)$ interactions

A Bethe ansatz approach yields solutions parameterized by

$$\gamma = \frac{\mathbf{m} \quad \mathbf{g}_{1D}}{\hbar^2 \quad \mathbf{n}_{1D}}$$

 $H_{1D} = \sum_{i=1}^{N} -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z^2} + \sum_{i \leq i} g_{1D} \delta(z_i - z_j)$

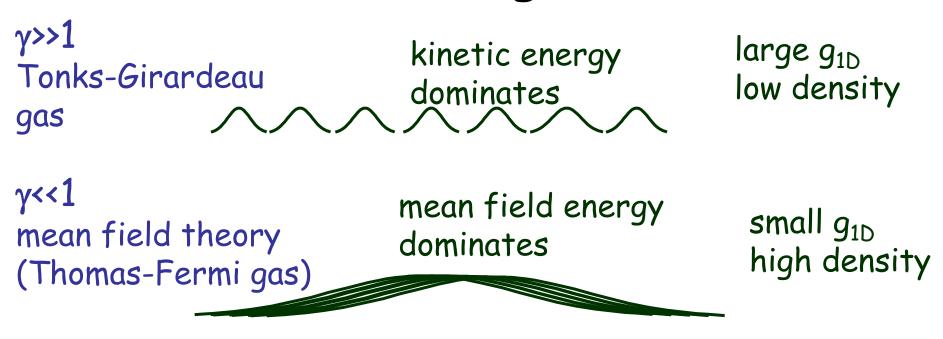
Lieb & Liniger, Phys Rev 130 1605 (1963)

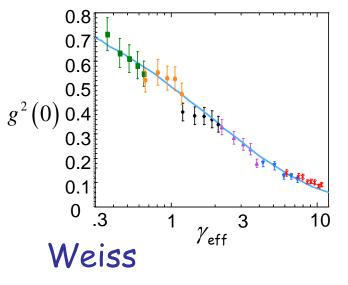
Wavefunctions and all other (local and non-local) properties are exactly calculable.

Maxim Olshanii, 1998: Adaptation to real atoms

 $\gamma = \frac{4a_{3D}}{a_{\perp}^2 n_{1D}} \left(1 - \frac{Ca_{3D}}{a_{\perp}}\right)^{-1} a_{3D} = 3D \text{ scattering length} \\ a_{\perp} = \text{ transverse oscillator length} \\ C \approx 1.46$

The Lieb-Liniger limits



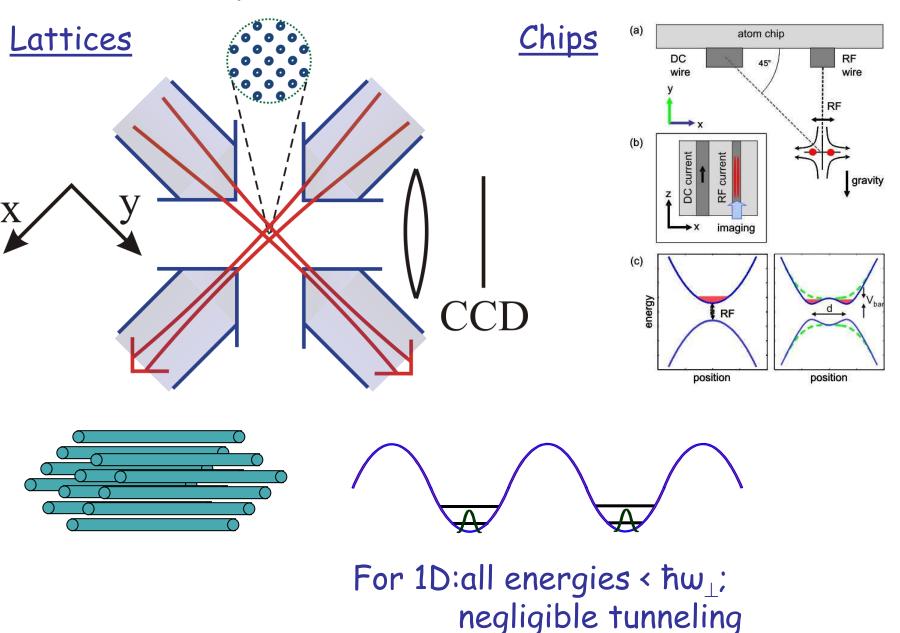


Integrable systems have N constants of motion ⇒ they cannot thermalize

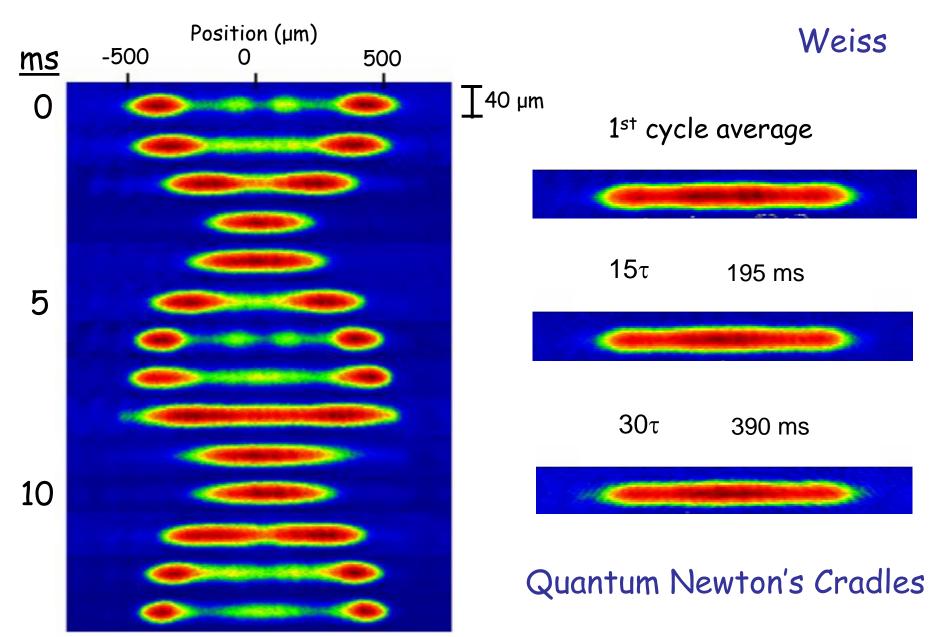
 $p_a, p_b, p_c \longrightarrow p_a, p_b, p_c$

(no "diffractive" collisions)

Experimental 1D gases



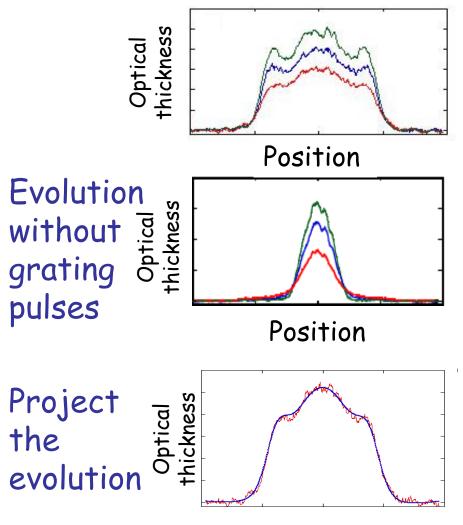
1D Evolution in a Harmonic Trap



 1^{st} cycle average 15 τ distribution 40 τ distribution

<u>Steady-state Momentum</u> <u>Distributions</u>

Lattice depth: 63 E_r



Position

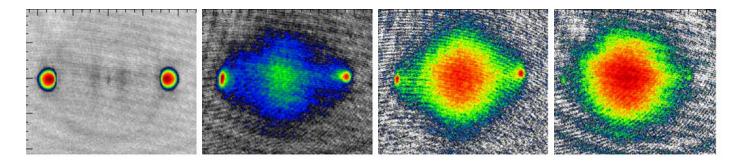
After dephasing (**prethermalization**), the 1D gases reach a steady state that is not thermal equilibrium

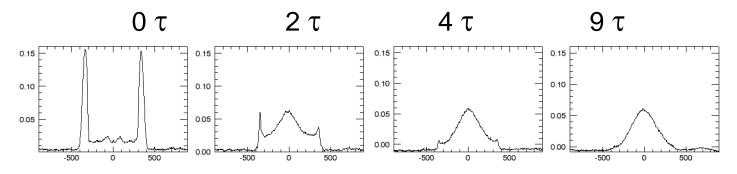
Generalized Gibbs Ensemble- Rigol/Olshanii

Each atom continues to oscillate with its original amplitude Lower limit: thousands of 2-body collisions without thermalization

What happens in 3D?

Thermalization is known to occur in ~3 collisions.





How does thermalization begin in a slightly non-integrable systems? Will it always eventually thermalize?

<u>Summary</u>

A lot of non-equilibrium physics can be studied with cold atoms.

stronger correlations

Semi-Classical Classical ←==⇒ Quantum mechanics 贝介 statistical mechanics When integrability is built into Mean field the interaction Hamiltonian, the integrability is fragile system is robust against thermalization. But how robust? From many diverse phenomena, perhaps universal behavior can be identified