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Intro: cold atoms as isolated quantum systems 
Mean field experiments at various T 
Gases with correlations 
1D gases with δ-interactions: thermalization 

Outline 

  

Time scales, Integrability, 
Correlations, Thermalization 

Lightly sampled 



Cold gas experiments 

trapped gas inelastic 3-body 
collisions 

(typically) metal 
coating the 

vacuum chamber 

Any study of dynamics has to be concerned with timescales 

  

Cold gases are metastable 

Cold gases are very well isolated quantum systems 

UAC  Intensity 

p  E, U=-p.E 

light trapping magnetic trapping 

U = -B 

small complications: intensity, current, position fluctuations; 
background gas collisions; spontaneous emission 

This is usually unimportant 



S-wave interactions can be accounted for with  
the Huang pseudo-potential  
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This leads to  the Gross-Pitaevskii equation (non-linear S.E.) 

The Mean Field 

The effects of collisions are in the mean field term.   
There is nothing irreversible about it! 

The evolution is integrable, with excitations of 
 the only degrees of freedom 



Collapse and Revival 

Prepare atoms in a 
superposition of number 
states at each lattice site 

Hansch/Bloch 

These collisions are coherent 



3D BEC Integrable Evolution 

Ketterle 

Dalibard 

Q~2000 

breathing mode 

dipole mode thermal 
collision 
rate 

mean-field 
frequency 
scale 

for short enough 
time scales 



BEC Formation 

The coherence grows faster than the NBEC 

Esslinger 



Some Mean Field Non-Eq. Expts. 

Stamper-Kurn 

Magnetic dipole+ mean field 

Also: 
Cold neutral 
plasmas 
Rydberg 
blockaded gases 
Cold molecules… 

Oberthaler 

Josephson Oscillations 

Hulet 

Solitons 

Cornell 

Tkachenko 
oscillations 
 



Coupling strength 
In a Bose gas, the ratio of two energies, , governs the extent 
of correlations in a quantum gas: 
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For low , it is less energetically costly for single particle 
wavefunctions to overlap than be separated  Mean field 
theory & the G-P equation apply: weak coupling 

For high , it is less energetically costly for wavefunctions 
to avoid each other  strong coupling 

As  increases, dynamics becomes 
a quantum many-body problem 



Significance of correlations 
Weak correlations allow long range phase coherence, 
and macroscopic wavefunction phenomena  Eg., 
interference,    superfluidity,  vortices 

Ketterle Bloch Cornell 

Strongly correlated systems are 
much harder to calculate, 
especially out of equilibrium 

Esslinger  for bosons at high density in 3D, in 
optical lattices, or in reduced dimensions 

Semi-
classical 

Quantum 



Single atom dynamics 

Bloch 
Greiner 

coherence grows fast 

MISF 

Mobile  spin impurities 



1D Bose gases with variable 
point-like interactions 
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Elliot Lieb and Werner Liniger, 1963: Exact solutions for 
1D Bose gases with arbitrary (z) interactions 

A Bethe ansatz approach 
yields solutions 
parameterized by  Lieb & Liniger, Phys Rev 130 1605 (1963) 

Wavefunctions and all other (local and non-local) 
properties are exactly calculable. 

Maxim Olshanii, 1998: Adaptation to real atoms 
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a3D = 3D scattering length 
a = transverse oscillator length 
C≈1.46 a 



The Lieb-Liniger limits 
>>1 
Tonks-Girardeau 
gas 

<<1 
mean field theory                 
(Thomas-Fermi gas) 

large g1D 
low density 

small g1D 
high density 

kinetic energy 
dominates  

mean field energy 
dominates  

 eff
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Integrable systems have N 
constants of motion 
  they cannot thermalize 

Weiss 

pa, pb, pc pa, pb, pc 

(no “diffractive” collisions) 



Experimental 1D gases 

For 1D:all energies < ħω; 
  negligible tunneling 

Lattices Chips 



1D Evolution in a Harmonic Trap 
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Quantum Newton’s Cradles 

Weiss 



Steady-state Momentum 
Distributions 
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Position 

Evolution 
without 
grating 
pulses 

1st cycle average 
15  distribution 
40  distribution 

Generalized Gibbs 
Ensemble- Rigol/Olshanii 

Position 

Project 
the 
evolution 

A

C

O
pt

ic
al

 T
hi

ck
ne

ss

Spatial Distribution (m)

B

A

C

O
pt

ic
al

 T
hi

ck
ne

ss

Spatial Distribution (m)

B

Position 

O
pt

ic
al

 
th

ic
kn

e
ss

  

After dephasing 
(prethermalization), the  
1D gases reach a steady 
state that is not thermal 
equilibrium 

Each atom continues to 
oscillate with its 
original amplitude 
Lower limit: thousands 
of 2-body collisions 
without thermalization 
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Lattice depth: 63 Er 



What happens in 3D? 

Thermalization is known to occur in ~3 collisions. 

0  2  4  9  

How does thermalization begin in a 
slightly non-integrable systems? Will it 
always eventually thermalize? 



Summary 

When integrability is built into 
the interaction Hamiltonian, the 
system is robust against 
thermalization. But how robust? 

Mean field 
integrability is fragile 

A lot of non-equilibrium physics can be studied with cold atoms. 

Classical Semi-Classical Quantum 

stronger correlations 

mechanics 

statistical mechanics 

From many diverse phenomena, perhaps universal 
behavior can be identified 


