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Cold gas experiments

Cold gases are metastable
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inelastic 3-body '
collisions coating the

This is usually unimportant vacuum chamber
Any study of dynamics has to be concerned with timescales

Cold gases are very wellisolated gquantum systems
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small complications: intensity, current, position fluctuations:;
background gas collisions; spontaneous emission




The Mean Field

S-wave interactions can be accounted for with
the Huang pseudo-potential ti?
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‘Enforces boundary condition ¥(r=a)=0

This leads to the Gross-Pitaevskii equation (non-linear S.E.)
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The effects of collisions are in the mean field term.
There is nothing irreversible about it

The evolution is integrable, with excitations of
¥ the only degrees of freedom



Prepare atoms in a

Collapse and Revival
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These collisions are coherent
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D BEC Inteqgrable Evolution

Dalibard brecn‘hing mode
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It's GP-simple when
D> a—0

10 milliseconds per frame

Ketterle

, for short enough
"BEC time scales
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Esslinger

Atom flux detected in 50 ms
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The coherence grows faster than the Ngg,



Some Mean Field Non-Eq. Expts.

Solitons, Tkachenko Josephson Oscillations
oscillations
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Also:

Cold neutral

plasmas

LR Rydberg

TSR (00 a8 0 blockaded gases
Stamper-Kurn Cold molecules...




Coupling strength

In a Bose gas, the ratio of two energies, y, governs the extent
of correlations in a quantum gas:
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For low v, it is less energetically costly for single particle
wavefunctions to overlap than be separated = Mean field

theory & the G-P equation apply: weak coupling

For high v, it is less energetically costly for wavefunctions

to avoid each other = strong coupling
As v increases, dynamics becomes
a quantum many-body problem



Significance of correlations

Weak correlations allow long range phase coherence,
and macroscopic wavefunction phenomena = Eg.,
vortices

superfluidit

interference,

Semi-
classical
Ketterle Bloch Cornell
Strongly correlated systems are Quantum

much harder to calculate,
especially out of equilibrium

yT for bosons at high density in 3D, in Esslinger
optical lattices, or in reduced dimensions



Single atom dynamics

Mobile spin impurities
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1D Bose gases with variable

point-like interactions

Elliot Lieb and Werner Liniger, 1963: Exact solutions for
1D Bose gases with arbitrary 8(z) interactions

N 2 2
A Bethe ansatz approach Hy=D - G +> 9,0(z -
D Gin0\ Z — 4
yields solutions Fo2em 52j2 < ( J)
parameterized by |y = "; GID | Lieb & Liniger, Phys Rev 130 1605 (1963)

Wavefunctions and all other (local and non-local)
properties are exactly calculable.

Maxim Olshanii, 1998: Adaptation to real atoms @
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The Lieb-Liniger limits

y>>1

. kinetic energy large gyp,
Tonks-Girardeau dominates low density
gas NSNS NSNS\

y«<1 mean field ener
mean field theory dominates 7 small gy,

- ' high density
(Thomas-Fermi 9 s

o Integrable systems have N

0.6} H%{. constants of motion
g%(0) 82 ity = they cannot thermalize
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Weiss (no “diffractive” collisions)



Ex emmen’ral 1D qgases

Lattices

(a) atom chip
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For 1D:all energies < hw ;
negligible tunneling



1D Evolution in a Harmonic Trap
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1st cycle average
15 t distribution
40 t distribution

Lattice depth:

Optical
thickness

Steady-state Momentum
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After dephasing
(prethermalization), the
1D gases reach a steady
state that is not thermal
equilibrium

Generalized Gibbs
Ensemble- Rigol/Olshanii

Each atom continues to
oscillate with its
original amplitude
Lower limit: thousands
of 2-body collisions
without thermalization



What happens in 3D?

Thermalization is known to occur in ~3 collisions.
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How does thermalization begin in a
slightly non-integrable systems? Will it
always eventually thermalize?



Summary

A lot of non-equilibrium physics can be studied with cold atoms.

stronger correlations

Classical <—— Semi-Classical <<= Quantum

mechanics
i)
statistical mechanics
Mean field When integrability is built into
integrability is fragile the interaction Hamiltonian, the

system is robust against
thermalization. But how robust?

From many diverse phenomena, perhaps universal
behavior can be identified



