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The University of Manchester

Quantum Turbulence (QT) in the T=0 limit

(T < 0.5K for *He, T < 0.1-0.3mK for 3He-B)

Challenge: with known properties of a vortex line at 7=0, understand behaviour of a vortex tangle
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Plan:
1. Outline current understanding and its loose ends;
2. Discuss existing and desired experimental techniques.



Motivation: a new type of turbulence

Relevance to other problems:
- QT can mimic classical turbulence (e.g. large Re)
- QT has features of wave turbulence (Kelvin waves)

- Analogies with other line defects: dislocations,
Abrikosov vortices, cosmic strings



Computer simulations of the evolution of Computer simulations of the evolution of
a vortex tangle (Tsubota, Araki, Nemirovskii) cosmic strings (Cambridge)



Descriptions of vortex dynamics
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* Vortex lines move with local u, as_

* u_is function of the configuration of the tangle *
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* Coarse-grained equations
e Cannot account for quantum cascade



QT at T=0 was studied since 2000. Our beliefs after 15 years:
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Assumed energy spectrum of QT (HIT)



1. Quasi-classical behaviour:
Can coarse-grained flow be described by quasi-classical equations:

- at the generation stage (vortex nucleation/multiplication)?
- approaching non-classical ("dissipative") scales?
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2. QT at quantum length scales

- Which processes maintain energy cascade to non-classical scales?
- Dominant mechanism of energy removal?

- Derivation of the formula for the rate of energy removal?
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Dissipation rate: Classical vs. Quantum

Classical fluid:
Inertial cascade; energy flux determined by Navier-Stokes equation
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Dissipation at small lengths through shear viscosity (where v is a material parameter):
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dE/dt = - v (curl v)?

Superfluid quasi-classical flow:
Inertial cascade; energy flux is, perhaps, determined by “quasi-Navier-Stokes” equation
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Energy flux, maintained by vortex lines (where v’ = Ck is a an effective parameter, C~1):

Assumption: dE/dt = - v'k?3[?




3. Role of solid boundaries in confined QT?
- Effective boundary conditions: “slip’ or ‘no-slip’?
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Circumstantial evidence for quasi-classical cascade
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Zmeev et al., submitted to PRL (2015)

Free decay of QT
T=90 mK
P=0.1 bar
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At T<0.8K, spin-down turbulence differs from HIT:
long-lived angular momentum
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Our Detection Method: Scattering of Charged Vortex Rings
off Vortex Lines

In helium at T < 0.7K, an electron (inside bubbles of R ~ 20A) nucleates a vortex rings and travels with it.
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(image from Winiecki and Adams, Europhys. Lett. 2000)
Charged vortex rings of suitable radius (~1 um) are used as detectors of vortex length L

L can be calculated from attenuation of the electric current due to CVRs
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Electric current

Towed Grid that works at 7<100mK

Magnetic field
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Towed Grid

We monitor the free decay of the turbulence after towing the grid through the channel.

Zmeey, J. Low Temp. Phys (2014)



Need for new experiments

1. Generation (existing):

- vibrating objects (Lancaster, Osaka, Kharkov)

- non-steady rotation of a cryostat (Manchester, Helsinki)
- ion jet (Manchester)

- towed grid (Manchester) — talk by Zmeev at QFS

Generation (desired):
- steady flow
- simple flow (pipe, piston, classical vortex ring, or straight vortex (tornado)

2. Detection of vortex lines (existing):

- Interaction with vibrating objects (Lancaster, Osaka)

- Scattering of quasiparticles in 3He-B (Lancaster)

- NMR in 3He-B (Helsinki)

- Scattering of charged vortex rings (Manchester) — talk by Golov at QFS
- Transport of trapped ions (Manchester) — talk by Walmsley at QFS

Detection (desired):

- Mapping velocity, vorticity, pressure fields

- Measuring drag on immersed objects and traction at solid walls

- Visualisation of individual vortices (seeded by fluorescent nanoparticles)



For inspiration:
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“Towards a high-resolution flow camera using artificial hair

sensor arrays for flow pattern observations”
Dagamseh et al., Bioinspir Biomim. 7, 046009 (2012), Univ. of Twente




