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A symmetric sandwich:

Superfluid Liquid 4He in Vycor

~ 100 mK
Solid Helium AT

Superfluid Bulk Liquid 4He

Capillary to add,
subtract helium




Early data Interpreted as Evidence for “Flow”
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M.W. Ray and R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008): PRB 79, 224302 (2009).




Early data Interpreted as Evidence for “Flow”
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Flux not limited
~ -8 Note C1 and C2
0.1 mbar/s = 5 x 10°° g/s by the Vycor

M.W. Ray and R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008): PRB 79, 224302 (2009).




Another: Interpreted as Evidence for “Flow”
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Note: Sometimes C1 and C2, like in this case, show a gradient
is present in the cell. (A long-term stable gradient)




Key Question: What carries the flux?

Suggestion**: The"“core” of an edge dislocation, which is predicted to
have a finite superfluid density. (See A. Kuklov’s comments)

The edge can climb while it transports mass; the “superclimb” of
edge dislocations*. Mass injection causes a density change.

Alternate scenarios have
been proposed, e.qg. liquid
channels ##, grain
boundaries $$, etc..

**S.G. Soyler, et al., Phys. Rev. Letters 103, 175301 (2009)
[M. Boninsegni et al., Phys. Rev. Letters 99, 035301 (2007)]

## S. Sasaki et al., J. Low Temp. Phys. 153, 43 (2008).

$$ L. Pollet et al., Phys. Rev. Letters 98, 135301 (2007);
S. Sasaki et al., Science 313, 1098 (2006).




Instead of injection of helium, seal the fill lines and apply a
temperature difference |T1 - T2| > 0, with solid in the cell:

)

e.g., TC = 199 mK P = ~ 26 bar.

Sample GT
TC=199mK | 1.56

Solid 4He

1000

1020
time (min) This different approach gives

generally consistent results with the
previous approach. It has benefits.
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The slope of P1-P2
is related to the
flux.
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Note: The slope at low
temperature is nearly linear.




Slope vs. Temperature:
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M.W. Ray and R.B. Hallock, Phys. Rev. Lett. 105, 145301 (2010); PRB 84, 144512 (2011).




Slope of P1-P2 ~ flux, F
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F=A(AY)® Note:b<1
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Key Question: Is this evidence for the presence of a Tomonaga-
Luttinger Liquid — for bosons (i.e. a one dimensional superfluid)?

Ye. Vekhov and R.B. Hallock, Phys. Rev. Lett. 109, 045303 (2012); PRB 90, 134511 (2014).



Next, explore the vicinity of the abrupt decrease.

Do this for nominal 300 ppb 3He, but also for other 3He concentrations.




The flux reduction vs. temperature is extremely sharp.

A warming
v cooling
A warming

19 ppm 3He

Ye. Vekhov, W.]J. Mullin and R.B. Hallock, Phys. Rev. Letters 113, 035302 (2014)



How Sharp? Cooling
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10ppm 3He

Key Question: What causes the kinetics of recovery? W :
arming

- | flux recovery
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Behavior is sample and history dependent.

warming #1
cooling #2
warming #3

cooling #4

19 ppm 3He
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Ye. Vekhov, W.]. Mullin and R.B. Hallock, Phys. Rev. Letters 113, 035302 (2014)




Many different samples, different concentrations, different histories:

(Ap = 5 ml/g)

e (.17 ppm warming
—v— 0.17 ppm cooling
—a— 0.17 ppm warming
—v— 4 ppm warming
—4A— 4 ppm warming
—v— 10 ppm cooling
—v— 10 ppm warming
—v— 19.5 ppm cooling
—A— 19.5 ppm warming
—v— 61 ppm cooling
—4A— 61 ppm warming
—v— 119 ppm cooling
—4A— 119 ppm warming
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Extinction is somewhat less abrupt at higher concentrations.
Note: High temp (> 0.7 K), kills the flux - it typically does not recover on cooling.




Key Question: Specifically, how does the 3He kill the flux?
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Ye. Vekhov, W.]J. Mullin and R.B. Hallock, Phys. Rev. Letters 113, 035302 (2014)
*D.0O. Edwards and S. Balibar, Phys. Rev. B 39, 4083 (1989)




Normalize the flux, pick T = 0.2 K: (forT > T, )
Key Question: That causes the universal behavior?
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Ye. Vekhov, W.]. Mulllin and R.B. Hallock, Phys. Rev. Lett. 113, 035302 (2014);
Ye. Vekhov and R.B. Hallock, arXiv:1507.00288




Study the syringe effect: inject mass, with no outlet.
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~ 70 sec Same AT1 in each case:
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We interpret this to mean that the
flux restriction is in the solid itself.
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Key Question: What causes this?

Ye. Vekhov and R.B. Hallock, Phys. Rev. 91, 180506(R) (2015).




Related Work
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Vycor ——

Beamish group*

—v— 0.17 ppm cooling
—A—0.17 ppm warming
—v— 4 ppm warming
—A— 4 ppm warming
—v— 10 ppm cooling
—4— 10 ppm warming
—v— 19.5 ppm cooling
—4—19.5 ppm warming
—v— 61 ppm cooling
—4— 61 ppm warming
—v— 119 ppm cooling
—a— 119 ppm warming
—v— 220 ppm* cooling
—4a— 220 ppm* warming
—— F/F(0.2K) = A - B exp(-E/T)
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Ye. Vekhov, W.]J. Mullin and R.B. Hallock, _
Phys. Rev. Letters 113, 035302 (2014); *Z.G. Cheng, J. Beamish, et al.
Vekhov and Hallock: arXiv:1507:00288 Phys. Rev. Lett. 114, 165302 (2015)




Related Work

Chan group*
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*A. Haziot, D. Kim and M.H.W. Chan; APS March +
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Specific Questions:

. What actually carries the flux?

How does the 3He poison the flux?

What causes the universal temperature dependence?
What governs the kinetics of the flux recovery?

What happens if you deform the solid?

What causes the flow to stop at about 650 mK?

Is this flow really the behavior of a Luttinger Liquid?
Can there be a metastable or persistent current?

. What are the binding energies of 3He to intersections?
10 What is the behavior at the solid-liquid interface?
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11. Is there a low temperature limit for the syringe effect?
12. How does the C1, C2 response vary with concentration?

More Broadly:

1. We appear to have quantum dislocations - with low-dimensional
superfluidity, plasticity and quantum tunneling.

2. There is an interplay among these new areas that needs to be
explored.

3. We need a complete theory of dislocation, impurity interactions.

Comments on issues: S. Balibar, J. Beamish and R.B. Hallock, JLTP 180, 3 (2015)
(created at the time of the Brazil Workshop in 2014)




Thank You

(hallock@physics.umass.edu)




