

Does the superclimb of dislocations control the mass accumulation effect in solid ⁴He ?

Anatoly Kuklov

Grand Challenges in QFS, August 7, 2015

Key experiments in hcp ⁴He

Superflow through the solid and the giant isochoric compressibility (syringe effect):

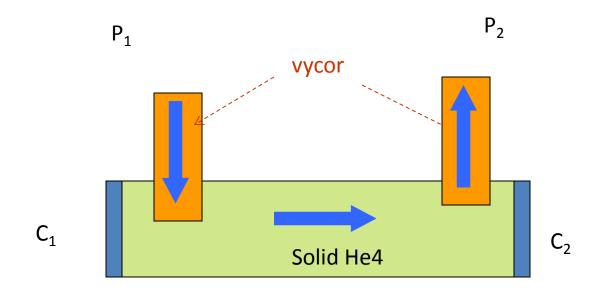
M. W. Ray and R. B. Hallock, PRL 100, 235301 (2008); PRB 79, 224302 (2009); PRB 84, 144512 (2011); Ye. Vekhov and R. B. Hallock PRL. **109**, 045303 (2012); PRL **113**, 035302 (2014) ...

Z. G. Cheng, J. Beamish, A. D. Fefferman, F. Souris, S. Balibar, PRL 114, 165301 (2015);

A. Haziot, Duk Young Kim, M. Chan, March Meeting 2015, A22.00015,

Critical superflow and the syringe effect

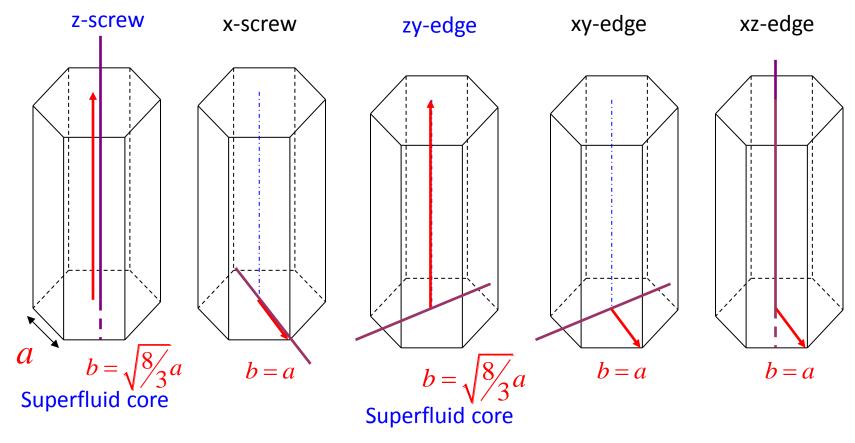
M. W. Ray and R. B. Hallock, PRL 100, 235301 (2008); PRB 79, 224302 (2009)



- 1. Linear in time relaxation of pressure difference overcritical current;
- 2. Flow vanishes above 0.5-0.6K well below lambda-point
- 3. Syringe: Large fraction of He4 can accumulate uniformly inside solid during the flow

 $P(C_1) - P(C_2) = const(t)$

Dislocations in hcp ⁴He

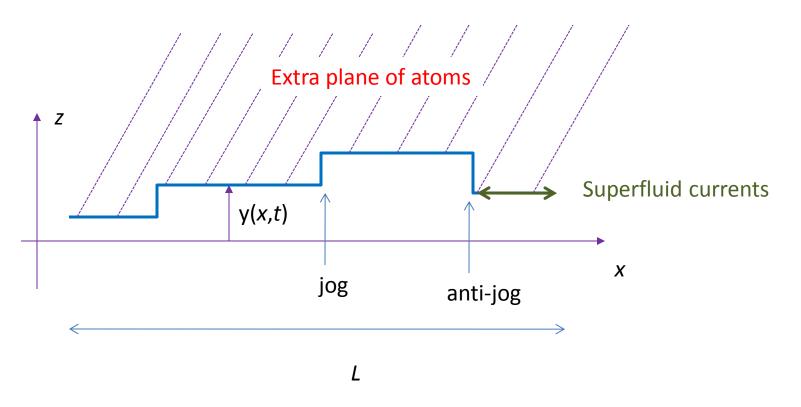


Ab initio MC:

M. Boninsegni, ABK, L. Pollet, N.V. Prokof'ev, B.V. Svistunov, M. Troyer, PRL **99,** 035301 (2007) Ab initio MC:

S. G. Soyler, ABK, L. Pollet, N.V. Prokof'ev, B.V. Svistunov, PRL 103, 175301 (2009)

Syringe effect due to edge superclimbing dislocation carrying quantum liquid of geometrical jogs

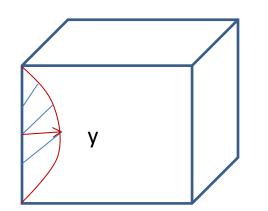


The excitation spectrum is $\sim q^2$ so that it is a non-Luttinger liquid

S. G. Soyler, ABK, L. Pollet, N.V. Prokof'ev, B.V. Svistunov, PRL 103, 175301 (2009)

"Giant" isochoric compressibility: Linear response

The edge planes can accumulate extra atoms like a liquid regardless of the dislocation density



L

 $\delta N \sim yL, \quad |y| \ll L$ $y \sim \delta \mu L^{2},$ $\delta N / \delta \mu \sim L^{3} \sim N$

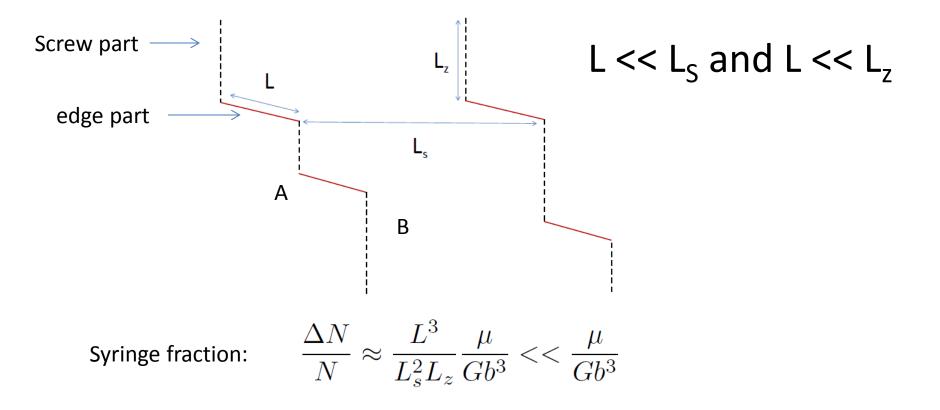
 μ - bias by chemical potential $\frac{dN}{d\mu} \sim N$: Liquid-like response

Maximum linear compressibility is achieved when a typical length of the superclimbing segments is comparable to a distance between the segments

$$\frac{dlnN}{d\mu} \sim \frac{1}{(K+G)b^3}$$

K – compression modulusG-shear modulus

Asymmetrically small density of superclimbing segments



The syringe fraction in the linear regime (small bowing) does NOT depend on dislocation density --- only on its geometry --- the ratio of the lengths, provided the network is uniform

Syringe bistability of solid ⁴He

Three channels:

- 1. Injection of edge dislocations with SF core from vycor;
- 2. Bardeen-Herring loop generation from the edge segments;
- 3. Helical instability of screw dislocations with SF core

All are characterized by essentially the same threshold in chemical potential μ bias: $\mu_c \simeq$ 1/dislocation length

Edge dislocation with superfluid core becomes unstable toward unlimited inflation under the bias by chemical potential with the threshold ~ 1/dislocation length

$$E = \frac{Gb^2}{4\pi} R \cdot \alpha_0 - \frac{|\mu|}{b^2} R^2 \cdot (\alpha_0 - \sin \alpha_0)$$

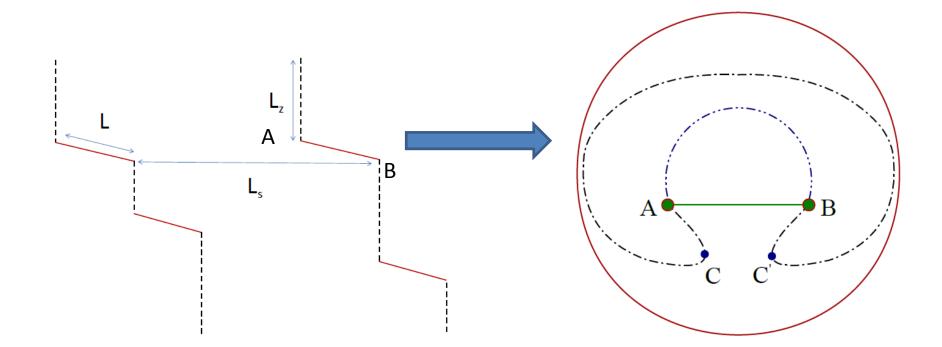
Dislocation
core energy
Work by bias to add extra
matter – orange area under the
curve

Absolute instability toward unlimited inflation for

$$|\mu| > \mu_c = \frac{Gb^4}{2\pi L_0}$$

 L_0

Bardeen-Herring loop generation supported by the core superflow



Asymmetrically small density of superclimbing segments $L << L_S and L << L_z$

Syringe instability of screw dislocation

Screw dislocation with superfluid core develops helix with the additional matter accumulation under the bias by chemical potential with the threshold ~ 1/dislocation length

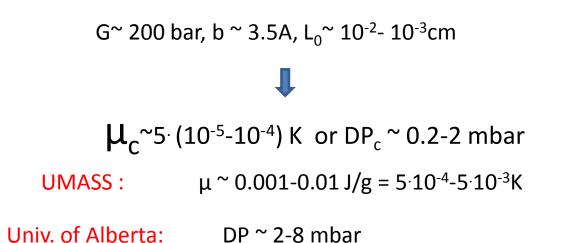
$$E_{s} = \int_{0}^{L} dz \left\{ \frac{\mu \gamma_{s} r^{2}}{2} \partial_{z} \theta + \frac{\epsilon_{c}}{2} [(\partial_{z} r)^{2} + r^{2} (\partial_{z} \theta)^{2}] \right\}$$

$$Work by bias to add extra
matter "inside" the helix
Dislocation
core energy
$$\partial_{z} \theta = -\frac{\mu \gamma_{s}}{2\epsilon_{c}}, \qquad E = \int_{0}^{L} dz \left\{ -\frac{(\mu r)^{2}}{8\epsilon_{c}} + \frac{\epsilon_{c}}{2} (\partial_{z} r)^{2} \right\}$$

$$Absolute instability$$

$$|\mu| > \mu_{c} \approx \frac{Gb^{4}}{2\pi L_{0}}$$$$

Realistic values



Actual free length L₀ should be much bigger than the inter-dislocation distance because crosspining does not work well for superclimb --- it costs no energy to create a jog

The experiments are likely to be in the overcritical regime!

At small dislocation densities ~ $1/L^2$ the bias needs to be ~ L^2 to see the flow. So, it is easy to be way above the threshold which is ~ 1/L

Ballistic growth of the superclimbing loop from the vycor-solid boundary

ABK, arXiv:1507.06966

$$\frac{dR^2}{dt} \approx \rho_s \frac{\phi_0}{R}, \quad \frac{d\phi_0}{dt} = \mu$$

Syringe fraction:

$$\frac{\Delta N}{N} \propto (\rho_s |\mu|)^{1/3} t^{2/3}$$

Flow velocity along the rim:

$$V_0 = \frac{\hbar}{mb} \left(\frac{t}{\tau_b}\right)^{1/3}$$

$$\tau_b^{-1} = \frac{3\pi\mu^2 b}{4\rho_s} \approx 2.4 \frac{\mu^2 m b}{\hbar^3 n_s^{(1d)}}$$

Superfluid density along dislocation core: ρ_{S} , n_{s} =m ρ_{S} ~ 1 $A^{\text{-1}}$

About 1ms to reach speed ~ 100m/s for μ ~ $10^{\text{--}4}\text{K}$

Dissipative regime

$$\frac{dV_0}{dt} + \gamma V_0 \approx \frac{\mu}{mR}, \quad \frac{\pi dR^2}{dt} = 2\rho_s V_0.$$
Phase slip rate:
C. Kane & M. Fisher
N. Prokof'ev & B. Svistunov

The flow rate ~ μ^p as observed in "UMASS sandwich"

Syringe fraction

Dissipative non-linear:

$$\frac{\Delta N}{N} \propto R \propto \left(\frac{|\mu|}{\gamma_0}\right)^{\frac{p}{2+p}} (\rho_s t)^{\frac{1}{2+p}}$$

Dissipative linear (Ohmic):

$$\frac{\Delta N}{N} \propto R \propto T^{\frac{1-p^{-1}}{3}} \left(\frac{\rho_s |\mu| t}{\gamma_0}\right)^{\frac{1}{3}}$$

Rate of the Bardeen-Herring loop generation

Ballistic:

$$\frac{d\Delta N}{dt} \propto \frac{(\rho_s |\mu|)^{1/2}}{L_0^{3/2}}$$

Dissipative non-linear:

$$\frac{d\Delta N}{dt} \propto \frac{\rho_s |\mu|^p}{\gamma_0^p L_0^{2+p}}$$

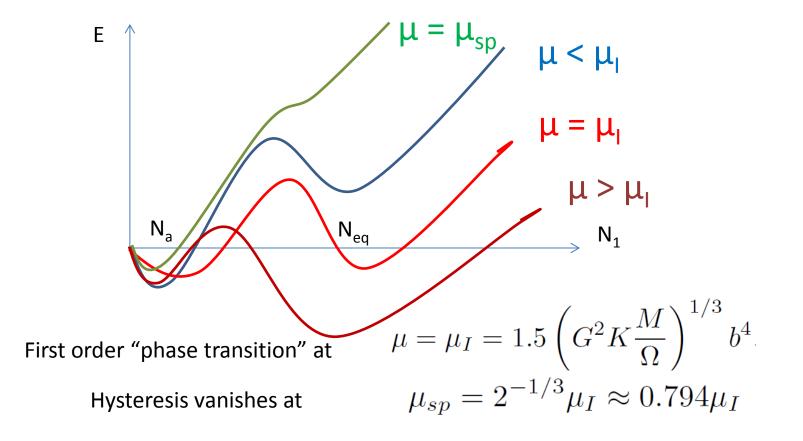
Dissipative linear (Ohmic):

$$\frac{d\Delta N}{dt} \propto \frac{\rho_s T^{(1-p^{-1})} |\mu|}{\gamma_0 L_0^3}$$

Hysteresis

In an almost perfect solid ⁴He with low density of superclimbing segments there are two solutions for the syringe fraction:

- 1. N_a -- due to small bowings of superclimbing segments at small μ (below the threshold)
- 2. N_{eq} max syringe fraction ~ $\mu/(K+G)$



Main implication

Growth and proliferation of superclimbing dislocations under the bias, so that the "conducting" network can be created even if it didn't exist originally.

Challenges in solid ⁴He

- Detailed experimental data on the time and the bias dependencies of the syringe fraction are needed to compare with the theoretical predictions
- The origin of the temperature dependence ~ 1- exp(-Ea/T) (UMASS)
- How is the index p (UMASS) related to the Luttinger parameter? [Mechanisms of the phase slips]
- Phase slips in the non-Luttinger liquid superclimbing dislocation
- Dependence of the flow rate and the syringe on controlled structural disorder – creation of screw dislocations by twisting; shearing etc.