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a variety of confinement geometries

3He

Surface

Surface Majorana fermion

well-established knowledge on bulk 3He as a “superclean” material

Huge symmetry group

SO(3)S ⇥ SOL ⇥U(1)�

⇒ a diversity of SSB

Controllable surface conditions

Why 3He



Symmetry group in normal state

Topology & Symmetry of 3He

Topological excitations: Cooper pairs

3He: O. V. Lounasmaa and E. Thuneberg, PNAS 96, 7760 (1999)

in the NMR satellite frequencies and in the intensities of the
CUV and SV peaks are largely the result of the smaller soft
core of the latter.

Besides vortices, other defects can appear in 3He-A as well.
Fig. 8 shows, as examples, the spectra in the presence of splay
and twist solitons, which are planar, domain-wall-like objects
that separate two regimes having parallel and antiparallel
orientations of l and d, respectively. Solitons sometimes appear
when a 3He sample is cooled rapidly into the superfluid state,
and they may remain trapped in the experimental cell for a
long time.

The VS was discovered in 3He-A in 1993 (37). The concept
is an old one. Cylindrical VSs were proposed by Onsager (51)
and by Fritz London (52) in the late forties and early fifties as
the first attempt to explain the mysterious flow properties of
4He, the only superfluid known at that time. The model was
further developed by Landau and Lifshitz (53), who calculated
the separation between the vortex cylinders. In the 4He
superfluid, however, the VS is unstable and breaks into
separate vortex lines.

In 3He-A the VS is stable (22, 54). Its macroscopic structure
in a rotating container is illustrated in Fig. 9. The backbone of
the sheet is a two-dimensional soliton. Suppose a vertical
soliton wall is present initially in a stationary container. When
rotation is started, it is easier to form vortex quanta within the
existing soliton than to nucleate separate vortex lines, which
involves a higher energy barrier. In this way continuous
vorticity is added to the soliton, which develops into a VS and
grows with increasing rotation velocity because vortices repel
each other if their density is high. This repulsion leads to
folding of the VS shown in the upper part of Fig. 9. The number
of convolutions increases with the speed of rotation; at ! " 1
rad!s, the distance between the folds is 350 !m, 10 times more
than the thickness of the sheet.

3He-A is also exceptional in the nucleation of vortices. In the
more usual superfluids, vortices are created at the walls of the
container because the counterflow is largest there. Moreover,
the unavoidable roughness of real container walls always
lowers the threshold for nucleation. Therefore, the intrinsic
critical velocity of the bulk superfluid is not easily accessible
to experiments. 3He-A is an exception to this rule because the
critical velocity is determined by nucleation of continuous

FIG. 7. Different types of l-textures in rotating superfluid 3He-A. The phase diagram in the ! vs. H-plane is shown in the middle. The yellow
shading denotes regions with vorticity, ƒ # vs $ 0. In the blue areas outside, curl vs " 0. Only half of the elementary cell is shown for VS and
LV3. For more details, see text. Figure adapted from ref. 48.
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FIG. 8. NMR absorption spectra of different topological objects in
rotating 3He-A. In each case the main peak arises from the bulk liquid.
Every defect (vortex or soliton) gives rise to a satellite peak at a
characteristic frequency. The heights of the satellites are directly
proportional to the number of each type of defect in the experimental
cell. Compare with Fig. 7 and Table 1. For clarity the different spectra
are shifted vertically. CF, counterflow region; SS, splay soliton; TS,
twist soliton. Figure reproduced with permission from ref. 50.

FIG. 9. Folding of the VS in a rotating container (Upper) and one
periodic unit of the l-vector field associated with it (Lower). In the VS
l is unlocked from d, which is pointing toward right, perpendicular to
H. Figure adapted from ref. 55.
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Huge order parameter manifold
==> Rich topology in real space 

Topology of fermions (QPs)
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where Pðq; zeÞ is the static form factor of the electron
(obtained from Fourier transforming the xy coordinates
of the probability density of a single electron), Aþ is the
component of the interaction that flips the electron spin
with respect to the direction of the Zeeman field, z (z0) and
ze (z0e) are the z coordinates of the 3He atoms and the
electron respectively, and !L ¼ g"B=@ is the Larmor
frequency of the electron. This formula would look like
the standard NMR relaxation formula [28] if we drop out
the z dependence, the electron form factor P, and restore
the isotropy of the dynamic spin susceptibility. Equation
(4) implies the dependence of 1=T1 on the direction of the
Zeeman field, because Aþ couple Iz to the component of
the electron spin perpendicular to the Zeeman field.

To illustrate this dependence on the Zeeman field direc-
tion, we consider a simple contact interaction model for the
coupling between the electron and 3He atom spins. If we
set the magnetic field direction as ẑ0 ¼ ẑ cos#þ x̂ sin#, we
can write down the contact interaction as Hcontact ¼
&AcontactIzSz ¼ &AcontactIz½Sz0 cos# & 1

2 ðSþ þ S&Þ sin#(,
giving us Aþ ¼ Acontact sin#. Inserting this into Eq. (4), we
obtain 1=T1 / sin2#. In other words, the electron spin does
not relax at all for perpendicular field. By contrast, the
same model gives us 1=T1 independent of # for the surface
state of the simplest TI, q summation canceling out the
spin susceptibility anisotropy.

Realistic calculation can still give us this drastic anisot-
ropy of spin relaxation. In 3He-B, the main channel of spin-
spin coupling is the dipole-dipole interaction, mainly be-
cause an electron strongly avoids contact with 3He atoms.
With the dipole-dipole interaction, we do have coupling
between Iz and Sx;y:

HD¼&"0
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where % is the gyromagnetic ratio of a 3He atom and g is
the Landé g factor of an electron. However, for the electron
below the liquid surface, the Sx;y terms of Eq. (5) may have
little effect; because z > 0 for helium atoms ‘‘below’’ the
electron and z < 0 for helium atoms ‘‘above’’ the elec-
trons, the coupling to Sx;y from the helium atoms above
cancels out the coupling to Sx;y from the helium atoms
below. Since the spin interaction is effectively Ising (that
is, HD / &IzSz), we have 1=T1 / sin2#, as we argued in
the previous paragraph. By multiplying sin# to the 2D
Fourier transform on the coefficient of the IzSz term of

Eq. (5), we obtain Aþðq; zÞ ¼ & "0g"B%@
2 qe&qjzj sin#. As

the next step, we need to devise an experimental setup to
relax the electron spin by the 3He-B surface state.
Electron bubble.—A crucial constraint on the relaxation

rate is how well the electron is localized. Whereas in the
NMR, we can assume that a nucleus is a pointlike object,
we cannot make the same assumption for electrons in ESR
and hence the introduction of the static form factor PðqÞ in
Eq. (4). Because of the Heisenberg uncertainty principle,
the more delocalized the electron is in the real space, the
more rapidly PðqÞ falls off with q. This suppresses the spin
relaxation for processes that result in a large momentum
change for 3He atoms and hence suppresses 1=T1. For this
reason, 1=T1 is very small for an electron sitting on top of
the 3He liquid surface. Even when electrons above the
surface form a Wigner crystal, the zero-point displacement
is greater than 10% of the lattice constant for the lattice
constant &1 "m [29]. In order to enhance the electron
localization significantly, we need to place the electron
under the 3He liquid surface.
Once it is injected below the 3He liquid, an electron

settles into a well-localized metastable state below the
surface. It cannot be easily ejected from the liquid due to
an electrostatic energy barrier at the surface arising from
the induced polarization of 3He atoms. By tuning the
electric field perpendicular to the surface, we can adjust
the equilibrium distance jbj between the electron and
the liquid surface to be as close as 10 nm [30,31]. Below
the liquid surface, an electron opens up a nanosized cavity
and becomes trapped inside of it to avoid the energy cost
due to the negative electron affinity of helium atoms. The
size of this ‘‘bubble’’ is determined by competition be-
tween the zero-point kinetic energy of the confined elec-
tron EZP ¼ h2=ð8mR2Þ and the surface energy of the cav-
ity ES ¼ 4$R2&, where R is the cavity radius and

FIG. 1 (color online). Illustration of the surface state of the
3He-B phase consisting of a single Majorana cone, where the
E< 0 part of the quasiparticle spectrum (with the dashed
boundary) is redundant. Also shown are the dimensions of the
bubble electron when we apply a perpendicular electric field of
150 V=cm. Note how small the size and depth of the bubble are
compared to the depth ' of the surface state, for which we take
the weak coupling approximation @vF=! as in Eq. (3).
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Symmetry Protected Topological Superfluid: Overview

Symmetry-protected topological phase

mirror + TRS π-rotation + TRS
Symmetry-broken non-topological phase

broken symmetry

Spontaneous breaking of a discrete symmetry
that protects topological invariant

SSB triggers off topological phase transition

Salomaa and Volovik, PRB 31, 203 (1985)

Symmetry group in normal state
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symmetry breaking field
==> non-topological

The P3 symmetry is preserved when
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applied field SO(3)L�S

⇥̂z(n̂,�) ⌘ ĥµRµz(n̂,�) = 0

BW state Balian and Werthamer, PR 131, 1553 (1963)

Superfluid 3He-B

spin
orbital

==orbital spin
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P3 symmetry in the presence of a magnetic field

magnetic field
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orbitalspin

P3 symmetry ==> topological



Topological Phase Diagram of 3He-B
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Fig. 1. (color online) Phase diagram of the superfluid 3He confined in a slab geometry under a magnetic field parallel to the surface (center), where the
temperature is set to be T = 0.4Tc0 and D and H are the thickness of the slab and the magnitude of an applied field, respectively. The thin (thick) curves is the
first (second) order transition line.

tum liquid down to zero temperatures and the normal state
maintains huge continuous rotation symmetries in spin and
coordinate spaces, independently. (ii) The bulk superfluidity
of 3He has been well established as spin-triplet odd-parity
pairing.31, 32 The A phase that appears in the high temperature
and pressure region is identified as the chiral p-wave pairing
with spontaneously broken time-reversal symmetry,33, 34 and
the B phase is known as a fully gapped pairing with time-
reversal symmetry35 (see Figs. 1 and 9). The superfluid 3He
having huge order parameter manifolds has fascinated many
physicists not only as a prototype of unconventional super-
conductors but also as a treasure box of topology of order
parameter manifolds, such as textures, Nambu-Goldstone and
Higgs modes, and topological excitations.16, 32, 36–38 (iii) Re-
cent development on nanofabrication techniques enables one
to confine the quantum liquid to a variety of geometries, such
as a single slab and narrow cylinders with a thickness/radius
comparable to the superfluid coherence length.39–45 In these
geometries, the planar, polar, and crystalline ordered phases
become energetically competitive to the A and B phases.46–50

(iv) The surface density of states peculiar to gapless quasi-
particle states was already observed in specific heat measure-
ments and high precision spectroscopy based on transverse
acoustics with well controlled surface conditions.51–57

Motivated by puzzling issues on the intrinsic angular mo-
mentum paradox, the investigations on the nontrivial momen-
tum space topology were first initiated in 3He by Stone et
al.58, 59 and Volovik,60, 61 independently. In connection with an
analogue of a two-dimensional 3He-A thin film to the quan-
tum Hall effect and gauge theories, Volovik60, 62–64 futher un-
covered the remarkable fact that the pairwise point nodes on
the Fermi surface are protected by the first Chern number as a
“magnetic” monopole, and low-energy quasiparticles near the
Fermi points behave as chiral Weyl fermions. The superfluid
3He-A thin film is now widely recognized as a prototype of

Weyl superconductors,16, 65–70 which is accompanied by zero
energy flatband terminated to pairwise Weyl points.71–75

As mentioned above, recent development on topological
classifications clarified the distinct topological structures be-
tween the A and B phases; The 3He-A thin film is a Weyl su-
perconductor characterized by the first Chern number, while
the bulk B phase possesses topological superfluidity pro-
tected by the time-reversal symmetry.8, 12–15 Furthermore, it
has been proposed that the marriage of the superfluid 3He
with nanofabrication techniques gives rise to a diversity of
topological phenomena intertwined with symmetry.49, 75, 76

As displayed in Fig. 1, for instance, a confined 3He un-
der a magnetic field has nontrivial phase diagram composed
of a variety of topological and nontopological phases: The
symmetry-protected topological phase BI, symmetry-broken
non-topological phase BII, Wely superfluid A phase, the pla-
nar phase, and crystalline ordered “stripe” phase. The critical
field H∗ in Fig. 1 is identified as the topological phase transi-
tion concomitant with spontaneous symmetry breaking24 and
is accompanied by noteworthy topological quantum critical
phenomena, such as emergent supersymmetry.77 Contrary to
the A phase, the pairwise point nodes in the planar phase are
protected by a mirror reflection symmetry and the zero energy
flatband emergent in the surface exhibits anisotropic magnetic
responses.27, 76, 78 It is also interesting to note that apart from
the topological aspect of 3He, there have been a long history
of investigations on gapless quasiparticles in the direction of
Andreev bound states.79, 80 Nowadays Majorana fermions are
identified as a special kind of surface Andreev bound states in
the context of topological superconductors nowadays.5

This article gives a comprehensive review of recent
progress on symmetry protected topological superfluids and
topological crystalline superconductors with a special focus
on 3He. In Sec. 2, we start with the minimal model that cap-
tures an essence of the topological aspect of superfluids and
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FIG. 6. (Color online) k̂-resolved surface density of states N (k̂∥,z = 0,E) for D = 20ξ0 (a), 12ξ0 (b), and 10ξ0 (c), where H = 0.
N (k̂∥,z = 0,E) for D = 20ξ0 at µnH = 0.0488πTc0 (d) and 0.0854πTc0 (e). (f) and (g) are for D = 12ξ0 and 10ξ0 at µnH = 0.0488πTc0. In
all the data, the temperature is set to be T = 0.2Tc0.

the chiral operator # combined with the time-reversal oper-
ator T = iσyτ 0K and particle-hole operations C = σxτ yK ,
which is called the chiral symmetry {H(k),#} = 0. Here,
K is the complex-conjugate operator. The chiral symmetry
allows one to introduce a three-dimensional winding number
w =

∫
dk

24π2 ϵµνηTr[#(H−1∂µH)(H−1∂νH)(H−1∂ηH)], which
is evaluated as w = 2 for the B phase.60,62 Hence, the B
phase in the absence of a magnetic field is a topological
phase and the bulk-edge correspondence implies that the SABS
satisfies E(k∥) = 0 at k∥ = 0, which is consistent with the
analytic solution of the BdG equation within the Andreev
approximation.

The k̂-resolved surface density of states for D = 20ξ0
without a magnetic field, which is displayed in Fig. 6(a), is con-
sistent with the topological consideration, where the gapless
point exists at k∥ = 0. However, since the SABS is localized
at the surface within the coherence length scale ξ0, the wave
functions at both two surfaces are overlapped with each other
as the thickness D approaches ξ0. As discussed in Refs. 31,
79–82, and 88, the hybridization of wave functions localized
at z = 0 and D split the gapless cone as e−D/ξ . Indeed, as seen
in Figs. 6(b) and 6(c), the spectral weight at k∥ = 0 weakens
as the thickness D approaches Dcri(0) = 9.6ξ0. In addition,
it has the double peak in the low-energy region, where the
upper branch has a distinct energy gap at k∥ = 0 and another
one remains almost linear at finite k̂∥. For D = 10ξ0, the upper
branch, which has an energy gap E = 0.2πTc0, originates from

the hybridization of Majorana cones bound at two surfaces,
while the lower branch reflects the fact that the pair potential
*⊥, which is perpendicular to the surface, is squashed by two
specular surfaces as displayed in Fig. 4. At D = Dcri(0), the
squashed B-phase order parameter continuously turns to
the planar phase with *⊥ = 0 where k̂∥ = 0 corresponds
to the location of the point nodes in the bulk. The planar
phase, the point node of which is normal to the surface, is not
accompanied by the surface bound state and the low-energy
spectrum is linear on k̂∥ in the whole system.

As seen in Fig. 6(d), the perpendicular field opens a
finite energy gap in the surface cone min |E|∼0.15πTc0. For
µnH = 0.0488πTc0 and T = 0.2Tc0, it is seen in Fig. 5 that
the value of Mz(z)/MN at the surface z = 0 is about 1.4.
Then, the effective Zeeman energy at the surface z = 0 is
estimated from Eq. (34) as µnH

eff
z (k̂,r)/(1 + F a

0 )≈0.2πTc0.
At z = 10ξ0, however, it decreases to 0.1πTc0 because of
the suppression of the spin susceptibility Mz(z = 10ξ0)/MN ≈
0.4. Hence, the energy gap min |E|∼0.15πTc0 in Fig. 6(d)
is approximately consistent with the analytic dispersion in
Eq. (16) with the spatially averaged effective Zeeman energy.
In the high magnetic field [Fig. 6(e)], however, the nonlinear
effect of the Zeeman magnetic field causes the pair-breaking
effect as displayed in Fig. 4(b). Therefore, as H increases, the
bulk excitation gap becomes lower in addition to the increase
of the energy gap of surface bound state. This behavior is
confirmed in Fig. 6(e) where the continuous excitation band
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FIG.6.(Coloronline)k̂-resolvedsurfacedensityofstatesN(k̂∥,z=0,E)forD=20ξ0(a),12ξ0(b),and10ξ0(c),whereH=0.
N(k̂∥,z=0,E)forD=20ξ0atµnH=0.0488πTc0(d)and0.0854πTc0(e).(f)and(g)areforD=12ξ0and10ξ0atµnH=0.0488πTc0.In
allthedata,thetemperatureissettobeT=0.2Tc0.

thechiraloperator#combinedwiththetime-reversaloper-
atorT=iσyτ0Kandparticle-holeoperationsC=σxτyK,
whichiscalledthechiralsymmetry{H(k),#}=0.Here,
Kisthecomplex-conjugateoperator.Thechiralsymmetry
allowsonetointroduceathree-dimensionalwindingnumber
w=

∫
dk
24π2ϵµνηTr[#(H−1∂µH)(H−1∂νH)(H−1∂ηH)],which

isevaluatedasw=2fortheBphase.60,62Hence,theB
phaseintheabsenceofamagneticfieldisatopological
phaseandthebulk-edgecorrespondenceimpliesthattheSABS
satisfiesE(k∥)=0atk∥=0,whichisconsistentwiththe
analyticsolutionoftheBdGequationwithintheAndreev
approximation.

Thek̂-resolvedsurfacedensityofstatesforD=20ξ0
withoutamagneticfield,whichisdisplayedinFig.6(a),iscon-
sistentwiththetopologicalconsideration,wherethegapless
pointexistsatk∥=0.However,sincetheSABSislocalized
atthesurfacewithinthecoherencelengthscaleξ0,thewave
functionsatbothtwosurfacesareoverlappedwitheachother
asthethicknessDapproachesξ0.AsdiscussedinRefs.31,
79–82,and88,thehybridizationofwavefunctionslocalized
atz=0andDsplitthegaplessconease−D/ξ.Indeed,asseen
inFigs.6(b)and6(c),thespectralweightatk∥=0weakens
asthethicknessDapproachesDcri(0)=9.6ξ0.Inaddition,
ithasthedoublepeakinthelow-energyregion,wherethe
upperbranchhasadistinctenergygapatk∥=0andanother
oneremainsalmostlinearatfinitek̂∥.ForD=10ξ0,theupper
branch,whichhasanenergygapE=0.2πTc0,originatesfrom

thehybridizationofMajoranaconesboundattwosurfaces,
whilethelowerbranchreflectsthefactthatthepairpotential
*⊥,whichisperpendiculartothesurface,issquashedbytwo
specularsurfacesasdisplayedinFig.4.AtD=Dcri(0),the
squashedB-phaseorderparametercontinuouslyturnsto
theplanarphasewith*⊥=0wherek̂∥=0corresponds
tothelocationofthepointnodesinthebulk.Theplanar
phase,thepointnodeofwhichisnormaltothesurface,isnot
accompaniedbythesurfaceboundstateandthelow-energy
spectrumislinearonk̂∥inthewholesystem.

AsseeninFig.6(d),theperpendicularfieldopensa
finiteenergygapinthesurfaceconemin|E|∼0.15πTc0.For
µnH=0.0488πTc0andT=0.2Tc0,itisseeninFig.5that
thevalueofMz(z)/MNatthesurfacez=0isabout1.4.
Then,theeffectiveZeemanenergyatthesurfacez=0is
estimatedfromEq.(34)asµnH

eff
z(k̂,r)/(1+Fa

0)≈0.2πTc0.
Atz=10ξ0,however,itdecreasesto0.1πTc0becauseof
thesuppressionofthespinsusceptibilityMz(z=10ξ0)/MN≈
0.4.Hence,theenergygapmin|E|∼0.15πTc0inFig.6(d)
isapproximatelyconsistentwiththeanalyticdispersionin
Eq.(16)withthespatiallyaveragedeffectiveZeemanenergy.
Inthehighmagneticfield[Fig.6(e)],however,thenonlinear
effectoftheZeemanmagneticfieldcausesthepair-breaking
effectasdisplayedinFig.4(b).Therefore,asHincreases,the
bulkexcitationgapbecomeslowerinadditiontotheincrease
oftheenergygapofsurfaceboundstate.Thisbehavioris
confirmedinFig.6(e)wherethecontinuousexcitationband

094518-8

TAKESHI MIZUSHIMA PHYSICAL REVIEW B 86, 094518 (2012)

FIG. 6. (Color online) k̂-resolved surface density of states N (k̂∥,z = 0,E) for D = 20ξ0 (a), 12ξ0 (b), and 10ξ0 (c), where H = 0.
N (k̂∥,z = 0,E) for D = 20ξ0 at µnH = 0.0488πTc0 (d) and 0.0854πTc0 (e). (f) and (g) are for D = 12ξ0 and 10ξ0 at µnH = 0.0488πTc0. In
all the data, the temperature is set to be T = 0.2Tc0.

the chiral operator # combined with the time-reversal oper-
ator T = iσyτ 0K and particle-hole operations C = σxτ yK ,
which is called the chiral symmetry {H(k),#} = 0. Here,
K is the complex-conjugate operator. The chiral symmetry
allows one to introduce a three-dimensional winding number
w =

∫ dk
24π2 ϵµνηTr[#(H−1

∂µH)(H−1
∂νH)(H−1

∂ηH)], which
is evaluated as w = 2 for the B phase.60,62 Hence, the B
phase in the absence of a magnetic field is a topological
phase and the bulk-edge correspondence implies that the SABS
satisfies E(k∥) = 0 at k∥ = 0, which is consistent with the
analytic solution of the BdG equation within the Andreev
approximation.

The k̂-resolved surface density of states for D = 20ξ0
without a magnetic field, which is displayed in Fig. 6(a), is con-
sistent with the topological consideration, where the gapless
point exists at k∥ = 0. However, since the SABS is localized
at the surface within the coherence length scale ξ0, the wave
functions at both two surfaces are overlapped with each other
as the thickness D approaches ξ0. As discussed in Refs. 31,
79–82, and 88, the hybridization of wave functions localized
at z = 0 and D split the gapless cone as e−D/ξ

. Indeed, as seen
in Figs. 6(b) and 6(c), the spectral weight at k∥ = 0 weakens
as the thickness D approaches Dcri(0) = 9.6ξ0. In addition,
it has the double peak in the low-energy region, where the
upper branch has a distinct energy gap at k∥ = 0 and another
one remains almost linear at finite k̂∥. For D = 10ξ0, the upper
branch, which has an energy gap E = 0.2πTc0, originates from

the hybridization of Majorana cones bound at two surfaces,
while the lower branch reflects the fact that the pair potential
*⊥, which is perpendicular to the surface, is squashed by two
specular surfaces as displayed in Fig. 4. At D = Dcri(0), the
squashed B-phase order parameter continuously turns to
the planar phase with *⊥ = 0 where k̂∥ = 0 corresponds
to the location of the point nodes in the bulk. The planar
phase, the point node of which is normal to the surface, is not
accompanied by the surface bound state and the low-energy
spectrum is linear on k̂∥ in the whole system.

As seen in Fig. 6(d), the perpendicular field opens a
finite energy gap in the surface cone min |E|∼0.15πTc0. For
µnH = 0.0488πTc0 and T = 0.2Tc0, it is seen in Fig. 5 that
the value of Mz(z)/MN at the surface z = 0 is about 1.4.
Then, the effective Zeeman energy at the surface z = 0 is
estimated from Eq. (34) as µnH eff

z (k̂,r)/(1 + F a
0 )≈0.2πTc0.

At z = 10ξ0, however, it decreases to 0.1πTc0 because of
the suppression of the spin susceptibility Mz(z = 10ξ0)/MN ≈
0.4. Hence, the energy gap min |E|∼0.15πTc0 in Fig. 6(d)
is approximately consistent with the analytic dispersion in
Eq. (16) with the spatially averaged effective Zeeman energy.
In the high magnetic field [Fig. 6(e)], however, the nonlinear
effect of the Zeeman magnetic field causes the pair-breaking
effect as displayed in Fig. 4(b). Therefore, as H increases, the
bulk excitation gap becomes lower in addition to the increase
of the energy gap of surface bound state. This behavior is
confirmed in Fig. 6(e) where the continuous excitation band
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FIG.6.(Coloronline)k̂-resolvedsurfacedensityofstatesN(k̂∥,z=0,E)forD=20ξ0(a),12ξ0(b),and10ξ0(c),whereH=0.
N(k̂∥,z=0,E)forD=20ξ0atµnH=0.0488πTc0(d)and0.0854πTc0(e).(f)and(g)areforD=12ξ0and10ξ0atµnH=0.0488πTc0.In
allthedata,thetemperatureissettobeT=0.2Tc0.

thechiraloperator#combinedwiththetime-reversaloper-
atorT=iσyτ0Kandparticle-holeoperationsC=σxτyK,
whichiscalledthechiralsymmetry{H(k),#}=0.Here,
Kisthecomplex-conjugateoperator.Thechiralsymmetry
allowsonetointroduceathree-dimensionalwindingnumber
w=

∫dk
24π2ϵµνηTr[#(H−1

∂µH)(H−1
∂νH)(H−1

∂ηH)],which
isevaluatedasw=2fortheBphase.60,62Hence,theB
phaseintheabsenceofamagneticfieldisatopological
phaseandthebulk-edgecorrespondenceimpliesthattheSABS
satisfiesE(k∥)=0atk∥=0,whichisconsistentwiththe
analyticsolutionoftheBdGequationwithintheAndreev
approximation.

Thek̂-resolvedsurfacedensityofstatesforD=20ξ0
withoutamagneticfield,whichisdisplayedinFig.6(a),iscon-
sistentwiththetopologicalconsideration,wherethegapless
pointexistsatk∥=0.However,sincetheSABSislocalized
atthesurfacewithinthecoherencelengthscaleξ0,thewave
functionsatbothtwosurfacesareoverlappedwitheachother
asthethicknessDapproachesξ0.AsdiscussedinRefs.31,
79–82,and88,thehybridizationofwavefunctionslocalized
atz=0andDsplitthegaplessconease−D/ξ

.Indeed,asseen
inFigs.6(b)and6(c),thespectralweightatk∥=0weakens
asthethicknessDapproachesDcri(0)=9.6ξ0.Inaddition,
ithasthedoublepeakinthelow-energyregion,wherethe
upperbranchhasadistinctenergygapatk∥=0andanother
oneremainsalmostlinearatfinitek̂∥.ForD=10ξ0,theupper
branch,whichhasanenergygapE=0.2πTc0,originatesfrom

thehybridizationofMajoranaconesboundattwosurfaces,
whilethelowerbranchreflectsthefactthatthepairpotential
*⊥,whichisperpendiculartothesurface,issquashedbytwo
specularsurfacesasdisplayedinFig.4.AtD=Dcri(0),the
squashedB-phaseorderparametercontinuouslyturnsto
theplanarphasewith*⊥=0wherek̂∥=0corresponds
tothelocationofthepointnodesinthebulk.Theplanar
phase,thepointnodeofwhichisnormaltothesurface,isnot
accompaniedbythesurfaceboundstateandthelow-energy
spectrumislinearonk̂∥inthewholesystem.

AsseeninFig.6(d),theperpendicularfieldopensa
finiteenergygapinthesurfaceconemin|E|∼0.15πTc0.For
µnH=0.0488πTc0andT=0.2Tc0,itisseeninFig.5that
thevalueofMz(z)/MNatthesurfacez=0isabout1.4.
Then,theeffectiveZeemanenergyatthesurfacez=0is
estimatedfromEq.(34)asµnHeff

z(k̂,r)/(1+Fa
0)≈0.2πTc0.

Atz=10ξ0,however,itdecreasesto0.1πTc0becauseof
thesuppressionofthespinsusceptibilityMz(z=10ξ0)/MN≈
0.4.Hence,theenergygapmin|E|∼0.15πTc0inFig.6(d)
isapproximatelyconsistentwiththeanalyticdispersionin
Eq.(16)withthespatiallyaveragedeffectiveZeemanenergy.
Inthehighmagneticfield[Fig.6(e)],however,thenonlinear
effectoftheZeemanmagneticfieldcausesthepair-breaking
effectasdisplayedinFig.4(b).Therefore,asHincreases,the
bulkexcitationgapbecomeslowerinadditiontotheincrease
oftheenergygapofsurfaceboundstate.Thisbehavioris
confirmedinFig.6(e)wherethecontinuousexcitationband
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FIG. 6. (Color online) k̂-resolved surface density of states N (k̂∥,z = 0,E) for D = 20ξ0 (a), 12ξ0 (b), and 10ξ0 (c), where H = 0.
N (k̂∥,z = 0,E) for D = 20ξ0 at µnH = 0.0488πTc0 (d) and 0.0854πTc0 (e). (f) and (g) are for D = 12ξ0 and 10ξ0 at µnH = 0.0488πTc0. In
all the data, the temperature is set to be T = 0.2Tc0.

the chiral operator # combined with the time-reversal oper-
ator T = iσyτ 0K and particle-hole operations C = σxτ yK ,
which is called the chiral symmetry {H(k),#} = 0. Here,
K is the complex-conjugate operator. The chiral symmetry
allows one to introduce a three-dimensional winding number
w =

∫
dk

24π2 ϵµνηTr[#(H−1∂µH)(H−1∂νH)(H−1∂ηH)], which
is evaluated as w = 2 for the B phase.60,62 Hence, the B
phase in the absence of a magnetic field is a topological
phase and the bulk-edge correspondence implies that the SABS
satisfies E(k∥) = 0 at k∥ = 0, which is consistent with the
analytic solution of the BdG equation within the Andreev
approximation.

The k̂-resolved surface density of states for D = 20ξ0
without a magnetic field, which is displayed in Fig. 6(a), is con-
sistent with the topological consideration, where the gapless
point exists at k∥ = 0. However, since the SABS is localized
at the surface within the coherence length scale ξ0, the wave
functions at both two surfaces are overlapped with each other
as the thickness D approaches ξ0. As discussed in Refs. 31,
79–82, and 88, the hybridization of wave functions localized
at z = 0 and D split the gapless cone as e−D/ξ . Indeed, as seen
in Figs. 6(b) and 6(c), the spectral weight at k∥ = 0 weakens
as the thickness D approaches Dcri(0) = 9.6ξ0. In addition,
it has the double peak in the low-energy region, where the
upper branch has a distinct energy gap at k∥ = 0 and another
one remains almost linear at finite k̂∥. For D = 10ξ0, the upper
branch, which has an energy gap E = 0.2πTc0, originates from

the hybridization of Majorana cones bound at two surfaces,
while the lower branch reflects the fact that the pair potential
*⊥, which is perpendicular to the surface, is squashed by two
specular surfaces as displayed in Fig. 4. At D = Dcri(0), the
squashed B-phase order parameter continuously turns to
the planar phase with *⊥ = 0 where k̂∥ = 0 corresponds
to the location of the point nodes in the bulk. The planar
phase, the point node of which is normal to the surface, is not
accompanied by the surface bound state and the low-energy
spectrum is linear on k̂∥ in the whole system.

As seen in Fig. 6(d), the perpendicular field opens a
finite energy gap in the surface cone min |E|∼0.15πTc0. For
µnH = 0.0488πTc0 and T = 0.2Tc0, it is seen in Fig. 5 that
the value of Mz(z)/MN at the surface z = 0 is about 1.4.
Then, the effective Zeeman energy at the surface z = 0 is
estimated from Eq. (34) as µnH

eff
z (k̂,r)/(1 + F a

0 )≈0.2πTc0.
At z = 10ξ0, however, it decreases to 0.1πTc0 because of
the suppression of the spin susceptibility Mz(z = 10ξ0)/MN ≈
0.4. Hence, the energy gap min |E|∼0.15πTc0 in Fig. 6(d)
is approximately consistent with the analytic dispersion in
Eq. (16) with the spatially averaged effective Zeeman energy.
In the high magnetic field [Fig. 6(e)], however, the nonlinear
effect of the Zeeman magnetic field causes the pair-breaking
effect as displayed in Fig. 4(b). Therefore, as H increases, the
bulk excitation gap becomes lower in addition to the increase
of the energy gap of surface bound state. This behavior is
confirmed in Fig. 6(e) where the continuous excitation band
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FIG.6.(Coloronline)k̂-resolvedsurfacedensityofstatesN(k̂∥,z=0,E)forD=20ξ0(a),12ξ0(b),and10ξ0(c),whereH=0.
N(k̂∥,z=0,E)forD=20ξ0atµnH=0.0488πTc0(d)and0.0854πTc0(e).(f)and(g)areforD=12ξ0and10ξ0atµnH=0.0488πTc0.In
allthedata,thetemperatureissettobeT=0.2Tc0.

thechiraloperator#combinedwiththetime-reversaloper-
atorT=iσyτ0Kandparticle-holeoperationsC=σxτyK,
whichiscalledthechiralsymmetry{H(k),#}=0.Here,
Kisthecomplex-conjugateoperator.Thechiralsymmetry
allowsonetointroduceathree-dimensionalwindingnumber
w=

∫
dk
24π2ϵµνηTr[#(H−1∂µH)(H−1∂νH)(H−1∂ηH)],which

isevaluatedasw=2fortheBphase.60,62Hence,theB
phaseintheabsenceofamagneticfieldisatopological
phaseandthebulk-edgecorrespondenceimpliesthattheSABS
satisfiesE(k∥)=0atk∥=0,whichisconsistentwiththe
analyticsolutionoftheBdGequationwithintheAndreev
approximation.

Thek̂-resolvedsurfacedensityofstatesforD=20ξ0
withoutamagneticfield,whichisdisplayedinFig.6(a),iscon-
sistentwiththetopologicalconsideration,wherethegapless
pointexistsatk∥=0.However,sincetheSABSislocalized
atthesurfacewithinthecoherencelengthscaleξ0,thewave
functionsatbothtwosurfacesareoverlappedwitheachother
asthethicknessDapproachesξ0.AsdiscussedinRefs.31,
79–82,and88,thehybridizationofwavefunctionslocalized
atz=0andDsplitthegaplessconease−D/ξ.Indeed,asseen
inFigs.6(b)and6(c),thespectralweightatk∥=0weakens
asthethicknessDapproachesDcri(0)=9.6ξ0.Inaddition,
ithasthedoublepeakinthelow-energyregion,wherethe
upperbranchhasadistinctenergygapatk∥=0andanother
oneremainsalmostlinearatfinitek̂∥.ForD=10ξ0,theupper
branch,whichhasanenergygapE=0.2πTc0,originatesfrom

thehybridizationofMajoranaconesboundattwosurfaces,
whilethelowerbranchreflectsthefactthatthepairpotential
*⊥,whichisperpendiculartothesurface,issquashedbytwo
specularsurfacesasdisplayedinFig.4.AtD=Dcri(0),the
squashedB-phaseorderparametercontinuouslyturnsto
theplanarphasewith*⊥=0wherek̂∥=0corresponds
tothelocationofthepointnodesinthebulk.Theplanar
phase,thepointnodeofwhichisnormaltothesurface,isnot
accompaniedbythesurfaceboundstateandthelow-energy
spectrumislinearonk̂∥inthewholesystem.

AsseeninFig.6(d),theperpendicularfieldopensa
finiteenergygapinthesurfaceconemin|E|∼0.15πTc0.For
µnH=0.0488πTc0andT=0.2Tc0,itisseeninFig.5that
thevalueofMz(z)/MNatthesurfacez=0isabout1.4.
Then,theeffectiveZeemanenergyatthesurfacez=0is
estimatedfromEq.(34)asµnH

eff
z(k̂,r)/(1+Fa

0)≈0.2πTc0.
Atz=10ξ0,however,itdecreasesto0.1πTc0becauseof
thesuppressionofthespinsusceptibilityMz(z=10ξ0)/MN≈
0.4.Hence,theenergygapmin|E|∼0.15πTc0inFig.6(d)
isapproximatelyconsistentwiththeanalyticdispersionin
Eq.(16)withthespatiallyaveragedeffectiveZeemanenergy.
Inthehighmagneticfield[Fig.6(e)],however,thenonlinear
effectoftheZeemanmagneticfieldcausesthepair-breaking
effectasdisplayedinFig.4(b).Therefore,asHincreases,the
bulkexcitationgapbecomeslowerinadditiontotheincrease
oftheenergygapofsurfaceboundstate.Thisbehavioris
confirmedinFig.6(e)wherethecontinuousexcitationband
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FIG. 6. (Color online) k̂-resolved surface density of states N (k̂∥,z = 0,E) for D = 20ξ0 (a), 12ξ0 (b), and 10ξ0 (c), where H = 0.
N (k̂∥,z = 0,E) for D = 20ξ0 at µnH = 0.0488πTc0 (d) and 0.0854πTc0 (e). (f) and (g) are for D = 12ξ0 and 10ξ0 at µnH = 0.0488πTc0. In
all the data, the temperature is set to be T = 0.2Tc0.

the chiral operator # combined with the time-reversal oper-
ator T = iσyτ 0K and particle-hole operations C = σxτ yK ,
which is called the chiral symmetry {H(k),#} = 0. Here,
K is the complex-conjugate operator. The chiral symmetry
allows one to introduce a three-dimensional winding number
w =

∫ dk
24π2 ϵµνηTr[#(H−1

∂µH)(H−1
∂νH)(H−1

∂ηH)], which
is evaluated as w = 2 for the B phase.60,62 Hence, the B
phase in the absence of a magnetic field is a topological
phase and the bulk-edge correspondence implies that the SABS
satisfies E(k∥) = 0 at k∥ = 0, which is consistent with the
analytic solution of the BdG equation within the Andreev
approximation.

The k̂-resolved surface density of states for D = 20ξ0
without a magnetic field, which is displayed in Fig. 6(a), is con-
sistent with the topological consideration, where the gapless
point exists at k∥ = 0. However, since the SABS is localized
at the surface within the coherence length scale ξ0, the wave
functions at both two surfaces are overlapped with each other
as the thickness D approaches ξ0. As discussed in Refs. 31,
79–82, and 88, the hybridization of wave functions localized
at z = 0 and D split the gapless cone as e−D/ξ

. Indeed, as seen
in Figs. 6(b) and 6(c), the spectral weight at k∥ = 0 weakens
as the thickness D approaches Dcri(0) = 9.6ξ0. In addition,
it has the double peak in the low-energy region, where the
upper branch has a distinct energy gap at k∥ = 0 and another
one remains almost linear at finite k̂∥. For D = 10ξ0, the upper
branch, which has an energy gap E = 0.2πTc0, originates from

the hybridization of Majorana cones bound at two surfaces,
while the lower branch reflects the fact that the pair potential
*⊥, which is perpendicular to the surface, is squashed by two
specular surfaces as displayed in Fig. 4. At D = Dcri(0), the
squashed B-phase order parameter continuously turns to
the planar phase with *⊥ = 0 where k̂∥ = 0 corresponds
to the location of the point nodes in the bulk. The planar
phase, the point node of which is normal to the surface, is not
accompanied by the surface bound state and the low-energy
spectrum is linear on k̂∥ in the whole system.

As seen in Fig. 6(d), the perpendicular field opens a
finite energy gap in the surface cone min |E|∼0.15πTc0. For
µnH = 0.0488πTc0 and T = 0.2Tc0, it is seen in Fig. 5 that
the value of Mz(z)/MN at the surface z = 0 is about 1.4.
Then, the effective Zeeman energy at the surface z = 0 is
estimated from Eq. (34) as µnH eff

z (k̂,r)/(1 + F a
0 )≈0.2πTc0.

At z = 10ξ0, however, it decreases to 0.1πTc0 because of
the suppression of the spin susceptibility Mz(z = 10ξ0)/MN ≈
0.4. Hence, the energy gap min |E|∼0.15πTc0 in Fig. 6(d)
is approximately consistent with the analytic dispersion in
Eq. (16) with the spatially averaged effective Zeeman energy.
In the high magnetic field [Fig. 6(e)], however, the nonlinear
effect of the Zeeman magnetic field causes the pair-breaking
effect as displayed in Fig. 4(b). Therefore, as H increases, the
bulk excitation gap becomes lower in addition to the increase
of the energy gap of surface bound state. This behavior is
confirmed in Fig. 6(e) where the continuous excitation band
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FIG.6.(Coloronline)k̂-resolvedsurfacedensityofstatesN(k̂∥,z=0,E)forD=20ξ0(a),12ξ0(b),and10ξ0(c),whereH=0.
N(k̂∥,z=0,E)forD=20ξ0atµnH=0.0488πTc0(d)and0.0854πTc0(e).(f)and(g)areforD=12ξ0and10ξ0atµnH=0.0488πTc0.In
allthedata,thetemperatureissettobeT=0.2Tc0.

thechiraloperator#combinedwiththetime-reversaloper-
atorT=iσyτ0Kandparticle-holeoperationsC=σxτyK,
whichiscalledthechiralsymmetry{H(k),#}=0.Here,
Kisthecomplex-conjugateoperator.Thechiralsymmetry
allowsonetointroduceathree-dimensionalwindingnumber
w=

∫dk
24π2ϵµνηTr[#(H−1

∂µH)(H−1
∂νH)(H−1

∂ηH)],which
isevaluatedasw=2fortheBphase.60,62Hence,theB
phaseintheabsenceofamagneticfieldisatopological
phaseandthebulk-edgecorrespondenceimpliesthattheSABS
satisfiesE(k∥)=0atk∥=0,whichisconsistentwiththe
analyticsolutionoftheBdGequationwithintheAndreev
approximation.

Thek̂-resolvedsurfacedensityofstatesforD=20ξ0
withoutamagneticfield,whichisdisplayedinFig.6(a),iscon-
sistentwiththetopologicalconsideration,wherethegapless
pointexistsatk∥=0.However,sincetheSABSislocalized
atthesurfacewithinthecoherencelengthscaleξ0,thewave
functionsatbothtwosurfacesareoverlappedwitheachother
asthethicknessDapproachesξ0.AsdiscussedinRefs.31,
79–82,and88,thehybridizationofwavefunctionslocalized
atz=0andDsplitthegaplessconease−D/ξ

.Indeed,asseen
inFigs.6(b)and6(c),thespectralweightatk∥=0weakens
asthethicknessDapproachesDcri(0)=9.6ξ0.Inaddition,
ithasthedoublepeakinthelow-energyregion,wherethe
upperbranchhasadistinctenergygapatk∥=0andanother
oneremainsalmostlinearatfinitek̂∥.ForD=10ξ0,theupper
branch,whichhasanenergygapE=0.2πTc0,originatesfrom

thehybridizationofMajoranaconesboundattwosurfaces,
whilethelowerbranchreflectsthefactthatthepairpotential
*⊥,whichisperpendiculartothesurface,issquashedbytwo
specularsurfacesasdisplayedinFig.4.AtD=Dcri(0),the
squashedB-phaseorderparametercontinuouslyturnsto
theplanarphasewith*⊥=0wherek̂∥=0corresponds
tothelocationofthepointnodesinthebulk.Theplanar
phase,thepointnodeofwhichisnormaltothesurface,isnot
accompaniedbythesurfaceboundstateandthelow-energy
spectrumislinearonk̂∥inthewholesystem.

AsseeninFig.6(d),theperpendicularfieldopensa
finiteenergygapinthesurfaceconemin|E|∼0.15πTc0.For
µnH=0.0488πTc0andT=0.2Tc0,itisseeninFig.5that
thevalueofMz(z)/MNatthesurfacez=0isabout1.4.
Then,theeffectiveZeemanenergyatthesurfacez=0is
estimatedfromEq.(34)asµnHeff

z(k̂,r)/(1+Fa
0)≈0.2πTc0.

Atz=10ξ0,however,itdecreasesto0.1πTc0becauseof
thesuppressionofthespinsusceptibilityMz(z=10ξ0)/MN≈
0.4.Hence,theenergygapmin|E|∼0.15πTc0inFig.6(d)
isapproximatelyconsistentwiththeanalyticdispersionin
Eq.(16)withthespatiallyaveragedeffectiveZeemanenergy.
Inthehighmagneticfield[Fig.6(e)],however,thenonlinear
effectoftheZeemanmagneticfieldcausesthepair-breaking
effectasdisplayedinFig.4(b).Therefore,asHincreases,the
bulkexcitationgapbecomeslowerinadditiontotheincrease
oftheenergygapofsurfaceboundstate.Thisbehavioris
confirmedinFig.6(e)wherethecontinuousexcitationband

094518-8



SSB-induced Mass Acquisition of Majorana Fermions

Surface Majorana fermions

Lsurf =
1

2
 ̄M�

µ@µ M +M  ̄M M effective mass associated w/ OP

symmetry breaking field
“effective mass”

P3 symmetry in the presence of a parallel field

TM, M. Sato, and K. Machida, PRL 109, 165301 (2012)

TPT w/o closing bulk gap



IDENTIFICATION OF p-WAVE SUPERCONDUCTORS 5795

0.8 - Ti

&(Tj)

-0.S
NT(e, (t))

-0.6 N(0)

FIG. 6. Dependence op angle of incidence of the position of the bound state, coo(8), and its ~eight, NT(~o, g)/jV(0), for

are displayed in Fig. 5. Incidence at angles between
zero (normal) and = 1.3 rad yields two particularly
conspicuous features. First is the presence of a single
bound-state 5 function peak of significant weight at
energies cus less than Ab„ik( T). And second, the gen-
tle curve for ~ & 5 betrays no square-root singularity
that would be typical of the s-wave case. This curve
overshoots the bulk value in its climb and then re-
laxes to it over an energy width of a few 4.
The energy of the bound state increases with angle

until at a value 8 =1.3 rad the spike merges with the
curve above and fades away. For angles nearing this
merging value (ever more grazing) one observes, as
well, that the "overshoot" mentioned above is
developing into a real peak at an energy above
=1.14. This peak ~ould be the analog of that
observed in s-wave pairing though no singular
behavior is observed here. Figure 6 details the posi-
tion of the bound-state peak and its ~eight. The

strong angular dependence manifested here is a direct
consequence of the anisotropic nature of the gap on
the surface. At non-normal incidence the perpendic-
ular component of 6 is "perceived" more strongly
than the parallel ones. Since Ai has been greatly di-
minished excitations are possible at energies below h.
Kith increasing angle the parallel components play an
ever more important role. Near parallel incidence
they are dominant, as evidenced by the appearance of
an s-wave-like peak and its position above hb [k (ln
response to the enhancement of hei on the wall). The
model calculations substantiate this picture in detail.
An actual experiment would presumably measure

n (k, cu) folded against some other quantity. Were
the experiment especially sensitive to particles collid-
ing at near-normal incidence, where the discrepancy
with s-wave pairing is particularly apparent, one
might hope that p-wave pairing could be clearly
marked.
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Majorara/Dirac fermion in SCs
= a spacial kind of Andreev bound states

Buchholtz and Zwicknagl, 1981

研究背景：トポロジカル状態Majorana Fermions: A Special Kind of Andreev Bound States

Experimental observations of surface Andreev bound states in 3He-B

• Anomalous attenuation of transverse wave:

• Heat capacity measurement:

this contribution, plus the calorimeter background, from
our measurements and do not discuss them further.

The samples were cooled by adiabatic demagnetization
of PrNi5, and the calorimeter was isolated from this refrig-
erator with a superconducting cadmium heat switch. The
temperature of the sample cell was measured every 30 sec-
onds using a SQUID based mutual inductance bridge for
measurement of the magnetic susceptibility of a paramag-
netic salt, La diluted CMN. Once the cadmium supercon-
ducting heat switch was open, the sample cell warmed at a
rate _T from an ambient heat leak _Q, typically 0.1 nW.
Occasionally, we applied external heat pulses to check
consistency and to calibrate this heat leak. Then the heat
capacity was determined as

C ! dQ
dT
! dQ

dt
dt
dT
!

_Q
_T
: (1)

The advantage of using slow-warming traces over the
adiabatic heat pulse method is higher resolution. A heat
pulse typically causes a temperature jump of 50–100 !K.
In a slow warm-up trace, the temperature change for each
point is less than 1 !K, and temperature disequilibrium
within the 3He and between 3He and the thermometer is
estimated to be less than 2 !K. However, such a small
signal inherently results in poor signal to noise in deter-
mining _T. This can be overcome by averaging adjacent
data points provided that the warm-up rate is adequately
slow and stable. We used averaging to smooth the data,
thereby decreasing our temperature resolution to 10 !K.
All of our slow-warming data are reproduced by our pulsed
heat capacity measurements, albeit with lower resolution
in temperature.

On cooling through Tc, we observe a sharp, resolution-
limited increase in the heat capacity, shown in Fig. 1,
followed by a smooth increase and then a decrease over a

range of temperature. For reference, we directly compare
our results in this figure with the heat capacity measure-
ments of bulk superfluid 3He performed by Greywall [20].
The central question we address is what is the origin of the
difference between these results. For bulk 3He, we know
that the jump in heat capacity at Tc, !Cs"Tc#, corresponds
to that of a BCS pairing system, enhanced by strong
coupling [23]. The heat capacity then falls rapidly, ap-
proximately proportional to T3. Consistently, in our data
we find that there is a sharp increase in the heat capacity
over a small range of temperature of 10 !K. It is natural to
identify this jump with superfluid transition of the bulk 3He
in our calorimeter, and Tc is defined as the midpoint of this
transition region. In Fig. 2, we show the difference between
the measured heat capacity and that of the bulk superfluid
for the same volume, "C ! C$ Cs as a function of tem-
perature at temperatures outside of the bulk 3He transition
region. The magnitude of the discontinuity in "C at Tc
corresponds to the amount of 3He in the silver heat ex-
changer given by the volume ratio V1="V1 % V2# !
"C"Tc#=!Cs"Tc# and is plotted in Fig. 3. The apparent
volume V1, deduced in this way, is 0:40& 0:02 cm3. As
expected, it does not vary with pressure. The magnitude of
the apparent volume is qualitatively consistent with an
independent measurement, V1 ! 0:56& 0:01 cm3. Apart
from experimental uncertainty, this discrepancy reflects
difficulty in making an accurate extrapolation to Tc, which
we discuss in greater detail below.

Below Tc, the behavior of the heat capacity must be
attributed to the combination of the surface dominated heat
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FIG. 1 (color online). Heat capacity of both bulk and confined
3He obtained from a slow warm-up trace at 11.31 bar. The solid
trace is the heat capacity expected for bulk 3He determined from
Greywall’s measurements [20]. The data points are our mea-
surements.
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FIG. 2 (color online). "C ! "C$ Cs# is the difference be-
tween the measured heat capacity C and that of the bulk
superfluid Cs as a function of temperature at 11.31 bar. The
inset is a sketch of the volume distribution in the calorimeter. V1

is the fluid inside the silver heat exchanger and V2 the volume
outside. In our model, Andreev bound states reside within a
distance #$"T; P# from the surface in the volume V1; the rest of
the 3He in V1 and all of that in V2 is taken to be bulk superfluid.
The model calculation, given by the smooth curve with a
constant scale factor # ! 0:48& 0:08, agrees well with the data.
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3He as a New Paradigm of Topological Quantum Phenomena

Surface Fermi arc terminated to “Weyl points”
Weyl fermions & chiral anomaly

ABM: Weyl superfluid

Point nodes protected by Chern # w/o extra symmetry
G. E. Volovik, JETP Lett. 43, 551 (1986)

TM, Y. Tsusumi, T. Kawakami, M. Sato, M. Ichioka, K. Machida, arXiv:1508.00787

Planar state

Symmetry-protected surface Fermi arc
Anisotropic magnetic response

Point nodes protected by an extra symmetry
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3He as a New Paradigm of Topological Quantum Phenomena

ABM as a Weyl superfluid

heavy fermion superconductor UPt3

prominent among materials that promise to provide the
answers. Although it is almost certainly not unique [for
example, there is now almost a consensus in favor of
triplet superconductivity in UPt3 ,6 evidence for its exis-
tence in (TMTSF)2PF6 ,7 UGe2 ,8 and URhGe,9 and the
likelihood that it is favored in ZrZn2 (footnote 10) and
possibly Fe (footnote 11)], we hope to show that
Sr2RuO4 offers perhaps the best opportunity for under-
standing a triplet superconducting state in detail.

E. The discovery of superconductivity in Sr2RuO4 and the
suggestion of triplet pairing

The discovery by Bednorz and Müller (1986) of high-
temperature (high-Tc) superconductivity in copper ox-
ides (cuprates) had an enormous impact on almost all
aspects of research in superconductivity. In terms of ma-
terial physics and crystal structure, it soon became clear
that the essential requirement for a high Tc is the exis-
tence of quasi-two-dimensional electronic states arising
from the planar CuO2 network of the layered perovskite
structure. Since many transition elements in addition to
copper are known to form perovskite oxides, including
their layered variants, it was natural to look for super-
conductivity in metals possessing the layered perovskite
structure without copper.

It is interesting to note that it took eight years until
the first such noncuprate superconductor was finally
found in a ruthenium oxide (Maeno et al., 1994). Why
had this superconductivity been overlooked for such a
long time despite the worldwide search? We believe that
there are several reasons. First, the superconducting
transition temperature is much lower than that of the
cuprates. Second, there are a few important material dif-
ferences between the high-Tc cuprates and Sr2RuO4 , in
spite of their close structural similarity (Fig. 1). The tet-
ravalent ruthenium with a 4d4 configuration in Sr2RuO4
has an even number of electrons, whereas divalent cop-
per in the mother compounds of high-Tc superconduct-
ors is in the 3d9 (spin S! 1

2 ) configuration with an odd
number of electrons. Since strong quantum fluctuations
arising from the spin-1

2 configuration were theoretically
emphasized as a prerequisite for high-Tc superconduc-
tivity, it is natural that oxides based on an even number
of electrons for the transition metal did not attract the
attention of many researchers. Furthermore, the mother
compounds of high-Tc cuprates are Mott insulators, and
they usually need to be doped to become metallic and

exhibit superconductivity. In contrast, stoichiometric
Sr2RuO4 , first reported by Randall and Ward (1959),
was known to be a conductor in the absence of chemical
doping (Callaghan et al., 1966).

For these reasons, the search for superconductivity in
the ruthenates by Maeno and Bednorz at IBM’s Zurich
laboratory in 1988–1989 initially concentrated on triva-
lent ruthenates with the 4d5 (S! 1

2 ) configuration. Later,
Lichtenberg joined the group, grew good-quality single
crystals of Sr2RuO4 , and investigated its transport prop-
erties down to 4.2 K (Lichtenberg et al., 1992). At Hi-
roshima University, continued searches for layered per-
ovskite superconductors in the group of Fujita and
Maeno concentrated mainly on ruthenium and rhodium
oxides based on the spin-1

2 configuration. In the spring of
1994, a first-year graduate student in the group, H.
Hashimoto, found a new transition below 2 K in poly-
crystalline Sr2RuO4 , in a measurement of its specific
heat (Fig. 2). The ac susceptibility as well as resistivity
also showed clear evidence for a transition suggestive

6For a review see, for example, Brison et al. (2000), and ref-
erences therein.

7For example, see Chashechkina et al. (2001); Lee et al.
(2002), and references therein.

8See Saxena et al. (2000).
9See Aoki et al. (2001).
10See Pfleiderer et al. (2001).
11See Shimizu et al. (2001); in this case the high-pressure

phase from which the superconductivity forms may not, in fact,
have dominantly ferromagnetic correlations.

FIG. 1. The layered perovskite structure common to ruthenate
and cuprate superconductors.

FIG. 2. The first evidence for a transition below 2 K in
Sr2RuO4 in the measurement of specific heat on a polycrystal-
line sample (solid circles). Note how small the feature is in
comparison to the data that can now be obtained from high-
quality single crystals (open circles).

661A. P. Mackenzie and Y. Maeno: Superconductivity of Sr2RuO4 and the physics of spin-triplet pairing

Rev. Mod. Phys., Vol. 75, No. 2, April 2003
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Bi2Se3 is one of a handful of known topological insulators. Here we show that copper intercalation in

the van der Waals gaps between the Bi2Se3 layers, yielding an electron concentration of!2" 1020 cm#3,

results in superconductivity at 3.8 K in CuxBi2Se3 for 0:12 $ x $ 0:15. This demonstrates that Cooper

pairing is possible in Bi2Se3 at accessible temperatures, with implications for studying the physics of

topological insulators and potential devices.

DOI: 10.1103/PhysRevLett.104.057001 PACS numbers: 74.70.#b, 73.20.At, 74.10.+v, 74.90.+n

Topological insulators display conducting surface states
that are a distinct electronic phase of matter, with photon-
like energy dispersions, stabilized even at high tempera-
tures due to the topology of the system [see, e.g., [1–3]].
Theoretical interest in topological surface states is high,
stimulated by their observation in HgTe-based quantum
wells [4,5] and the prediction [6,7] and then observation
[8] that they are present on the surface of bulk Bi-Sb alloy
crystals. Topological surface states have recently been
observed in a second bulk materials class, Bi2Se3 and
Bi2Te3 [9,10]. Several schemes have been proposed to
search for novel electronic excitations of the surface states,
particularly Majorana fermions [11], which are potentially
useful for topological quantum computing [e.g., [12–18]].
All the proposed schemes rely on the opening of an energy
gap in the surface state spectrum by inducing supercon-
ductivity through the proximity effect. However, Cooper
pairing of electrons at accessible temperatures in a topo-
logical insulator has never been reported. Here we show
that the topological insulator Bi2Se3 can be made into a
superconductor by Cu intercalation. This implies that
Cooper pairing can occur in Bi2Se3 up to about 4 K.
Because of their intrinsic chemical and structural compati-
bility, electronic junctions between Bi2Se3 and CuxBi2Se3
are feasible. Such junctions are promising for investigating
novel concepts in physics as well as for new types of
electronic devices.

Bi2Se3 [19] is made from double layers of BiSe6 octa-
hedra [Fig. 1(a)]. The resulting Se-Bi-Se-Bi-Se five layer
sandwich is only weakly van der Waals bonded to the next
sandwich, through the outer Se layers, yielding a material
with excellent basal plane cleavage and excellent quality
layered crystals both in the bulk and in thin films [19–21].
This layered nature results in the fact that both substitu-
tional and intercalative chemical manipulations are pos-
sible. The dopant employed here, Cu, may either
intercalate between the Se layers, as it does in CuxTiSe2
[22], or randomly substitute for Bi within the host struc-

ture, as has been reported for the NaCl structure compound
CuBiSe2 [23]. This dual nature was recognized early on in
Cu doping studies of Bi2Se3 [24,25], where substantial
differences in the electrical properties of Cu-substituted
Bi2#xCuxSe3 and Cu-intercalatedCuxBi2Se3 were reported
and it was concluded that Cu acts as an ambipolar dopant.

FIG. 1 (color online). (a) The crystal structure of Cu interca-
lated Bi2Se3. (b) X-ray diffraction scan showing the 00L reflec-
tions from the basal plane of a cleaved Cu0:12Bi2Se3 single
crystal with Si powder diffraction as a calibration. (c) The
h110i zone axis electron diffraction pattern for Cu0:12Bi2Se3.
(d) High resolution electron microscope image of a representa-
tive area of Cu0:12Bi2Se3, showing the regular array of layers
(labeled by atom type) and the absence of stacking defects on the
nanoscale.
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ABM as a Weyl superfluid

heavy fermion superconductor UPt3

E1u scenario
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anisotropic magnetic response

Fermi arc protected by Weyl points ⇒ tunneling spectroscopy
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3P2 superfluid in neutron stars
or more exotic phase (color SC)
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on glitches and the origin of 
a huge magnetic field
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Fig. 1. (color online) Phase diagram of the superfluid 3He confined in a slab geometry under a magnetic field parallel to the surface (center), where the
temperature is set to be T = 0.4Tc0 and D and H are the thickness of the slab and the magnitude of an applied field, respectively. The thin (thick) curves is the
first (second) order transition line.

tum liquid down to zero temperatures and the normal state
maintains huge continuous rotation symmetries in spin and
coordinate spaces, independently. (ii) The bulk superfluidity
of 3He has been well established as spin-triplet odd-parity
pairing.31, 32 The A phase that appears in the high temperature
and pressure region is identified as the chiral p-wave pairing
with spontaneously broken time-reversal symmetry,33, 34 and
the B phase is known as a fully gapped pairing with time-
reversal symmetry35 (see Figs. 1 and 9). The superfluid 3He
having huge order parameter manifolds has fascinated many
physicists not only as a prototype of unconventional super-
conductors but also as a treasure box of topology of order
parameter manifolds, such as textures, Nambu-Goldstone and
Higgs modes, and topological excitations.16, 32, 36–38 (iii) Re-
cent development on nanofabrication techniques enables one
to confine the quantum liquid to a variety of geometries, such
as a single slab and narrow cylinders with a thickness/radius
comparable to the superfluid coherence length.39–45 In these
geometries, the planar, polar, and crystalline ordered phases
become energetically competitive to the A and B phases.46–50

(iv) The surface density of states peculiar to gapless quasi-
particle states was already observed in specific heat measure-
ments and high precision spectroscopy based on transverse
acoustics with well controlled surface conditions.51–57

Motivated by puzzling issues on the intrinsic angular mo-
mentum paradox, the investigations on the nontrivial momen-
tum space topology were first initiated in 3He by Stone et
al.58, 59 and Volovik,60, 61 independently. In connection with an
analogue of a two-dimensional 3He-A thin film to the quan-
tum Hall effect and gauge theories, Volovik60, 62–64 futher un-
covered the remarkable fact that the pairwise point nodes on
the Fermi surface are protected by the first Chern number as a
“magnetic” monopole, and low-energy quasiparticles near the
Fermi points behave as chiral Weyl fermions. The superfluid
3He-A thin film is now widely recognized as a prototype of

Weyl superconductors,16, 65–70 which is accompanied by zero
energy flatband terminated to pairwise Weyl points.71–75

As mentioned above, recent development on topological
classifications clarified the distinct topological structures be-
tween the A and B phases; The 3He-A thin film is a Weyl su-
perconductor characterized by the first Chern number, while
the bulk B phase possesses topological superfluidity pro-
tected by the time-reversal symmetry.8, 12–15 Furthermore, it
has been proposed that the marriage of the superfluid 3He
with nanofabrication techniques gives rise to a diversity of
topological phenomena intertwined with symmetry.49, 75, 76

As displayed in Fig. 1, for instance, a confined 3He un-
der a magnetic field has nontrivial phase diagram composed
of a variety of topological and nontopological phases: The
symmetry-protected topological phase BI, symmetry-broken
non-topological phase BII, Wely superfluid A phase, the pla-
nar phase, and crystalline ordered “stripe” phase. The critical
field H∗ in Fig. 1 is identified as the topological phase transi-
tion concomitant with spontaneous symmetry breaking24 and
is accompanied by noteworthy topological quantum critical
phenomena, such as emergent supersymmetry.77 Contrary to
the A phase, the pairwise point nodes in the planar phase are
protected by a mirror reflection symmetry and the zero energy
flatband emergent in the surface exhibits anisotropic magnetic
responses.27, 76, 78 It is also interesting to note that apart from
the topological aspect of 3He, there have been a long history
of investigations on gapless quasiparticles in the direction of
Andreev bound states.79, 80 Nowadays Majorana fermions are
identified as a special kind of surface Andreev bound states in
the context of topological superconductors nowadays.5

This article gives a comprehensive review of recent
progress on symmetry protected topological superfluids and
topological crystalline superconductors with a special focus
on 3He. In Sec. 2, we start with the minimal model that cap-
tures an essence of the topological aspect of superfluids and

2

Challenges: “Topological” Quantum Critical Point
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Figure S3. Experimental suggestion to realize SUSY
critical point in He3-B films.(a) Mean-field phase
diagram for a thin film of superfluid He3-B as a magnetic
field parallel to the surface. The n̂ vector (green arrow) is
oriented along the vertical direction, perpendicular to the
surface. A weak field applied in plane does not open a gap
to the Majorana fermions on the boundary, since a residual
symmetry, composed of 180 degree rotations and time
reversal is present, that preserves the gapless surface state.
However, on increasing the field above Hc ⇡ 30Gauss, the n̂
vector spontaneously tilts into the plane leading to a gap on
the surface and hence a compensating energy gain. (b) For
this transition to occur spontaneously on the two surfaces
independently, one needs to consider films much thicker than
the n̂ healing length. Then, in the bulk the n̂ vector is
pinned along the field. In principle this breaks symmetry,
but since this is sufficiently far away from the surface is
expected to have a negligible effect.

��[H · ˆn]2. Therefore the ˆn vector is aligned along the
±x direction in the bulk. It evolves from being along
z direction at the surface to being entirely along ±x in
the bulk. In principle, this breaks the symmetry and
produces a gap on the surface. However, the symmetry
breaking effect at the surface is expected to be very small
since the healing length of the ˆn order parameter is much
longer than the coherence length.

V. MAJORANA SURFACE AND ZERO MODES
AS GOLDSTINO MODES

In this section we show that the surface Majorana
modes in a TSC are the Goldstino modes of the SUSY

breaking. We also extend this insight to zero modes lo-
calized on the solitons in TSC.

A. Surface Modes as Goldstinos

The flow from the SUSY critical point to the phase
with gapless surface Majorana modes in both two and
three dimensions is generated by providing the mass to
the boson �. This is precisely equivalent to adding a term
proportional to the superfield � to the superpotential in
Eq.S31:

S
SUSY

= S
kin

+

Z
d3r d2✓

⇣
i
g

3

�

3
+ i��

⌘
(S52)

= S
kin

+ g��̄�+ ig�2F + i�F (S53)

where � > 0. Solving for F yields F =

�i

2

�
g�2

+ �
�
,

and thus the term linear in � provides a mass of
p
2�g

to the scalar �.
The crucial point to note is that even though the above

action is supersymmetric, its ground state, � = 0, has
a non-zero energy E

g

= �2/2. Therefore, the ground
state breaks SUSY spontaneously (21). The central con-
sequence of spontaneously broken SUSY is the generation
of a ‘Goldstino fermion’, akin to the generation of Gold-
stone mode upon breaking of conventional (‘bosonic’)
symmetry. Here, the Goldstino mode precisely corre-
sponds to the free Majorana fermion � at the boundary
of a time-reversal invariant TSC, since a positive � gaps
out all modes except �.

As discussed in the main text, the superconducting
instability of the surface states of a TI leads to an N =

2 superconformal critical point, provided one also tunes
the chemical potential. Therefore, one might wonder if
the surface Dirac fermion in a TI could also be thought
of as a Goldstino mode? The answer to this question
is in the negative. The analog of F term in this case
corresponds to F = |�2

+�|2, where � is now the complex
superconducting order parameter. Any non-zero �, leads
to spontaneous breaking of the global U(1) symmetry,
unlike the aforementioned case of TSC where a positive
� retains the time-reversal symmetry.

B. Soliton Modes as Goldstinos

In this section, we study the consequences of supersym-
metry in the time-reversal broken phase at the bound-
ary of 2D and 3D TSC. Most of our results follow from
the observation, that close to the transition, this phase
does not break SUSY. This is seen from Eq. S53, where
the symmetry broken phase corresponds to � < 0, lead-
ing to a new ground state which has a zero energy with
h�i = ±

p
|�|/g. The unbroken SUSY leads to an equal

mass for the the bosons and fermions close to the transi-
tion, with m

�

= m
�

= 2

p
g|�|, as one may easily verify

from Eq. S53.

“Topological”  quantum critical point?
Emergent supersymmetry: T. Grover, D. N. Sheng, and A. Vishwanath, Science 344, 280 (2014)

time-reversal symmetry from acquiring an ener-
gy gap. Spontaneous breaking of this symmetry
provides a natural mechanism to gap them out.
For example, electron-electron interactions at the
surface could lead tomagnetic order, which breaks
time reversal symmetry. A natural question is how
the surface modes evolve as the magnetic order
sets in. We will see that space-time SUSY natu-
rally emerges at the onset of magnetic order.

The D = 2 + 1 dimensional TSC, protected
by the time-reversal symmetry, provides the sim-
plest setting to address this question. Whereas the
bulk of the superconductor is gapped, the bound-
ary, a Dedge = 1 + 1 dimensional system, contains
a pair of Majorana modes cR,cL that propagate

in opposite directions. The aforementioned insta-
bility of the edge may be described by introducing
an Ising field f that changes sign under time re-
versal. The action is given by

Sdþ1 ¼ ∫dt ddx 1
2
c∂=cþ 1

2
ð∂tfÞ2 þ

!

v2f
2
ð∇fÞ2 þ r

2
f2 þ gfccþ uf4

"
ð1Þ

with d ¼ 1, c ¼ ½cRcL&
T , and we have used

the conventional Dirac gamma matrices for the
relativistic fermion c ⋅ vf and u are, respectively,
the velocity and self-interaction of f; g is the
coupling between the fermions and f, whereas

r is the tuning parameter for the transition. The
symmetry-broken phase is characterized by f ≠ 0,
which leads to a mass gap gf for the fermions.

The mode count in the action S is favorable
for N ¼ 1 SUSY in D = 1 + 1 (21), with the
bosons f and Majorana fermions c as superpart-
ners. We now show that this is indeed the case by
using a numerical simulation of a D = 1 + 1 lat-
tice model that reproduces the action in Eq. 1 at
low energies. The model is given by

H ¼ −i∑
j

1 − gmzjþ1
2

h i
cj cjþ1 þ Hb

where

Hb ¼∑
j
½J mzj−1=2m

z
jþ1=2 − hmxjþ1=2& ð2Þ

Here, cj is a single Majorana fermion at site j,
whereas the Ising spins mzjþ1=2 sit on bond centers.
When the transverse magnetic field h ≫ 1, 〈mz〉 ¼ 0
and lattice translation symmetry ensures that the
Majorana fermions are gapless. As h decreases,
at some point mz orders antiferromagnetically, lead-
ing to a mass gap for the fermions through the
coupling g, reproducing the field theory in Eq. 1 at
and near the critical point. J tunes the relative
bare velocities between the boson and the fermion
modes, similar to vf in Eq. 1.

We numerically simulate a spin version of
Eq. 2 by using the density matrix renormalization
group (DMRG)method (22).(Fig. 2). At larger h,
a gapless phase is obtained that is separated by a
critical line from a gapped ordered phase at small
h. To characterize the critical theory, consider
crossing the phase boundary along fixed g, say,
g ¼ 0:5, while monitoring the central charge c,
which quantifies the amount of entanglement of a
1 + 1 – D critical system (Fig. 2B). At small h, c
is almost equal to zero, which indicates a gapped
phase. At h > hc ≈ 1:62, the central charge satu-
rates at c ≈ 0:5, indicating that the symmetry is
restored and a gapless Majorana mode is present.
At the transition, h ¼ hc, we find c ≈ 0:7, which
precisely corresponds to the SUSY tricritical Ising

Fig. 1. Supersymmetry in a 3D TSC. Ising magnetic fluctuations (denoted by red arrows) at the
boundary couple to the Majorana fermions (blue cone). When the tuning parameter r < rc, the Ising spins
are ordered, leading to a gap for the Majorana fermions. The critical point that separates the two sides is
supersymmetric, where bosons (Ising order parameter) and Majorana fermions transform into each other.

Fig. 2. Supersymmetry
ina2DTSC. (A) The phase
diagram of the Hamilto-
nian H in Eq. 2, which
realizes theMajorana edge
coupled to Ising magnet-
ic fluctuations in this sys-
tem. At large h, the Ising
spins disorder, and the
counterpropagating Ma-
joranamodes (blue arrows)
remain gapless. As h de-
creases, the ordering of
Ising spins (red arrows)
leads to a gap for the Ma-
jorana modes. (B) The re-
gion of the phase diagram indicated by the black arrows in (A). Plotted is
the central charge c as a function of h for fixed g = 0:5,J = 1. For
h > hc (= 1:62), c equals 1/2, consistent with gapless Majorana modes; for
h < hc, c is 0, which indicates the gapped phase. At the critical point, c is 7/10,

which corresponds to supersymmetric tricritical Ising point. (Inset) von Neumann
entropy S and the Renyi entropies S2,S3 at the critical point, which were used
to deduce the central charge. L is the system size, and l is the size of the
entanglement subsystem.
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Detecting Majorana fermions through transverse sound wave

Challenges: Detecting Majorana Fermions

Why transverse?
longitudinal sound = density fluctuation ==> cannot be coupled to Majorana fermions

transverse sound: squashing modes = restoring force

Nambu-Goldstone mode

massless boson = “phase” & 3 spin modes

Pair Breaking 2. Massive bosonic mode:

Higgs modes

J=2 squashing modes
==> observed in sound wave attenuation

Transverse sound: overdamped in normal FL



Challenges: Detecting Majorana Fermions

Bulk BW: empty of fermionic excitations
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Coupling between symmetry-protected Majorana fermions and bosonic modes

New observation: “surface” squashing modes
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Non-equilibrium transport in topological superfluid 3He

Non-equilibrium Transport in Unconventional & Topological Superconductors

quantum limit of attenuation described by Landau [2], with@!=2!kBT ¼ 1:2 (1.3) for the 88 (111.5) MHz data.
The contribution to the attenuation from the ISQ mode

can be calculated from Eq. (1) with only a single fit
parameter: the width of the ISQ mode. We use the form
! ¼ !ce

""=kBT , where !c ¼ !0T
2
c , and !0 is pressure in-

dependent. The ISQ attenuation is shown separately, for
the 88 MHz data, by the gray curve in Fig. 3. In order to
represent the observed nonmonotonic dependence of at-
tenuation on @!=" it is clear that there must be an addi-
tional contribution. This unexpected behavior apparently
increases smoothly with energy and then saturates,@!=" # 1:7. To obtain a quantitative assessment of this
anomalous attenuation we must choose a value for !0

which, if taken either too large or too small, will introduce
an unphysical, sharp kink at @!="$ 1:6. Our final result
using !0 ¼ 9:5% 2 MHz=mK2 is given by the green
squares in Fig. 3. Since the ISQ-mode attenuation domi-
nates only near the mode the subtracted result is largely
unaffected by our choice of !0, which we find to be a factor
of 3 larger than previously suggested [14], based on a less
accurate measurement of the ISQ-mode width [24].
Additionally, we find that the anomalous attenuation ap-
proaches the temperature independent value at low tem-
peratures given in Fig. 3, as demonstrated by temperature
sweeps in Fig. 4.

In contrast to the attenuation, we have found that the
phase velocity of TS is accurately accounted for by the
dispersion relation for the order parameter collective mode,
Eq. (1) [15,18], as shown in the upper panel of Fig. 3. We
infer that the anomalous attenuation cannot be associated
with order parameter collective modes. Furthermore, the
data at 88 and 111.5 MHz are nearly identical, shown in
Fig. 5, indicating that the attenuation is not explicitly
dependent on frequency at the same values of @!=", nor
does it depend on temperature in the low temperature
limit, Fig. 4. On this basis we can rule out quasiparticle-
quasiparticle scattering as the source, since this mechanism
should decrease to zero exponentially at low temperatures.
We have applied magnetic fields up to 300 G along the TS
propagation direction and have found that the attenuation
does not depend on magnetic field, outside of the regions of
field induced birefringence from order parameter collec-
tive modes (AFE). We suggest that the anomalous attenu-
ation might be attributed to the interaction of TS waves
with surface Andreev bound states (SABS).
SABS play an important role in the understanding of

unconventional superconductors and superfluids. For ex-
ample, SABS have been studied in tunneling experiments
in Sr2RuO4 [25] and the high Tc superconductors [26,27].
In superfluid 3He they have been found to dominate the
transverse acoustic impedance [28] and have been ob-
served in the surface specific heat [29]. Moreover, in the
absence of excited quasiparticles, there is no coupling
between a transverse transducer and 3He, for example,
when the scattering at the transducer surface is specular
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time-reversal symmetry from acquiring an ener-
gy gap. Spontaneous breaking of this symmetry
provides a natural mechanism to gap them out.
For example, electron-electron interactions at the
surface could lead tomagnetic order, which breaks
time reversal symmetry. A natural question is how
the surface modes evolve as the magnetic order
sets in. We will see that space-time SUSY natu-
rally emerges at the onset of magnetic order.

The D = 2 + 1 dimensional TSC, protected
by the time-reversal symmetry, provides the sim-
plest setting to address this question. Whereas the
bulk of the superconductor is gapped, the bound-
ary, a Dedge = 1 + 1 dimensional system, contains
a pair of Majorana modes cR,cL that propagate

in opposite directions. The aforementioned insta-
bility of the edge may be described by introducing
an Ising field f that changes sign under time re-
versal. The action is given by

Sdþ1 ¼ ∫dt ddx 1
2
c∂=cþ 1

2
ð∂tfÞ2 þ

!

v2f
2
ð∇fÞ2 þ r

2
f2 þ gfccþ uf4

"
ð1Þ

with d ¼ 1, c ¼ ½cRcL&
T , and we have used

the conventional Dirac gamma matrices for the
relativistic fermion c ⋅ vf and u are, respectively,
the velocity and self-interaction of f; g is the
coupling between the fermions and f, whereas

r is the tuning parameter for the transition. The
symmetry-broken phase is characterized by f ≠ 0,
which leads to a mass gap gf for the fermions.

The mode count in the action S is favorable
for N ¼ 1 SUSY in D = 1 + 1 (21), with the
bosons f and Majorana fermions c as superpart-
ners. We now show that this is indeed the case by
using a numerical simulation of a D = 1 + 1 lat-
tice model that reproduces the action in Eq. 1 at
low energies. The model is given by

H ¼ −i∑
j

1 − gmzjþ1
2

h i
cj cjþ1 þ Hb

where

Hb ¼∑
j
½J mzj−1=2m

z
jþ1=2 − hmxjþ1=2& ð2Þ

Here, cj is a single Majorana fermion at site j,
whereas the Ising spins mzjþ1=2 sit on bond centers.
When the transverse magnetic field h ≫ 1, 〈mz〉 ¼ 0
and lattice translation symmetry ensures that the
Majorana fermions are gapless. As h decreases,
at some point mz orders antiferromagnetically, lead-
ing to a mass gap for the fermions through the
coupling g, reproducing the field theory in Eq. 1 at
and near the critical point. J tunes the relative
bare velocities between the boson and the fermion
modes, similar to vf in Eq. 1.

We numerically simulate a spin version of
Eq. 2 by using the density matrix renormalization
group (DMRG)method (22).(Fig. 2). At larger h,
a gapless phase is obtained that is separated by a
critical line from a gapped ordered phase at small
h. To characterize the critical theory, consider
crossing the phase boundary along fixed g, say,
g ¼ 0:5, while monitoring the central charge c,
which quantifies the amount of entanglement of a
1 + 1 – D critical system (Fig. 2B). At small h, c
is almost equal to zero, which indicates a gapped
phase. At h > hc ≈ 1:62, the central charge satu-
rates at c ≈ 0:5, indicating that the symmetry is
restored and a gapless Majorana mode is present.
At the transition, h ¼ hc, we find c ≈ 0:7, which
precisely corresponds to the SUSY tricritical Ising

Fig. 1. Supersymmetry in a 3D TSC. Ising magnetic fluctuations (denoted by red arrows) at the
boundary couple to the Majorana fermions (blue cone). When the tuning parameter r < rc, the Ising spins
are ordered, leading to a gap for the Majorana fermions. The critical point that separates the two sides is
supersymmetric, where bosons (Ising order parameter) and Majorana fermions transform into each other.

Fig. 2. Supersymmetry
ina2DTSC. (A) The phase
diagram of the Hamilto-
nian H in Eq. 2, which
realizes theMajorana edge
coupled to Ising magnet-
ic fluctuations in this sys-
tem. At large h, the Ising
spins disorder, and the
counterpropagating Ma-
joranamodes (blue arrows)
remain gapless. As h de-
creases, the ordering of
Ising spins (red arrows)
leads to a gap for the Ma-
jorana modes. (B) The re-
gion of the phase diagram indicated by the black arrows in (A). Plotted is
the central charge c as a function of h for fixed g = 0:5,J = 1. For
h > hc (= 1:62), c equals 1/2, consistent with gapless Majorana modes; for
h < hc, c is 0, which indicates the gapped phase. At the critical point, c is 7/10,

which corresponds to supersymmetric tricritical Ising point. (Inset) von Neumann
entropy S and the Renyi entropies S2,S3 at the critical point, which were used
to deduce the central charge. L is the system size, and l is the size of the
entanglement subsystem.
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Concluding Remarks

3He is a treasure box of topological quantum phenomena

Uniqueness: 3He-B under a magnetic field

SSB-induced TPT & mass acquisition of Majorana fermions

Commonality

ABM: Weyl, Planar (P2) ==> Superconductors & neutron stars

Challenges: Detecting topological phenomena

coupling of Majorana to bosonic modes & sound/spin waves
==> high resolution spectroscopy for Majorana fermions


