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« Relation between ODLRO and superfluidity

ODLRO
Quasi-LRO - yes no
Superfluidity  yes yes ?

* Does superfluidity appears in 1D even without LRO?



1D nanoporous media <FSM16>

S. Inagaki et al., Toyota Central R & D Lab.
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FSM16 has uniform
hexagonal silicate
channels.

TEM of FSM16 (2.8 nm)
 FSM16 has uniform hexagonal slicate channels.
* Its diameter can be controlled by ~0.3 nm step.




Sample preparation

Pellets were prepared by

R ///\%/\// sintering FSM16 and silver
fg "lllllf‘\\g\\\/ powder.
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Channel diameter 2.2nm 2.8 nm 3.5nm [4.1nm |4.7 nm
Total surface area 91 m? 114 m? |83 m? 88 m? 101 m?
(outer surface area of powder) (16m2) | (12m2) | (7 m?) (11 m2)
Porosity | In the channel 25% 44% 40% 38% 49%
Outside powder 46% 18% 34% 26% 27%




Detection of superfluid by torsional oscillator
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Superfluidity of “He in 1D
channel was measured by means
of a torsional oscillator.

When the superfluid transition
takes place, the resonance
frequency increases because of
decoupling of the superfluid
fraction from the oscillation.
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FILM STATE
(Nagoya Univ. Group)



Channel diameter dependence of superfluid

N. Wada et al., Low Temp. Phys. 39 9 786-792 (2013). 1D pore (2.8 nm)
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« Superfluid response appears above 1.8 nm.

« The growth of superfluid fraction is gradual, compared with the
one of KT transition, and is accompanied by a broad dissipation.

« The growth becomes more gradual with decreasing diameter.



Explanation by Helicity modulus

Yamashita and Hierashima, PRB 79 014501 (2011).

an0|strop|c 2D XY model N. Wada et al., Low Temp. Phys. 39 9 786-792 (2013).
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« Hirashima’s group calculated hellicity
modulus in an anistropic two-dimensional
(quasi-1D) classical XY model.

 In finite anisotropic 2D lattices, helicity
modulus vanishes due to proliferating
phase slippage.

« Since AE oc 1/L 4, superfluid onset Tx
changes as 1/L .




LIQUID STATE
(UEC Group)



Size dependence of superfluid response for liquid “He
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* A clear rise due to the superfluid response in the channel
is observed above 2.8 nm in addition to the bulk one.
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Two —stage growth of superfluid (2.8 nm)
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kiriyama et al., JPSJ 82, 104509 (2010).

 In the channel, liquid ‘He shows a two-stage growth.
« The temperature of 15t growth corresponds to Tgg.!?
* The 2" rapid growth is not observed for 2.2-nm channel.
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Pressure dependence of superfluid response (2.8 nm)
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% o « Superfluid response is
Z accompanied by a large and broad
T dissipation.
« Superfluid response disappears
above 2.1 MPa., which is below the

T, bulk freezing line.
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Frequency dependence of superfluid response

0.13 MPa « The rapid growth and the
e low freq. 0.5 kHz dissipation peak shift to low
® highfreq. 2kHz  temperature by ~40 mK.

cf.)2D 4He film

KT theory shows only a 4 mK shift
of dissipation peak.

« Large frequency
dependence

10

(%)

()]
T 17T 17T 17T 17T T T°71

Ps ch /ps b0

AQ! (ppm)

 The observed decoupling
and dissipation comes
from the dynamical
superfluid response.

13



A Possible TL liquid state in the channel
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« Superfluid onset decreases T (K)

with lowering w.
T. Eggel et al. PRL 107, 275302 (2011).
 The temperature dependence of observed decoupling and

dissipation is quite similar to the calculation based on the
Tomonaga-Luttinger liquid theory.
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Total phase diagram & dynamical superfluid region
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« Different property

— The frequency dependence is
not observed in the region of
thin film, within the
experimental error. It is likely to
appear after the channel is

10— e p filled with liquid 4He.
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FUTURE CHALLENGES
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Experimental verification of “Helicity modulus” model
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Yamashita and Hierashima, PRB 79 014501 (2011).

In the “Helicity modulus”
theory, T, is determined by
Lo (aspect ratio).

Experimental verification

— TO measurements using the
channel the same in diameter
and larger in length

— TO measurements using the
channel with the same aspect
ratio and larger in diameter

Experimental difficulty
— Control of the aspect ratio
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Search for the distinct signature of TLL realization

As a signature of TL liquid,

1 the dissipation peak is
K=8.1 (flxed presssure) Tp X W2K-3 expected to have a pOWer_
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T. Eggel et al. PRL 107, 275302 (2011).
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Unified understanding from thin film to dense liquid

* Phase diagram connects

S
1-09-0L

1
N

rs (a.u.)
-
-0 £-01

L
N

o (atoms/nm?)

very smoothly from the
film to the liquid region.

Dissipation peak is also
similar.

Unified understanding of
superfluid response in the

film and the liquid regions
is possible?
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« Highlighted feature of superfluid in1D mezoporous
media.

— Superfluid response takes place at the temperature much
lower than T+ in the film state and than T, in the liquid
state.

— Superfluid response takes place at far below the
temperature of BEC.

— Superfluid response occurs down to the diameter of 1.8
nm.

— Superfluid response is accompanied by a dissipation peak.

— The temperature of dissipation peak has a frequency
dependence, when the channel is filled with liquid 4He.

— The frequency dependence shows the possibility that TLL

state is realized in the liquid 4He confined in the channel. i



* Future challenges

— Difference in frequency dependence between the film and
the liquid state

— Experimental confirmation of whether the superfluid
response is ruled by not the channel diameter but the
aspect ratio

— Experimental confirmation of realization of TLL in the
nanometer-size channel

— Unified understanding of superfluid response throughout
the film and the liquid state.
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Property of non-superfluid ground state above 2.1 MPa

* Non-superfluid ground state
above 2.1 Mpa

* A gradual hardening in
stiffness at around 2 Mpa.
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Large  No superfluid transition at finite T.
(13.312)) Byt show superfluidlike response.

00 Tonks-Girardeau gas[1]

Exhibit Fermionic property

[1]L. Tonks, Phys. Rev. 50, 955 (1936) [2]A. Y. Cherny, J. Brand, Phys. Rev. A 73, 023612 (2006)
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