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 Superfluid  3He

‣ Multi-component (18) Order Parameter with Broken "
     Spin- Orbital and Gauge Symmetries.
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Normal State Symmetry: 
GN = U(1) x SO(3)L x P x SO(3)S  x T 

gauge orbital spin time	


reversalparity unconventional BCS pairing	



multiple condensed phases	


complex broken symmetries 	


interactions: FL, dipole-dipole,…	


topological properties

One of the most sophisticated and 
successful Condensed Matter Systems:
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Surface states in 3He
Normal State Film: 

GN = U(1) x [U(1)Lz x Rx x Ry] x SO(3)S  x T 
gauge spin time	



reversalorbital rotations 	
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Superfluid  in  confinement

‣ Surface states interactions, non-local physics ( ∇ )"

‣ Suppression of Order Parameter: `non-bulk’ 

quasiparticle spectrum, new energy landscape"

‣ Confinement driven transitions  B-A, A-Normal"

‣ Completely new OP configurations, phases with 

new  symmetry properties

‣ Insight into pairing symmetries"

‣ New phases"

‣ New ways to access surface states: 
study and manipulation"

‣ New technological devices
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3He-A,B in films

! Modified bulk A- and B- phases (keep the symmetry in the plane of the film)

! Now ∥ (X,Y) and ⊥(Z) directions are not equivalent

• B-like phase
∆B = (∆∥(z)p̂x, ∆∥(z)p̂y, ∆⊥(z)p̂z)

• A-like phase
∆A = ( 0 , 0 , ∆∥(z)(p̂x + ip̂y))

• Planar phase - special case
of the B-phase

∆Pl = (∆∥(z)p̂x, ∆∥(z)p̂y, 0 )
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Stripe order in superfuid 3He and superconducting films – LT25 Amsterdam 3

D ~ 5-10 ξ0

‣  surface states dominate the volume of the sample

‣ Control of Geometry & Spatial dimensions: 

Δ⟂=0

Δ=0
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The boundary conditions on the pair propagator at the
free surface (z ! D) and substrate (z ! 0) yield a set of
eigenvector equations for the unstable mode. For specular
scattering by the substrate,

 f "#$"x; z ! 0; p̂$ ! f"#$"x; z ! 0; p̂$ (7)

for any x and p̂, with p̂ ! p̂% 2n̂"n̂ & p̂$, and similarly for
the free surface. These boundary conditions reduce to
connections between the Fourier components of the order
parameter, az;x"Qx;%Qz$ ! 'az;x"Qx;Qz$, az;y"Qx;
%Qz$ ! 'az;y"Qx;Qz$, az;z"Qx;%Qz$ ! %az;z"Qx;Qz$,
and fixes the wave vector Qz ! !=D in terms of the film
thickness D at the instability. These results and the gap
equation generate the eigenvalue equations for the mode
amplitudes, az;i"Q$,

 ln"T=Tc$az;i %
X

j!x;y;z
Iijaz;j ! 0; i ! x; y; z;

Iij ! 6!T
X1

m!0

Z d!p̂

4!
p̂ip̂j

!
!m

1
4 "vf &Q$2 '!2

m
% 1

"m

"
:

(8)

Translational symmetry is unbroken along the y axis in
which case Ixy ! Iyz ! 0. The mode amplitudes separate
into linearly independent blocks: a 2D (az;x, az;z) and a 1D
(az;y) block. A nontrivial solution to Eq. (8) exists if
(ln"T=Tc$ % Iyy) ! 0 or (ln"T=Tc$ % Ixx)(ln"T=Tc$ %
Izz) % I2

xz ! 0. The eigenvalue equation for the 1D mode
amplitude has a maximum unstable wave vector only for
the transition to the homogeneous phase, Qz ! !=Dc"T$,
Qx ! 0. However, the eigenvalue equation for the 2D
block gives an unstable mode Qz"Qx; T$ that preempts
the homogeneous transition. The maximum value of
Qz"Qx; T$ as a function of Qx for each temperature deter-
mines the lower critical film thickness, Dc2"T$<Dc"T$,
for the transition to an inhomogeneous film with broken
translational symmetry in the plane of the film. The critical
wave vector, Qz"T$, and the locus of values of Qx"T$ are
shown in the right panel of Fig. 1.

The key signature of spontaneously broken translational
symmetry in the xy plane is the appearance of the order
parameter amplitudes, az;x"Qx;Qz$ exp"iQxx$ cos"Qzz$
and az;z"Qx;Qz$ exp"iQxx$ sin"Qzz$. These amplitudes
are shown in the left panel of Fig. 2 for T ! 0:5Tc andD !
9:3"0 & Dc"T$. Note that the full solution for the order
parameter above the lower critical thickness also shows
very small oscillatory amplitudes for the in-plane spin
components, e.g., ax;z.

All modes with in-plane unstable wave vectors Qxy such
that jQxyj ! Qx are degenerate. In the absence of an
external bias to select the direction of the unstable mode,
the instability may propagate in any direction in the plane
of the film. For D>Dc2 the spatial structure of the order
parameter that is realized is determined from the minimum
free energy. This phase may exhibit one-dimensional,
stripe-phase order, or possibly a two-dimensional structure
defined by two noncollinear wave vectors, e.g., a triangular

lattice. A comparison of the possible minimum energy
configurations of the inhomogeneous phase has not been
carried out. Here we focus on the structure of the one-
dimensional stripe phase.

The broken symmetry phase persists for film thickness
well above the original critical line, Dc"T$, for the homo-
geneous A-B transition. However, for D>Dc2"T$ the gap
equation includes nonlinear driving terms that couple
modes with different wave vectors. The ground state is
periodic, but the structure is nonsinusoidal. The right panel
of Fig. 2 shows the order parameter amplitudes for a film
with D ! 10"0 >Dc"T$. The basic structure of this phase
is indicated by the amplitude az;z, which has developed a
solitonlike structure separating ‘‘domains’’ of degenerate
B-like phases: e.g., !<

B ! ""kp̂x;"kp̂y;%"?p̂z$ and
!>
B ! ""kp̂x;"kp̂y;'"?p̂z$. Also, centered on the soliton

is a non-B-like phase, represented by az;x, bound to the
domain wall.

This basic structure also provides a clue to the under-
lying mechanism stabilizing the inhomogeneous phase; it
is the competition between the energy associated with
surface pairbreaking and the energy cost of a domain
wall separating two degenerate B-like phases [17].
Consider the two trajectories ( labeled 1 and 2) shown in
Fig. 3. The left panel shows a homogenous B phase, while
the right panel shows two degenerate B-like phases corre-
sponding to amplitudes %"? left of a domain wall and
'"? to the right.

For the trajectory 1 that reflects from the free surface we
have pz ! %pz. This sign change is the origin of surface

 

FIG. 2 (color online). Order parameter (in units of 2!Tc) for
the stripe phase at T ! 0:5Tc along the film for z * 2:5"0. Left:
Dc2 <D ! 9:3"0 & Dc. Right: Dc < D ! 10"0 <Dc1.

 

FIG. 3 (color online). (a) Surface reflection (trajectory 1) with
pz ! %pz leads to strong pairbreaking for the homogenous B
phase. (b) Trajectory 2 is a the strong pairbreaking trajectory
because of the sign change "? ! %"?.
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✴ Spontaneously Broken Translation 
Symmetry in the x-y plane of the film

Competition of gradient and  
condensation energies 	


Multiple “domain wall” 
configurations stabilized by the 
boundary conditions

Salomaa,  Volovik PRB 1988	


Vorontsov, Sauls  JLTP 2005

✴  Transition is driven by re-structure of 
quasiparticle spectrum due to OP 
component suppression             

Hara, Nagai, Prog Theor.Phys1986
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New phases in other geometries
RAPID COMMUNICATIONS
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FIG. 3. (Color online) Stripe phase realized in narrow cylinders
with the anisotropic surface scattering described by Eq. (6). (a) T -R−1

phase diagram obtained by numerically solving GL equations. The
stripe phase with the spatial modulation along the cylinder axis is
stabilized in the region sandwiched by red solid curves. The inset
shows an example of a cylinder with the surface condition, Eq. (6).
(b) The structure of spin currents in this inhomogeneous state at
ξ0/R = 0.12 and T/Tc = 0.79 for which ξ0Q = 0.11. The spatial
modulation gives rise to the periodic planar spin currents Jrφ and Jφr

as well as the oscillating behavior in Jφz and Jzφ . (c) Sketch of the
planar spin currents flowing in opposite directions on adjacent nodal
planes of Arr (Aφφ). Blue and pink colored regions denote positive
and negative values of Arr (Aφφ), respectively. Red (black) arrows
represent the directions of the spin component (flow).

the roughness of the surface. Here, we consider a special
case where the specularity of the surface has a directional
anisotropy. As a simplified model for such an anisotropic
surface scattering, we take the following boundary condition
at r = R,

Aµr = 0, Aµφ = 0,
∂Aµz

∂r
= 0. (6)

Namely, the surface of the cylinder vessel is assumed to
be diffusive and specular along the φ and z directions,
respectively. An example of such an anisotropic cylinder
wall is shown in the inset of Fig. 3(a): The wall is smooth
(rough) in the z (φ) direction, and thus at the wall particles
are scattered in the forward direction (random directions)
along the cylinder axis (rim). In the thin dirty layer model
for surface roughness obtained by superposing a layer of
randomly distributed impurities on a specular surface [3,36],
the anisotropic surface structure would correspond to the case

where the mean free path in the z direction is much longer
than that in the φ direction. In this situation, the φ components
of the order parameter should be strongly suppressed at the
wall while the z components are almost unaffected, leading
to a boundary condition similar to Eq. (6). Even for diffusive
cylinder walls, since their specularity can be tuned by coating
their surfaces with 4He [37], such a directional anisotropy
of the surface scattering would exist in the case where the
nonuniformity of the 4He coat is much larger in the φ direction.
Since, for the specular condition, azφ(R) in the ABM state is
larger than aφφ(R) in the BW state [see Figs. 2(b) and 2(c)],
suppression of both azφ and aφφ due to the anisotropic surface
scattering should lead to a more significant reduction of the
superfluid condensation energy in the ABM state than in the
BW state.

Figure 3 shows the phase diagram of superfluid 3He in
cylinders with the anisotropic surface scattering described
by Eq. (6). The ABM state becomes less stable for such
an anisotropic scattering, and the stability region of the
stripe BW state is unveiled. As one can see in Fig. 3(a),
the inhomogeneous stripe phase appears from relatively high
temperatures in narrow cylinders with radius R less than 20ξ0.
When the cylinder surface is diffusive in any direction, the
stripe phase is no longer stable. Thus, the stability region of
the stripe phase would be gradually suppressed as the surface
scattering along the z direction becomes more diffusive.

Finally, we address the physical properties of the stripe
phase. Since the order parameter of this new phase takes real
values, it has neither spontaneous current nor magnetization.
Instead, the stripe structure yields spin currents that are
periodic along the cylinder axis. The flux of spin component
σ in the direction i has been derived elsewhere [26,38,39] and
is given for the BW state as

Jσ i = −2Kϵσµν{AµiAνj,j + AµjAνi,j + AµjAνj,i

+ r−1[AµiAνr − δνr (AµiAφφ + AµφAφi)

+ δiφ(2AµφAνr − AµrAνφ − δνrAµjAφj

+ δνφAµjArj )]}. (7)

In the stripe phase with the spatial modulation, there are
four nonvanishing components, Jrφ = J

(0)
rφ (r) sin(Qz), Jφr =

J
(0)
φr (r) sin(Qz), Jφz = J

(0)
φz (r) cos(Qz), and Jzφ = J

(0)
zφ (r) +

J
(1)
zφ (r) cos(2Qz). Note that in the BW state uniform along

the z axis we have only the two components Jφz and Jzφ .
Radial dependences of the amplitude of these spin currents
are shown in Fig. 3(b). In the stripe phase, the additional
components J

(0)
rφ and J

(0)
φr are nonzero at r = 0, suggesting the

existence of the planar components −Jxy = Jyx = J
(0)
φr (r =

0) = −J
(0)
rφ (r = 0). As shown in Fig. 3(c), the planar spin

current periodically changes its sign along the cylinder axis,
and the longitudinal flow Jφz exhibits an oscillating behavior as
well. Such periodic textures of spin currents originating from
the spatial variation of the d vector should be, in principle,
reflected in NMR frequency shifts.

To conclude, we find that a spatially inhomogeneous stripe
order can emerge in superfluid 3He confined in a very narrow
cylinder, due to both the surface-induced bending and the
multiple internal degrees of freedom of the order parameter.
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phase diagram obtained by numerically solving GL equations. The
stripe phase with the spatial modulation along the cylinder axis is
stabilized in the region sandwiched by red solid curves. The inset
shows an example of a cylinder with the surface condition, Eq. (6).
(b) The structure of spin currents in this inhomogeneous state at
ξ0/R = 0.12 and T/Tc = 0.79 for which ξ0Q = 0.11. The spatial
modulation gives rise to the periodic planar spin currents Jrφ and Jφr

as well as the oscillating behavior in Jφz and Jzφ . (c) Sketch of the
planar spin currents flowing in opposite directions on adjacent nodal
planes of Arr (Aφφ). Blue and pink colored regions denote positive
and negative values of Arr (Aφφ), respectively. Red (black) arrows
represent the directions of the spin component (flow).

the roughness of the surface. Here, we consider a special
case where the specularity of the surface has a directional
anisotropy. As a simplified model for such an anisotropic
surface scattering, we take the following boundary condition
at r = R,

Aµr = 0, Aµφ = 0,
∂Aµz

∂r
= 0. (6)

Namely, the surface of the cylinder vessel is assumed to
be diffusive and specular along the φ and z directions,
respectively. An example of such an anisotropic cylinder
wall is shown in the inset of Fig. 3(a): The wall is smooth
(rough) in the z (φ) direction, and thus at the wall particles
are scattered in the forward direction (random directions)
along the cylinder axis (rim). In the thin dirty layer model
for surface roughness obtained by superposing a layer of
randomly distributed impurities on a specular surface [3,36],
the anisotropic surface structure would correspond to the case

where the mean free path in the z direction is much longer
than that in the φ direction. In this situation, the φ components
of the order parameter should be strongly suppressed at the
wall while the z components are almost unaffected, leading
to a boundary condition similar to Eq. (6). Even for diffusive
cylinder walls, since their specularity can be tuned by coating
their surfaces with 4He [37], such a directional anisotropy
of the surface scattering would exist in the case where the
nonuniformity of the 4He coat is much larger in the φ direction.
Since, for the specular condition, azφ(R) in the ABM state is
larger than aφφ(R) in the BW state [see Figs. 2(b) and 2(c)],
suppression of both azφ and aφφ due to the anisotropic surface
scattering should lead to a more significant reduction of the
superfluid condensation energy in the ABM state than in the
BW state.

Figure 3 shows the phase diagram of superfluid 3He in
cylinders with the anisotropic surface scattering described
by Eq. (6). The ABM state becomes less stable for such
an anisotropic scattering, and the stability region of the
stripe BW state is unveiled. As one can see in Fig. 3(a),
the inhomogeneous stripe phase appears from relatively high
temperatures in narrow cylinders with radius R less than 20ξ0.
When the cylinder surface is diffusive in any direction, the
stripe phase is no longer stable. Thus, the stability region of
the stripe phase would be gradually suppressed as the surface
scattering along the z direction becomes more diffusive.

Finally, we address the physical properties of the stripe
phase. Since the order parameter of this new phase takes real
values, it has neither spontaneous current nor magnetization.
Instead, the stripe structure yields spin currents that are
periodic along the cylinder axis. The flux of spin component
σ in the direction i has been derived elsewhere [26,38,39] and
is given for the BW state as

Jσ i = −2Kϵσµν{AµiAνj,j + AµjAνi,j + AµjAνj,i

+ r−1[AµiAνr − δνr (AµiAφφ + AµφAφi)

+ δiφ(2AµφAνr − AµrAνφ − δνrAµjAφj

+ δνφAµjArj )]}. (7)

In the stripe phase with the spatial modulation, there are
four nonvanishing components, Jrφ = J

(0)
rφ (r) sin(Qz), Jφr =

J
(0)
φr (r) sin(Qz), Jφz = J

(0)
φz (r) cos(Qz), and Jzφ = J

(0)
zφ (r) +

J
(1)
zφ (r) cos(2Qz). Note that in the BW state uniform along

the z axis we have only the two components Jφz and Jzφ .
Radial dependences of the amplitude of these spin currents
are shown in Fig. 3(b). In the stripe phase, the additional
components J

(0)
rφ and J

(0)
φr are nonzero at r = 0, suggesting the

existence of the planar components −Jxy = Jyx = J
(0)
φr (r =

0) = −J
(0)
rφ (r = 0). As shown in Fig. 3(c), the planar spin

current periodically changes its sign along the cylinder axis,
and the longitudinal flow Jφz exhibits an oscillating behavior as
well. Such periodic textures of spin currents originating from
the spatial variation of the d vector should be, in principle,
reflected in NMR frequency shifts.

To conclude, we find that a spatially inhomogeneous stripe
order can emerge in superfluid 3He confined in a very narrow
cylinder, due to both the surface-induced bending and the
multiple internal degrees of freedom of the order parameter.
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‣ Chiral 3He-A ribbon ‣ Cylindrical pores

 ↳ Several new phases"
 ↳ ”Spiral” order 

 ↳ Stripe order in multi-component OP"
 ↳ Domain walls with non-trivial bound 
states and mass currents

‣ Superfluid He-3 in magnetic field
T. Mizushima

CONTENTS 6
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Figure 2. (a) Phase diagram of the superfluid 3He confined in a slab geometry
with a magnetic field parallel to the surface, where the temperature is set to be
T = 0.4Tc0 and D and H are the thickness of the slab and the magnitude of
an applied field, respectively. The thin (thick) curves is the first (second) order
transition line. (b) Spontaneous symmetry breaking in BI and BII. The former
is the topological phase protected by the hidden Z2 symmetry, while the latter
is topologically trivial. The details on symmetry consideration and microscopic
calculation are discussed in Secs. 2.4 and 5.1 and Sec. 8, respectively.

of a magnetic field that explicitly breaks the time-reversal symmetry and continuous
rotational symmetry in the spin space, the B-phase may hold the hidden Z2 symmetry
that is the combined discrete symmetry of the time-inversion and joint π-rotation in
spin and orbital spaces. The B-phase under a magnetic field is therefore classified
to two phases, the Z2 symmetric phase, BI, and Z2 symmetry breaking phase, BII.
The BI phase possesses topologically nontrivial superfluidity protected by the hidden
Z2 symmetry, while the BII phase without the hidden Z2 symmetry is topologically
trivial. The typical phase diagram of 3He-B confined in a slab geometry is displayed
in Fig. 2. There exists the topological quantum critical point at a weak field, beyond
which the hidden Z2 symmetry spontaneously breaks and it simultaneously triggers
off the topological phase transition. The topological phase transition concomitant
with spontaneous symmetry breaking can occur without closing the bulk energy gap,
leading to the acquirement of the mass of surface Majorana fermions. It has also
recently been predicted that the topological quantum critical point is accompanied
by the emergent space-time supersymmetry that is the symmetry between fermion
Green’s function and spin-spin correlation function [72].

This review attempts to clarify that the superfluid 3He confined in a restricted
geometry provides a promising platform to study the interplay between the topology
and additional discrete symmetries. In Sec. 2, we start with the summary of the
symmetry that is preserved in 3He-B confined in a slab geometry. We here extract the
hidden Z2 symmetry hiding in the huge remaining symmetry of 3He-B and categorize

 ↳ Additional symmetries" "  
 ↳ Protected topological phase in small B
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Spontaneous currents
d-wave condensates
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Figure 2 | Temperature-dependent density of states. a, Density of states integrated over the grain area at temperatures T =0.25Tc (red dashed line) and
T =0.1Tc (black line, filled area). Both are for a pure d-wave order-parameter state but evaluated at two di�erent temperatures; one above and one below
the transition temperature into the T-symmetry-breaking state. The grain size is 90⇠0 ⇥90⇠0. b, Points on the edge of the grain shown in Fig. 1a, where the
local density of states are evaluated in c and d. c, Local density of states at a point where the current density vanishes. d, Local density of states at a point
where the current density is at its maximum.
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Figure 3 | Local spectral-current densities. a,b, Spectral currents along the two cross-sections of the grain shown by dashed white lines in Fig. 1a. The
currents near the edge (a) are carried by the subgap part of the spectrum (Andreev surface states), whereas further away from the edge at y=5.4⇠0 (b)
the currents are carried by continuum states.

the vortex phase is una�ected. The vortices formed spontaneously
have a radius of a few coherence lengths, much smaller than the
penetration depth—which, for instance, for YBa2Cu3O7�� (YBCO)
is of the order of �0 ⇠ 100⇠0. The staggered ordering of these
vortices means that there is always only a very small e�ect from
including the electrodynamics self-consistently in the calculation.
We expect corrections only for weak type-II superconductors, where
screening e�ects are more e�cient (possibly other unconventional
superconductors than the cuprates).

In Fig. 4a we plot the magnitude of the currents close to the
edge. The typical distance between current nodes (neighbouring
vortex cores) near the grain edge is just over 5 ⇠0. The magnetic-
field pattern is shown in 4b. We find that the magnetic flux per
vortex is ⇠ 10�5�0. The maximum magnetic field in the centre
of each fractional vortex can then be estimated for YBCO to be
1.5 ⇥ 10�5�0/⇠

2
0 ⇠ 70 G (for ⇠0 ⇡ 2 nm). In Fig. 4c we plot the

low-energy part of the LDOS along a cut at y = 2.2⇠0, marked

with the black dotted line in a. The spectrum is split into two
branches, which meander between positive and negative energies.
These two branches consists of Andreev states carrying opposite
currents along the edge, as also shown in Fig. 3. In the symmetry-
broken phase, the Andreev edge states are pushed away from zero
energy by the Doppler shifts. The Andreev states at zero energy
(for T > Tcv) are associated with an order parameter suppressed
to zero at the edge. As T-symmetry is broken, the d-wave order
parameter partially heals, as shown in Fig. 4d. At the same time, its
magnitude is oscillating along the edge, following the meandering
of the Andreev states in the vortex pattern. These Doppler shifts of
the Andreev bound states lead to a lowering of the free energy that
is the microscopic mechanism behind the T-symmetry breaking.

The low-energy states, positioned at "A, come at a cost in free
energy. If the bound states are located near the Fermi energy, "A !0,
it is energetically favourable to shift the states to finite energies. If
the low-energy states have a substantial spectral weight, additional
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FIG. 4. (Color online) (a) Thickness dependence of the SC
transition temperature, Tc(d−1), in the case with Dxy state. This
phase diagram at h = 0 quantitatively agrees with that in Ref. 7. The
inset shows the corresponding result in the small field h = 0.32. The
nonmonotonic behavior of the Tc(d−1) curve at low temperatures
is less remarkable, possibly because of the additional gap nodes
perpendicular to the film plane, but nevertheless visible close to
t = 0.35. (b) Temperature dependences of the GL coefficients a

[thin (red) curve] and b [thick (blue) curve] at d−1 = 0.517 in (a).
The positive b values where a changes sign on cooling imply that
the SC transition in (a) is of second order.

and not the FF state but the familiar SC state, which is spatially
uniform in any direction, is always favored. Thus, within the
approximation used here, disappearance of superconductivity
due to the size effect does not occur in this case.

IV. FIELD VS TEMPERATURE PHASE DIAGRAMS

Next, let us examine how the phase diagram in the case with
the Dxy state is changed by applying a uniform magnetic field.
For this purpose, the orbital pair-breaking effect of the mag-
netic field will be neglected. This assumption is reasonable for
describing thin films with thickness of several times ξ0. Further,
as argued in Sec. I, it is at least qualitatively valid even with
vortices as long as H ∥ x̂.11 Then a nonvanishing magnetic field
appears only through the Zeeman energy µH , and its effect
can be incorporated simply by replacing cos(ρπvF p̂y/D) with
cos(ρπvF p̂y/D) cos(ρ2µH ) in Eq. (13) (see Ref. 5 and the
Appendix for details). Then, the signs of the two cosine factors
compete in the ρ integral in Eq. (13). Physically, this implies
that the applied magnetic field frustrates and thus weakens the
size effect enhanced by the gap nodes. Since, on the other
hand, superconductivity in the present systems is suppressed
with decreasing film thickness, the applied magnetic field
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FIG. 5. (Color online) Thickness dependence of the h vs t phase
diagram in the case with the Dxy state. The used values of d [the
normalized thickness defined in Eq. (14)] are 3.33 in (a), 2.0 in (b),
1.95 in (c), 1.93 in (d), 1.92 in (e), and 1.79 in (f). The symbol “LO”
indicates the field-induced LO phase. All transitions indicated in the
figures are of second order (see Fig. 6). The field dependences of the
order parameters on the dotted vertical lines in (d) and (e) are shown
in Fig. 6.

competing with the size effect may enhance superconductivity.
Below, it will be explained that, in thin SC films with gap
nodes parallel to the film plane and with thickness of the order
of several times ξ0, rich behaviors reflecting the competition
between the magnetic field and the gap-node-induced size
effect can occur in the field vs temperature phase diagram,
such as coexistence of two spatially modulated FFLO states
of different origins and a field-induced reentry of the spatially
uniform superconductivity.

The thickness dependence of the h vs t phase diagrams
we have obtained is presented in Fig. 5. Although the
transition curves in the figures have been determined from
the quasiclassical formulation in Sec. II with Eq. (10), all the
SC transitions appearing in the present phase diagram can
be alternatively obtained from the GL free energy shown in
the Appendix because they are of second order in character.
As seen in Fig. 3 of Ref. 7 (see also Fig. 4 in the present
work), as long as the same boundary condition is used, the FF
phase of SC films with a gap node parallel to the film plane
under zero field inevitably appears even in sufficiently thick
films with d ≫ 1 at low enough temperatures.7,18 Reflecting
this fact, Fig. 5(a) includes this FF phase at low enough
temperatures if the applied field is sufficiently low. With
decreasing film thickness, however, the temperature regions
of the uniform10 and LO SC phases are narrower, while the
FF phase grows and begins to occupy a broader field and
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3He thin films: experiments

abrupt change in the response time of capacitance to the
switched voltage.
The thickness dependence of superfluid critical

temperatures of the film, T f
c ; normalized to the bulk

critical temperature, Tb
c ; is plotted in Fig. 3 by solid

circle. For the thickness larger than about 0:7 mm; the
transition occurs at temperatures close to Tb

c : For
thinner films, suppression of T f

c is observed.
Since the free surface acts as a specular boundary, the

effective thickness D defined as the distance between two
diffusive parallel plates, can be regarded as twice of the
present thickness d (i.e. D ¼ 2d) [2]. By using Ginzburg–
Landau theory, the critical temperature for the slab with
diffusive boundary is described as D=xðT f

c Þ ¼ p [4],

where xðTÞ is temperature-dependent coherence length.
This is represented by solid line in Fig. 2. The other
theoretical result by Kj.aldman et al. is shown by the
broken line, which is a numerical result valid for all the
temperature ranges and thicknesses [5]. The agreement
with these theories is good.
In conclusion, we developed a new technique to

manipulate and measure the superfluid 3He film thick-
ness. With this technique, we could carry out the
experiment of superfluid 3He film for a wide range of
thickness from 0.2 to 7:5 mm: Since it is possible to
measure dynamical properties such as superfluid critical
current, further experimental progress in 3He in confined
geometry is expected.

This work is partly supported by the Grant-in-Aid for
Scientific Research from JSPS. One of the authors (MS)
is gratefull to the JSPS fellowship.
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Fig. 1. A schematic view of a pair of IDCs.
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Fig. 2. The time evolution of capacitance is shown, where the
critical temperature is crossed by cooling. The superfluid
transition is observed as an abrupt change in the capacitance
response (upper trace) to VU (lower trace). The film thickness is
2:0 mm:
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Fig. 3. The thickness dependence of critical temperatures. This
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respectively. Solid line and dashed line are theoretical results of
Refs. [4,5].
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3He Film Flow on a Round Rim Beaker 775 

b 
) 

c 

Fig. 9. The liquid surfaces inside and outside of the 

beaker, showing the coordinate system used in the 

discussion of Atkins' oscillations. CP1 and CP2 are 

the inner and outer contact points where the liquid 

meniscus meets the film. 

equilibrium. For small displacements, the angular frequency ~o of the 

oscillations is given by the quotient of the coefficient of x 2 in the potential 

energy (gravitational and surface) of the reservoirs with the coefficient of .~72 

in the kinetic energy of the moving superfluid in the film: 

[(dvl) 2d2v, (dv2)-2d2vq 

[ p~dl 
- z2 = z0 ( 1 1  ) 

where Us and Vi are the potential energy and volume of the liquid in the 

reservoirs (including those formed by the level detector capacitors), Ps is 

the superfluid density (since only the superfluid fraction of the film moves), 

r is the distance from the vertical axis, dl is an element of the flow path 

along the film, and 3 is the film thickness given by Eq. 8. When the liquid 

surface of a reservoir meets the beaker at a vertical surface, the derivatives 

occurring in the numerator are simply related to the horizontal cross sec- 

tion A i of the reservoir: (dVi/dzi)= Ai and (d2Ui/dz 2) = pgA~. When the 

liquid surface meets the beaker on the curved rim, the shape of the surface 

changes with height, and the derivatives must be determined from numeri- 

cal solutions of the liquid shape (as described earlier, but using parameters 

appropriate to 4He17'33: p = 145 kg m 3, 7 = 354 #N m-l) .  

The integral along the film occurring in the denominator of Eq. 1 ! can 

be split into three parts: first, up along the vertical inside of the beaker 

from the inner contact point CP~ with dl=dz and surface curvature 

Cs = - 1 / ( b - a ) ;  then, around the semicircular rim of the beaker with 

dl= -ado and Cs= l / a - s i n  0 / ( b - a  sin 0); and finally, down the vertical 

Steel et al 
1994

3He Film Flow on a Round Rim Beaker 783 

4.2. Superfluid Transition Temperature 

The superfluid transition temperature in the film T r was taken as the 

temperature where the critical current jF  extrapolates to zero, for a given 

film thickness 5. With pure 3He (Fig. 13(a)), T F is progressively suppressed 

below Tff as the films become thinner. The ratio r B T c / T  c is plotted as a 

function of 1/52 in Fig. 14. The results are close to agreement with the 

Ginzburg-Landau theoretical result 25/~(T F) = 7z and the numerical result 

of Kjaldman et al., 7 for 3He confined by diffuse walls in a slab of thickness 

D = 26. The reason for the factor 2 is that the free surface is expected to 

scatter quasiparticles specularly, and so would act as a mirror surface 

for the transverse components of the order parameter, while the normal 

component is negligible in the A-phase (the predicted phase at the super- 

fluid-normal transition). 

The results taken with an adsorbed 4He monolayer (Fig. 13(b)) are 

quite different. Although Jc is still described by the Ginzburg-Landau tem- 

perature dependence, the critical currents are larger than for pure 3He and 

within the experimental uncertainty there is no suppression of Tff as the 

film thickness decreases. The absence of suppression is predicted for a slab 

of 3He bounded on both sides by a specular boundary. The fact that just 

1.2 monolayers of 4He is sufficient to switch the substrate from a diffuse to 
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Fig. 14. The superfluid transition temperature in the film T~ for various film thicknesses 5, 
both for pure 3He and with an adsorbed 4He monolayer. 
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Fig. 1 (Color online) (a) Schematic diagram of the cell. The depth of the helium cavity has been enlarged
for clarity. (b) Photograph of the bonded cell, prior to attaching the fill line. The helium cavity can clearly
be seen in the centre

pulsed NMR, with the static field applied perpendicular to the plane of the slab. The
low number of spins (<1018) and very small filling factor (∼4 × 10−5) of our sample
requires a highly sensitive NMR spectrometer in order to resolve the weak signal.
To meet this need we developed a pulsed NMR spectrometer [11], based around a
two-stage SQUID amplifier. The SQUID has a coupled energy sensitivity as low as
20h and the spectrometer has a noise temperature of 5 mK at 1 MHz.

The 3He inside the cell is cooled by a ∼2.5 m2 silver sinter heat exchanger, in
close proximity to the cell. Thermometry is provided by a 195Pt NMR thermometer,
calibrated against a 3He melting curve thermometer.

3 Results

We begin with a description of the signal in the normal state. Figure 2(a) displays a
typical normal state signal at a pressure of 0 bar. The signal was qualitatively the same
at all pressures. Two signals are present, separated by about 600 Hz. By applying
magnetic field gradients we could carry out simple NMR zeugmatography (described
below) from which we could unambiguously identify the sharp signal as coming from
3He in the slab and the broader signal as coming from the 3He in the dead volume.2

The effect of applying a gradient parallel to the plane of the slab is shown by
the bold (blue online) signal in Fig. 2(b). The slab signal is broadened and flattened
out, consistent with it coming from a large area, such as the slab. The bulk signal is
relatively unchanged and just moves to a higher frequency, consistent with it coming
from a small, localised region, such as the dead volume. The effect of applying a
gradient perpendicular to the slab is also consistent with this hypothesis, as shown by
the thin (red online) signal in Fig. 2(b). The bulk signal actually becomes somewhat
sharper in this case and we therefore maintain a field gradient perpendicular to the
slab during our measurements.

2From this point onwards we shall refer to the signals as the ‘slab signal’ and ‘bulk signal’.
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%e report the first measurements of the superAuid density of thin 'He Alms for a broad range of

thicknesses. In contrast to previous experiments, we And good agreement with the predictions of the

general theory for the suppression of the superfluid transition temperature T,. In addition, we find evi-

dence for a new phase of the superfluid in films thinner than 2750 A.

PACS numbers: 67.50.Fi, 67.70.+n

Superfluid 'He has long been a testing ground for our

understanding of systems in which the Cooper pairs have

a nonzero orbital angular momentum, including perhaps

heavy-fermion and high-T, superconductors. An area of

great current interest involves the eff'ects of confining
such systems to lengths approaching the coherence

length g(T). In this case surface scattering becomes im-

portant. It has long been known that I & 0 Cooper pairs
are broken by any type of diN'use scattering,

'
leading to

complete suppression of the transition temperature as the

dimensions approach g(T).
A second effect which is predicted to arise due to walls

is the stabilization of phases of the superfluid different

from those present in the bulk. For the slab geometry

in the weak-coupling limit, it is predicted that the A and

planar phases are degenerate for film thicknesses t such

that the reduced film thickness, w =t/g(T), is less than 7

(Refs. 6 and 7) and that the 8 phase will be stable for

thicker films. We use the same definitions and values as

appear in Ref. 7. A number of possible two-dimensional

phases have also been suggested for sufficiently thin

films.
'-"

Several experimental studies on confined He have

been reported in the relatively simple slab or pore ge-

ometries which are most easily compared to theory.
" '

Measurements to date on the suppression of T, are gen-
erally in poor quantitative agreement with the theoretical

predictions of Kjaldman, Kurkijarvi, and Rainer. Only

two experiments on flow through relatively large pores

have found good agreement with the predicted suppres-

sions. "' While quantitative agreement is generally

Iacking, a number of groupsl3-16 have found qualitative

agreement with the general prediction that the transition

should be strongly suppressed as the film thickness is re-

duced.

The only definite identification of the phase of super-
fluid He in a thin film comes from the work of Freeman

et al. ' They found the 4 phase in their 0.3-pm slab for

pressures between 1.5 and 22 bars at all temperatures.

They attributed the absence of a phase transition from

the 2 phase into the 8 phase to supercooling eAects.

Evidence for a phase transition in 0-bar films was also

presented by Harrison et al. ' in thicker films based on a

change in the critical current.

In order to further study these effects we have devel-

oped a new technique to grow metastable films of vary-

ing thickness on the copper disk of a torsional oscilla-

tor. ' Our technique has a number of advantages. First,

each film studied has a single relatively uniform thick-

ness. Second, we obtain a direct determination of the

average film thickness during a given measurement by

monitoring the frequency of the oscillator just above the

superfluid transition. Third, the shift in frequency below

the transition is directly proportional to the superfluid

density p, . The measured frequency stability allows us

to determine changes equivalent to a 10-A-thick layer of
film completely decoupling from the oscillator.

The experimental cell has been described elsewhere in

detail. '
Briefly, the cell, shown in the inset to Fig. 1,

consists of a thin copper disk on which the film is grown.

The disk hangs by a copper torsion rod from the top of a
brass can and is independently thermally anchored to our

copper nuclear-demagnetization stage. The brass can is

mounted on a second torsion rod attached to the copper

stage. The cell is driven by electrodes on the brass can in

the mode in which the can and copper disk counterro-
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FIG. l. The reduced transition temperature (Tf/~T, ) for

several effective film thicknesses. The solid line is the calcula-

tion of Kjaldman, Kurkijarvi, and Rainer for diffusely scatter-

ing walls. Inset: The experimental cell.
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FIG. 3. The measured superfluid density normalized to the

bulk superfluid density as a function of the reduced film thick-

ness ~. For each effective film thickness shown we have indi-

cated whether the data were taken while warming w or cooling

C.

The factor of g accounts for any obstructions in the flow

path
21

By studying He in the same cell it is possible to ob-

tain a value for g. It is not clear to us, however, that this

technique is correct due to the large difference in coher-

ence lengths. An obstruction with a physical width of

0.1 pm, for example, would have an effective width of

0.2 pm for a He film at T=p=0. As noted in Ref. 17

this will also cause g to be temperature and pressure

dependent. Because of this uncertainty, we choose to

present our data with g=O. We note that a g of 0.5
~0.1 would bring our data into reasonable agreement

with the 1.5-bar data of Ref. 17.

At present the only theoretical predictions for the sup-

pression of the superfluid density are done in the

Ginzburg-Landau regime. ' Unfortunately, none of our

films are in this regime. Our thickest film at its T, has
w =2.6 whereas theory would predict a value of z (Refs.
6 and 7), making comparison impossible.

In order to detect possible phase transitions in our

data, we plot in Fig. 3 p, /p, b„ik as a function of w for

the representative film thicknesses shown. Such a plot is

expected to be universal in the Ginzburg-Landau regime.

Surprisingly, as shown in Fig. 3, the data collapse rough-

ly onto two curves, determined by whether the film thick-

ness is above or below about 2750 A. We stress that the

normalization procedure is only weakly dependent on our

choice of T,. We have checked that reasonable varia-

tions in the choice of T, do not afl'ect the character of

Fig. 3. We believe our data indicate that a transition to

a new state of 'He occurs at this critical film thickness.

Data for the 2768- and 2728-A films were taken a few

hours apart during the same demagnetization. The two

sets of data clearly fall on different curves, indicating

that this transition occurs over a very narrow range of

thicknesses. A second interesting data set is from the

2704-A film. In this case the film was cooled through

the transition and left cold overnight during which the

film thinned from -2900 to 2704 A. The data taken on

warming show the thick-film behavior even though the

film at that point is thinner than the critical thickness.

The same film was immediately cooled again and showed

the typical behavior for a film below the critical thick-

ness. This suggests that superheating and supercooling

eA'ects are important and may explain the absence of a

transition between the curves.

In examining the literature we find possible supporting

evidence for this transition in the data of Davis et al.
'

Their thinnest film has Tf/T, =0.82 which is between

the values for our 2768- and 2728-A films. They found a

significantly smaller slope for the critical current in that

film compared to their thicker films. For the range of w

covered in their data this result can be explained at least

qualitatively by the transition we observe in p, . The

transition we observe is not evident in the data of Har-

rison et al. ,
'
although that is possibly due to supercool-

ing eA'ects since they always started with very thick

films.

The first possible explanation for our data would be a

transition from the 8 phase to either the planar or the A

phase, which is predicted to occur for w &7. Experi-
mentally, Freeman et al. ' have found the A phase for

3000-A-thick films at 1.5 bars. Harrison et al. ' observe

a flow-rate transition which they take to be the expected

B-to-A phase transition. While superthinning effects are

important in their experiment, we may take the thickest

film for which they observe a transition (6000 A) as a

lower limit on the thickness at which the equilibrium B-

to-A phase transition occurs. Both the theoretical and

experimental evidence indicates that the 8-to-A phase

transition occurs for much thicker films suggesting that

the transition which we observe is into a new phase. We

know of no theoretical work on possible stable phases for

films such as ours far from the bulk T, .
We have also considered the possibility that we are ob-

serving one of the several possible two-dimensional

phases.
' The relevant length scale is g(T) and so we

would expect to see a crossover from the lower curve to

the upper curve at progressively lower temperatures for

thinner films if this interpretation were correct.

Finally, we have considered the possibility that the

effects we are observing are due to some form of thick-

ness variation in our cell. If some region of the film were

thinner, it might remain normal, cutting off part of the

flow channel around the oscillator. We point out, howev-

er, that the relevant length is again g(T) so we would ex-

pect to see this additional channel open up at progres-

3007

932 T. Kawae et al.

Fig. 11. The pressure dependence of the A-B transition temperature TAB/TC

at the film thickness of 0.88/(um. Open circles stand for the case of pure 3He,
and filled circles stand for the case with 4He films on the surface. The dashed
line indicates the A-B transition of bulk 3He in a magnetic field of 27 mT
estimated from the results of Tang el al.

19
 Inset; A phase diagram of the liquid

3He at the film thickness of 0.88 ,um (broken line). The solid line shows the
superfluid transition for bulk liquid.

We now discuss these results in terms of critical thickness. The critical

thickness d /£(T A B ) ) estimated from the present results is shown in Fig. 12,

where £(T) is referred to Eq. (1 .1) . The estimated critical thickness
dl£(TAB) is about 10 at 0 bar, which is consistent with the theories.

3-6
 We

also show the critical thickness obtained from a reduction point of 30 % to

the total signal, which corresponds to a 1.3-^m thickness, in Fig. 12. The
values estimated from 0.88- and 1.3-um thicknesses are in reasonable agree-

ment in both cases, the pure
 3

He and the coverage of
 4

He films, indicating
the validity of the present estimation. Despite the enhancement of the
strong coupling effects at high pressures which favors the A phase,

3,5,6
 the

pressure dependence of the d / ^ (T A B ) is small. This is a remarkable feature
of the A-B transition in this confined geometry.

Kawae et al NMR 
1998

T. Kawae el at.

Fig. 1. Schematic view of the experimental cell and the parallel plate geometry
defined by mylar sheets. The size of the parallel-plate is 3 mm wide and 5 mm
long. Black dots are polystyrene space spheres.

The behavior of superfluid 3He with this scale in magnetic fields has been

extensively studied.8

We used a conventional cw NMR technique in a static field of 27 mT

applied in two directions, parallel and perpendicular to the surface of the

sheets, using two saddle-shaped magnets. To obtain high sensitivity, the

pick up coil was wound directly around the stack of the Mylar sheets. The

coil was separated into two blocks which were 0.5 mm apart, keeping an
inlet of liquid 3He to achieve thermal equilibrium with the liquid outside

the stack. After it was wound, the coil was set in stycast 1266 to reduce the
signal of the liquid around the coil. The temperature of liquid 3He was

measured by pulsed NMR of 30um platinum wires whose ends were

embedded in a sintered silver heat exchanger pile with a surface area of
30m2.
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A-B transition: experiments
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A-B transition: theory
38 SUPERFLUID 'He IN VERY CONFINED REGULAR GEOMETRIES 2363

SOL lD

I I

SOL iD

T (mK) T (mK)

FIG. l. The phase diagram of 'He in slab geometry for
D =2000 A and diffusive boundary condition. The dashed line
is the super-to-normal fiuid phase boundary of the bulk 3He
Q) = 00).

+P2Aqi A pi A vj A vj+P3A~j A vj A vi A pi

+P4AqjA „'iA„;A„';+PSA„jA„'~A „';Aq, , (1)

Fa ——K[(y—1)VjA„jV;A„';+VjA„;VjA„';],
where

socio

FIG. 3. Same as Fig. 2 except for specular boundary condi-
tion.

a =a( T)=N(0)(1—T/T, )l3,
K = N(0)7g(3 ) AU@

17

—:a(T)g (T)
—=a(T)go(1—T/T, ),
r=3.

For the present discussions, it is useful to use a scaled or-
der parameter a„,=A„;/hei and a scaled gradient
d=pT)V, where As=[a/2(3P, J+P345)]' is the equi-
librium B-phase order parameter in the bulk. Here, we
used the notation p, z =p, +p2 and p3—45 p3+p4+ ps etc.
Defining f=F/(a(T)ling), the free energy can now be
written in a dimensionless form If= f (fji +fz ),

l~J g =—Q Qpg+ 2y)Q JQ~) Q -Q~)+ ~y2Qp)Qp)Q~) Q~)

1~+—y3Q Q Q;Q;+—y4Q )Q )Q;Q

+ ~y5Qp~Q ~J.Q Qp

fz ——(y—1)dja&j.d;a&, +dj.a„;dja„', ,.
(3)

(4)

where gz Pz/(3P&2+P345 ). ——
The equilibrium states are determined by the station-

ary condition

T (mK)
FIG. 2. The phase boundary between the A and 8-planar

phase as a function of plate spacing D. Diffusive boundary con-
dition. The four boundaries from left to right correspond to
D =2000, 3000, and 5000 A, and 00.
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Broader connections 

resonance broadens due to hybridization of the energy levels
associated with adjacent domain walls. Consequently the
sharp bound state for a single domain wall broadens into a
band that fills the low energy region below the maximum gap
to the continuum spectrum. The quasiparticle resonance is
visible as a broad peak centered at != ±"B, even in the spa-
tially averaged DOS as shown in Fig. 7. Note also the evo-
lution of the spectrum with increasing magnetic field !from
bottom to top panel". As the field increases the resonance
broadens and the DOS approaches the normal-state value
N!!" /Nf =1, as is expected for a second-order transition to
the normal state.

Evidence of the FFLO state could be obtained from scan-
ning tunneling microscopy by direct observation of the An-
dreev resonances organized along one-dimensional stripes,
similar to the spectroscopic observation of vortex arrays in
type II superconductors.65 Since the quasiparticle resonance
spectrum and distribution in space depend on the magnetic
field, these states should be easily differentiated from reso-
nances arising from scattering by impurities or
interfaces.66–68 For the same reasons, point-contact spectros-
copy, similar to recent measurements performed on
CeCoIn5,69,70 but for magnetic fields in the FFLO phase
!B#10 T", should be able to identify the characteristic sig-
natures of the FFLO state.

In Fig. 8 we show the DOS for stripes oriented along
#100$. In contrast to the #110$ orientation, there is a much
richer spectrum along the #100$ direction. Additional singu-

larities are visible at ! / !2$Tc"%0.02, 0.12, 0.28, 0.38. These
singularities originate from quasiparticles that propagate
nearly parallel to the stripes. For these trajectories there is a
broad dip in the order parameter amplitude that produces
bound states due to multiple Andreev reflections from the
“walls” of this “order parameter well.” These resonances
generally occur at finite energy, in contrast to the topological
bound states which are pinned to zero energy in zero field.
The bound states are further shifted by the field, and the
topological bound states—shifted by the Zeeman field—
arising from trajectories crossing the stripes are also visible
in the spectrum.

The spectrum for #100$ stripes is similar to the LO state in
s-wave superconductors because quasiparticles propagate
along trajectories with similar order parameter profiles for
directions perpendicular and parallel to the stripes. However,
the anisotropy of the d-wave gap function in momentum
space leads to more singularities below the maximum gap
compared to the isotropic s-wave case.

Finally, we note that Maki, Won and collaborators51,71,72

calculated the spin-averaged DOS for the #100$ striped
FFLO state near the upper critical field at T=0. Their result
for the spatially averaged DOS, expanded to second order in
the order parameter, is qualitatively different from our self-
consistently calculated DOS at T /Tc=0.15 and b=0.2 !see
Fig. 8"; sufficiently so that a direct comparison is not pos-
sible.

FIG. 6. !Color online" Angle-averaged LDOS for a periodic so-
lution inside the LO state. !Top" Profile of order parameter at
T /Tc=0.15 and b=0.200. The panels below show LDOS at loca-
tions !a" and !b". !Center" LDOS at position !a", where order pa-
rameter vanishes. The broadened Andreev bound states, quasiparti-
cle resonances, are shifted from zero energy by +b for spin-up and
−b for spin-down electrons. !Bottom" LDOS at position !b" at maxi-
mum of order parameter. The Andreev bound states decayed and
broadened even more.

FIG. 7. !Color online" Spin-up/down DOS averaged over a
single period of the order parameter for three different b fields in
the LO state. A broad bound state at ! / !2$Tc"=b is seen at lower
fields, but continues to broaden as b increases. Finally, the DOS
becomes flat and “normal”-like. Here T /Tc=0.15 and the corre-
sponding upper critical field is bc2=0.25.

VORONTSOV, SAULS, AND GRAF PHYSICAL REVIEW B 72, 184501 !2005"
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★ physics in restricted geometry	


★    non-uniform states: FFLO	


★ confinement-driven transitions: QPT	


★    thin films of topological insulators
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degenerate, which is secured by time-reversal symmetry.
Here, !z=" are used to distinguish the two degenerate hy-
perbolas, h+!k" and h−!k" describe two sets of Dirac fermi-
ons, each show a pair of conduction and valence bands with
the dispersions

#c/v!k" = E0 − Dk2 " #!$/2 − Bk2"2 + !%vF"2k2, !12"

where c and v correspond to the conduction and valence
bands, respectively. The eigenstates for #c/v are

uc/v!k" =
1

$uc/v$%!$/2 − Bk2"!z + #c/v

− i%vFk+
& !13"

with $uc/v$=#'!$ /2−Bk2"!z+#c/v(2+ !%vF"2k2. Besides the
gap $ already defined in Eq. !6", the other parameters in
Hamiltonian !11" are given by

vF = !A2/%")&!A1"*'x*(!− A1"+ ,

D = !B2/2"!)&↑*'z*&↑+ + )(↑*'z*(↑+" − D2,

B = !B2/2"!)&↑*'z*&↑+ − )(↑*'z*(↑+" ,

E0 = !E+ + E−"/2, !14"

and can be calculated numerically by using Eq. !7".
The numerical results of $, vF, D, and B are presented in

Fig. 2. It is noted that *D* must be less than *B*, otherwise the
energy gap will disappear, and all discussions in the follow-
ing will not be valid. The $ terms play a role of mass term in
2+1 Dirac equations.

In the large L limit,

vF = !A2/%"#1 − D1
2/B1

2. !15"

The dispersion relation is given by

#c/v!k" = " vF%k !16"

for small k. As a result, the energy gap closes at k=0. The
two massless Dirac cones are located near the top and bottom
surfaces, respectively, as expected in a 3D topological insu-
lator.

In the small L limit,

vF = A2/% !17"

and

$ = 2B1)2/L2. !18"

The ratio of the velocity between the two limits is

* = 1/#1 − D1
2/B1

2. !19"

It is noted that the velocity and energy gap for an ultrathin
film are enhanced for a thinner film.

III. ENERGY GAP AND k-DEPENDENT SPIN
CONFIGURATION

The opening of energy gap for the Dirac fermions is ex-
pected as a result of quantum tunneling between the surface
states on the top and bottom surfaces. When the thickness of
the ultrathin film is comparable with the decay length of the
surface states into the bulk, the wave functions of the top and
bottom surface states have a spatial overlap, which leads to
an energy gap at the + point, analogous to the splitting of the
bound and antibound orbitals in a double-well potential. The
dispersion relations of the surface states are plotted in Figs.
2!a"–2!c" for several thicknesses. A massless dispersion is
obtained for the large L limit as expected. For a finite thick-
ness, the energy gap at k=0 is a function of the thickness L
and decays quickly with L 'see Fig. 2!f"(. It is noticed that
the gap $ even changes its sign at certain values of L. For
instance, for the present case, at about integer times of 25 Å.
Correspondingly, the velocity of the Dirac fermions is also
thickness dependent, which is enhanced for a small L.

FIG. 1. !Color online" Schematic comparison between !a" the
gapped K-K! valleys in the staggered graphene and !b" the twofold
degenerate hyperbolas described by our effective Hamiltonian in
Eq. !10".
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FIG. 2. !Color online" '!a"–!c"( Twofold degenerate !!z= "1"
energy spectra of surface states for thicknesses L=20,25,32 Å
!solid lines", and L→, !dash lines". The gray area corresponds to
the bulk states. The energy spectra are obtained by solving
H!k ,−i!z"-!z"=E-!z" under the boundary conditions
-!z= "L /2"=0. Please note that the scales of energy axis
in !a"–!c" are different. The model parameters are adopted
from Ref. 9: M =0.28 eV, A1=2.2 eV Å, A2=4.1 eV Å,
B1=10 eV Å2, B2=56.6 eV Å2, C=−0.0068 eV, D1=1.3 eV Å2,
and D2=19.6 eV Å2. '!d"–!g"( The parameters for the new effec-
tive model Heff: D, B, the energy gap $, and the Fermi velocity vF
vs L.
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Interaction of Dirac states in thin films 

Experimental Observation of the
Quantum Anomalous Hall Effect
in a Magnetic Topological Insulator
Cui-Zu Chang,1,2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1

Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1

Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† Yayu Wang,1† Li Lu,2

Xu-Cun Ma,2 Qi-Kun Xue1†

The quantized version of the anomalous Hall effect has been predicted to occur in magnetic
topological insulators, but the experimental realization has been challenging. Here, we report the
observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3,
a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance
reaches the predicted quantized value of h/e2, accompanied by a considerable drop in the longitudinal
resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall
resistance remains at the quantized value. The realization of the QAH effect may lead to the
development of low-power-consumption electronics.

The quantum Hall effect (QHE), a quan-
tized version of the Hall effect (1), was
observed in two-dimensional (2D) elec-

tron systems more than 30 years ago (2, 3). In
QHE, the Hall resistance, which is the voltage

across the transverse direction of a conductor
divided by the longitudinal current, is quantized
into plateaus of height h/ne2, with h being Planck’s
constant, e the electron's charge, and n an integer
(2) or a certain fraction (3). In these systems, the

QHE is a consequence of the formation of well-
defined Landau levels and thus only possible in
high-mobility samples and strong external mag-
netic fields. However, there have been numerous
proposals to realize the QHE without applying
any magnetic field (4–11). Among these propo-
sals, using the thin film of a magnetic topological
insulator (TI) (6–9, 11), a new class of quantum
matter discovered recently (12, 13), is one of the
most promising routes.

Magnetic field–induced Landau quantization
drives a 2D electron system into an insulating
phase that is topologically different from the
vacuum (14, 15); as a consequence, dissipation-
less states appear at sample edges. The topolog-
ically nontrivial electronic structure can also occur
in certain 2D insulators with time reversal sym-
metry (TRS) broken by current loops (4) or by
magnetic ordering (6), requiring neither Landau

REPORTS
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Fig. 1. Sample struc-
ture and properties. (A)
A schematic drawing de-
picting the principle of
the QAH effect in a TI
thin film with ferromag-
netism. Themagnetization
direction (M) is indicated
by red arrows. The chem-
ical potential of the film
can be controlled by a
gate voltage applied on
the back side of the di-
electric substrate. (B) A
schematic drawing of the
expected chemical poten-
tial dependence of zero
field sxx [sxx(0), in red]
and sxy [sxy(0), in blue]
in the QAH effect. (C) An
optical image of a Hall
bar device made from a
Cr0.15(Bi0.1Sb0.9)1.85Te3
film. The red arrow indi-
cates the current flow
direction during the mea-
surements. The light gray
areas are the remained
film, and the dark gray
areas are bare substrate
with the film removed.
The black areas are the
attached indium elec-
trodes. (D) Magnetic field dependence of ryx curves of the Cr0.15(Bi0.1Sb0.9)1.85Te3 film measured at different temperatures (from 80 K to 1.5 K). The inset
shows the temperature dependence of zero field ryx, which indicates a Curie temperature of ~15 K.
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Anomalous Hall Effect	


in Magnetic TI

Chang et al, 
Science 2013

Nano-world: 
• enhanced role of surface atomic layer	


• strongly modified DOS + interactions	


• quantum discrete levels	


• coherence effects

Quantum Critical Point:	


• change of ground state by external parameter	


• appearance of new phases near QCP



QFS: theory of confined condensates                                                          A. Vorontsov    

‣ Superfluid He-3 is a model of unconventional pairing"
➡ 1.1   9 x 2 order parameter components"
➡ 1.2  symmetry and topology playground"

‣ Grand Challenge: understanding surface states in confined geometry"
➡ 2.1  properties of bound states"
➡ 2.2  interactions with fields"
➡ 2.3  connection to topological properties"

‣ Grand Challenge: find agreement between theory and experiment (thin films)"
➡ 3.1 numerical modeling - combined effort"
➡ 3.2  connection to experiment"

‣ Impact on various fields"
➡ 4.1 States in confinement including FFLO"
➡ 4.2 QPT and topological materials "

Vision for theory of restricted geometries

DMR-0954342 


