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A B S T R A C T   

Duckweed has emerged as a potential feedstock for the environmentally sustainable and economically viable 
production of biofuels and protein. The aim of this study was to: (1) enhance an existing intrinsic duckweed 
growth model and use it to develop a general regression model that enables users to easily predict annual 
duckweed yield for large scale applications; and (2) determine the optimal parameter sets that produce the 
highest annual duckweed yield at a specific location for known values of daily temperature and photoperiod. 
Simulations performed using Stella Architect were used to compute annual duckweed yield and generate 
separate datasets for developing the regression model and optimization model. To improve duckweed yields for 
large-scale applications which incorporate regular harvesting, a harvesting regime was added to the intrinsic 
duckweed growth model. Two new parameters (harvest frequency and harvest ratio) and a control (harvest 
threshold) were used to describe the harvesting regime in the model. The general model was developed by fitting 
LASSO regression (R2 = 0.95) with four variables: initial mat density, intrinsic growth rate, harvest ratio, and 
harvest frequency. This model offers a simple method for users to estimate annual duckweed yield in practical 
applications without the need for dynamic simulation runs. Optimum parameter values to maximize biomass 
production at a location in southwest Florida, USA, were determined using an optimization framework involving 
a deep neural network machine learning algorithm. Using an existing daylength model to predict daily photo-
period and inputting local temperature data, machine learning calculated a maximum yield of 70 dry tons per 
hectare per year for the Florida case study, under the following conditions: initial mat density = 169 gdry m− 2; 
harvest threshold = 76 gdry m− 2; nitrogen = 50.1 mg L− 1; phosphorus = 7.5 mg L− 1; harvest ratio = 0.35; and 
harvest frequency = 1 day.   

1. Introduction 

The economic and environmental disadvantages of fossil fuel con-
sumption have increased the search for alternative resources to fulfill 
the world’s growing energy and chemical needs (Jung et al., 2016). At 
the same time, conventional bioenergy crops have also been posing 
social, economic, and environmental challenges. Duckweed (Lemna-
ceae), is a technically feasible alternative feedstock due to several ad-
vantages, such as its: starch accumulation capacity (Zhao et al., 2015); 
small size (0.1 cm–1 cm); uniform structure; and low lignin content 
(1%–3%). Since duckweed floats, its harvesting is also simpler compared 
to microalgae (Cui and Cheng, 2015). 

Duckweeds offer a sustainable pathway to promote a circular bio-
economy by upcycling waste nutrients into valuable bio-based products. 
Since they are resilient to a broad range of nutrient concentrations, 
duckweeds can be grown on a variety of wastewater sources (Cheng and 
Stomp, 2009). Due to their rapid growth rate and ease of harvesting, 
duckweeds have the potential to be used for large-scale bioenergy pro-
duction ensuring uninterrupted feedstock supply (Calicioglu et al., 
2021). In addition, their high protein content of up to 45% (of the dry 
weight) makes duckweeds an excellent candidate to be used as a protein 
supplement for humans and animals such as broiler chickens, laying 
hens, ducks, pigs, ruminants, fish, and shrimp (reviewed in Roman et al., 
2021). Since duckweeds can be vertically farmed and thereby cultivated 
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within a lower areal footprint than land grown crops, utilizing them as a 
substitute for other protein feeds could result in lower land use changes 
and greenhouse gas emissions (Roman et al., 2021). Several studies have 
demonstrated duckweed as a promising feedstock for the production of 
bioethanol (Yu et al., 2014), biomethane (Calicioglu and Brennan, 
2018), and volatile fatty acids (Calicioglu et al., 2018). Calicioglu et al. 
(2019) further examined the potential of duckweed as a biorefinery 
feedstock to produce multiple end products sequentially. Other studies 
have directly examined the value of duckweed as soil amendment to 
replace conventional fertilizers (Kreider et al., 2019), tested the quality 
of extracted duckweed protein as a supplement for animal feed (Roman 
et al., 2021), and measured the protein yield of duckweed grown under 
different water quality conditions such as swine wastewater (Mohedano 
et al., 2012) and wastewater from an ecological treatment system 
(Roman and Brennan, 2019). Regardless of the end use, framing out a 
complete biorefinery approach is essential for delivering competitive 

products to end-user markets. Such a comprehensive approach, in turn, 
necessitates a robust, reliable, and sustainable feedstock supply. 

Duckweed growth is primarily affected by factors such as nutrient 
concentrations, mat density, temperature, and photoperiod (Lasfar 
et al., 2007). Several growth models have been proposed for studying 
duckweed growth, including a popular one by Lasfar et al. (2007) which 
correlates intrinsic growth rate to temperature and photoperiod, as well 
as nitrogen (N) and phosphorous (P) concentrations in the growth me-
dium. Other experimental studies have reported optimal values of 
temperature (Zhao et al., 2014), nutrient concentrations (Al-Nozaily 
et al., 2000), metal concentrations (Boniardi et al., 1999), and light 
intensity (Filbin and Hough, 1985) beyond which duckweed growth will 
be slowed. However, previous models and experimental studies have not 
focused on continuous large-scale production of duckweed, which can 
be significantly influenced by the harvesting regime. 

Harvest frequency (the time interval at which biomass is harvested), 
harvest ratio (the ratio of biomass harvested to the total available 
biomass), and harvest threshold (the biomass quantity above which 
harvesting takes place) are critical parameters in a harvesting regime. 
Frédéric et al. (2006) developed a mathematical growth model involving 
harvest frequency in which they demonstrated that a higher harvesting 
frequency results in a higher specific growth rate of duckweed. While 
revealing that duckweed growth can be affected by the amount of 
duckweed harvested and the interval at which the harvesting is done, 
that study did not incorporate a complete harvesting regime into the 
duckweed growth model. A duckweed growth model that incorporates 
harvesting regime parameters would help increase the duckweed 
biomass obtained from a large-scale system. Optimization models 
coupled to duckweed growth models can further offer opportunities to 
maximize biomass yield by appropriately optimizing the growth and 
harvest parameters. While optimization models have been used in the 
past to estimate optimal parameters for algae-based wastewater treat-
ment (Sundui et al., 2021), to the authors’ knowledge, the use of opti-
mization models for maximizing duckweed biomass production have not 
previously been explored. Real-world large-scale applications of duck-
weed production, such as a biorefinery, would benefit from such opti-
mization frameworks to predict location-specific optimal parameters. 

The objectives of this study were to: (1) enhance an existing intrinsic 
duckweed growth model and use it to develop a general regression 
model that enables users to easily predict annual duckweed yield for 
large scale applications involving regular harvesting; and (2) determine 
the optimal parameter sets that produce the highest annual duckweed 

yield at a specific location for known values of daily temperature and 
photoperiod. 

2. Methodology 

2.1. General duckweed growth and harvest model development 

2.1.1. Intrinsic duckweed growth model 
Stella Architect (Version 1.9.1) was used to conduct the simulations 

in this study. Stella Architect is a dynamic modeling software that en-
ables users to create system diagrams and include features to perform 
extended simulations. Duckweed growth was simulated according to 
semi-empirical intrinsic growth model developed by Lasfar et al. (2007) 
which is based on Michaelis-Menten kinetics as shown in Equations (1)– 
(3).   

D=
DL⋅DO

(DL − DO)⋅e− ri ⋅t + DO
(2)  

rs =
1
t

⋅ ln
(

D
DO

)

=
1
t
⋅ln

(
DL

(DL − DO)⋅e− ri ⋅t + DO

)

(3)  

where KP, KIP, KN, and KIN are the saturation and the inhibition constants 
of P and N, respectively; CP and CN are the P and N concentrations (mg 
L− 1), respectively; R is a constant (maximum intrinsic growth rate in 
day− 1); T is the temperature in ◦C with Top being the optimum tem-
perature; E is the photoperiod (h); ri and rs are the intrinsic and specific 
growth rates (day− 1), respectively; Do is the initial mat density (gdry 
m− 2) of the duckweed; D is the instant mat density (gdry m− 2) (i.e., the 
duckweed biomass per square meter of covered water surface at a spe-
cific moment in time); and DL is the limiting mat density (i.e. the upper 
limit of the mat density beyond which the duckweed growth is strongly 
inhibited); t is the duckweed retention time (day); and θ1-4 are nondi-
mensional constants smaller than one. Values of constants are KP = 0.31, 
KIP = 101, KN = 0.95, KIN = 604, R = 0.62, Top = 26 ◦C, θ1 = 0.0025, θ2 =

0.66, θ3 = 0.0073, θ4 = 0.65. 
This model considers mat density as a variable, which was particu-

larly important in our study, considering that the harvesting regime 
changes the mat density frequently. Other parameters used for the 
description of the general duckweed growth function were N and P 
concentrations, temperature, initial mat density, limiting mat density, 
and photoperiod, as well as the proximity of actual values to their 
optima. 

2.1.2. Harvesting module 
Two parameters were determined to be critical in estimating the 

amount of duckweed harvested in the general model: (1) Harvest fre-
quency; and (2) Harvest ratio. Harvest frequency (Hf) is the duration (in 
days) between two harvesting events, and harvest ratio (Hr) is defined as 
the ratio of harvested duckweed to the total duckweed available in the 
pond on the harvest day. To determine the optimum growth and har-
vesting conditions, a harvesting module with these parameters was 
incorporated into the intrinsic duckweed growth model (Lasfar et al., 
2007). 

ri =R ⋅ θ((
T− Top)/Top)

2

1 ⋅ θ((
T − Top)/Top)

2 ⋅ θ((
E− Eop)/Eop)

2

3 ⋅ θ((
E− Eop)/Eop)

4 ⋅
CP

CP + KP
⋅

KIP

KIP + CP
⋅

CN

CN + KN
⋅

KIN

KIN + CN
(1)   
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2.1.3. Incorporation of the harvesting module into the intrinsic growth 
model 

The harvesting module was incorporated to the intrinsic duckweed 
growth model in Stella Architect (see Figure S-1, Supporting Informa-
tion, for a schematic of the model). The model first estimates the 
intrinsic growth rate based on the initial values provided, and then 
calculates the change in duckweed biomass, taking into account the 
initial and limiting mat densities. The harvest ratio determines the 
amount of duckweed harvested on each day with a harvesting event 
(Box D-2, Supporting Information). 

2.1.4. Stella simulations for the general duckweed growth and harvest 
model 

The effects of CN, CP, T, E, Do, Hr, and Hf on duckweed yield were 
examined using Stella simulations. The range of values used for all of 
these input parameters are equal to the parameter ranges used in the 
study by Lasfar et al. (2007) and are provided in Table 1. 

2.1.5. LASSO regression for the development of the general duckweed 
growth and harvest model 

As can be seen in Table 1, there are seven input parameters in the 
model, which makes this a high dimensional dataset. To reduce model 
complexity, four selected parameters – Do, ri, Hr, and Hf – were used for 
fitting the non-linear least absolute shrinkage and selection operator 
(LASSO) regression model, out of which ri can be computed according to 
Eq. (1) using input values of T, E, CN, and CP. A fourth order polynomial 
regression incorporating exponential function and parameter in-
teractions was used to fit the general model. We used LASSO regression 
because it performs a variable selection via penalization, which shrinks 
the least influential coefficients of the fitted model to zero and simplifies 
the final model. In order to explore the dataset in an efficient way, and 
by taking advantage of the deterministic nature of computer experi-
ments, we used initial design algorithms. Computer simulations, unlike 
physical experiments, do not have randomness; therefore, such simula-
tion studies can be conducted by smartly designing the input configu-
rations. In this study, we used a Latin Hypercube Design algorithm to 
generate high dimensional uniformly distributed input configurations 
by reducing the pairwise correlations and maximizing the distance be-
tween the input configurations in high dimensional space (Joseph and 
Hung, 2008). A total of 30,000 data points were generated to explore the 
input parameter space. The simulation period for the Stella model was 
set to 360 days (assuming each month has 30 days) and the annual 
cumulative yield (Dannual, in gdry m− 2) obtained with corresponding 
input values was used as the response variable for regression. 

2.2. Florida USA case study 

2.2.1. Florida case study model 
A location in Florida (FL), USA, was selected for a case study because 

of the nearly optimal conditions for duckweed growth throughout the 
year. Another rationale for selecting this location is that it was previ-
ously identified by the National Renewable Energy Laboratory (NREL) 
for testing large-scale algal biomass production (Davis et al., 2016). The 
coordinates of the city of Fort Myers, FL (26.6406◦ N, 81.8723◦ W), were 
used in the model, due to the potential availability of sufficient waste-
water from urban areas to support duckweed growth. For the FL case 
study, the Stella model described under Section 2.1.4 and parameter 
ranges listed in Table 1 were used, with the exception that daily inputs of 
spatially explicit variables - temperature (T) and photoperiod (E) – were 
used instead of constant values to better simulate biomass yields. The 
temperature data was retrieved from National Centers for Environ-
mental Information database for Fort Myers, FL (Vose et al., 2014), and 
ten-year average temperature values (2008–2018) were used for each 
day in the model. Based on the day length model provided in Forsythe 
et al. (1995), E was estimated for each calendar day as a function of 
geographic coordinates at this location (Box D-1 in Supporting 
Information). 

Since T and E vary daily, a new controlling parameter, harvest 
threshold (Ht), was introduced to avoid depletion of duckweed biomass 
due to overharvesting. The harvest threshold determines if the harvest 
will be carried out depending on the available mat density. A mat 
density higher than the threshold value triggers duckweed harvest for 
the given day. The Ht parameter introduced for the FL model was 
considered as a variable in the initial design (with a continuous incre-
ment in the range of 0.1–200 gdry m− 2) to understand the effect of this 
parameter on the annual harvest yield. 

2.2.2. Stella simulations for the Florida case study 
The effects of CN, CP, T, E, Do, Hr, Hf, and Ht on duckweed yield were 

examined using Stella simulations. For the highest duckweed yields 
within 10% of the maximum yield, selected scenarios of parameter 
combinations were analyzed for its practical significance. The dataset 
consisting of parameter values and Stella simulated cumulative duck-
weed harvest values were further used in the optimization study as 
detailed in Section 2.2.3.2.2.3. Optimization of annual duckweed yield 
for Florida case study. 

Optimization was performed for the FL case study using six input 
parameters (Do, CN, CP, Hr, Hf, and Ht) to maximize the annual harvest 
yield. We used a machine learning-based high dimensional optimization 
method that has been previously applied to optimize datasets generated 
through computer simulations (Sengul et al., 2020; Sengul eet al., 2021). 
The optimization algorithm (created using Python programming lan-
guage) starts by fitting a machine learning regression model to the 
dataset. The dataset was generated by running the Stella model for all 
parameter combinations generated using the Latin Hypercube Design 
algorithm. The cumulative annual duckweed harvest yield was used as 
the response variable for the regression model. We tested three different 
machine learning methods, namely: (1) linear regression; (2) LASSO 
regression with polynomial features; and (3) deep neural network 
regression. The best fit was obtained using the deep neural network 
model and therefore, only this model is described below. 

We used a fully connected feedforward type deep neural network as 
the machine learning model (Lecun et al., 2015). Feedforward neural 
network utilizes layers with a unidirectional decision flow in which the 
weighted sum of inputs from one layer is used to compute the result for 
the subsequent layer through a non-linear function. Three hidden layers 
were selected with forty nodes each (Figure S-2, Supporting Informa-
tion). Nonlinear mapping between layers were incorporated using 
rectified linear unit (ReLu) activation function defined as f(x) = max(x, 
0) (Glorot et al., 2011). In order to train the deep learning model, the 
dataset was randomly separated into training and test sets using a 4:1 

Table 1 
Input parameters and their ranges used in the Stella model to compute intrinsic 
growth rate and cumulative harvest for the general model regression fit.   

Range Increment Reference 

Input Parameter Minimum 
Value 

Maximum 
Value 

Initial Mat Density, 
Do (gdry m− 2) 

0.2 200 continuous Lasfar et al. 
(2007) 

Temperature, T 
(◦C) 

5 32 continuous Lasfar et al. 
(2007) 

Photoperiod, E (h) 2 17 continuous Lasfar et al. 
(2007) 

N Concentration, 
CN (mg L− 1) 

1.1 350 continuous Lasfar et al. 
(2007) 

P Concentration., 
CP (mg L− 1) 

0.12 54 continuous Lasfar et al. 
(2007) 

Harvest Ratio, Hr 0.05 1 continuous Introduced in 
this study 

Harvest Frequency, 
Hf (day) 

1 30 1 Introduced in 
this study  
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ratio, and the trained model was tested on the test dataset. The mean 
absolute error was used as a measure of accuracy between the predicted 
and true values (i.e. dataset values) during the training of the deep 
learning model. The accuracy of the prediction capability of our model 
was measured using the Coefficient of Determination (R2) between the 
predicted and true values, with R2 = 1 representing the best fit model. 

We used a brute force type of optimization algorithm to find the 
parameter set that produces the maximum annual harvest yield. The 
brute force algorithm works as follows. The algorithm assigns randomly 
generated values to each input parameter within specified ranges. The 
harvest yield value is then calculated for each randomly generated input 
parameter set using the fitted deep neural network model. The resulting 
harvest yield value is compared with the highest previously obtained 
value. The algorithm iterates until the highest possible harvest yield 
value is obtained within a given number of iterations with each iteration 
taking less than 1 ms. In this study, the criterion for stopping the algo-
rithm was to obtain a harvest yield value that was higher than the ones 
in the dataset. In order to obtain the maximum annual yield value, the 
algorithm iterated around two million times. 

3. Results and discussion 

3.1. General duckweed growth and harvest model development 

3.1.1. Stella simulations for the general duckweed growth and harvest 
model 

The cumulative annual duckweed yields predicted for varying 
parameter values using the Stella Model are illustrated in Fig. 1. A wide 
range of yield values were obtained across the entire range of initial mat 

density (Do), nitrogen concentration (CN), and phosphorus concentra-
tion (CP) values. Biomass yield tends to increase with increasing nitro-
gen concentration (CN) but tapers off for concentrations above 100 mg 
L− 1. A similar trend was observed for phosphorus (CP) above 10 mg L− 1. 
These are in agreement with the intrinsic growth rate versus nutrient 
concentration curve reported by Lasfar et al. (2007) that follows 
Michaelis–Menten kinetics with duckweed growth decline occurring at 
CP > 10 mg L− 1 and CN > 40 mg L− 1. The remaining parameters (harvest 
ratio (Hr), temperature (T), and photoperiod (E)) showed specific trends 
in terms of optimum values that produce the highest theoretical duck-
weed yield. For example, the highest yields in the general model were 
produced for harvest ratio (Hr) > 0.2, harvest frequency (Hf) between 1 
and 5 days, temperature (T) between 20 and 27 ◦C, and photoperiod (E) 
between 10 and 15 h. For comparison, Lasfar at al. (2007) reported 
optimal duckweed growth at values of 26 ◦C and 13 h for temperature 
and photoperiod, respectively. Although the highest yields were 
observed within these optimum parameter ranges, having an optimal 
parameter value would not always result in highest yields, since a 
sub-optimal value of one parameter can affect the yield, which explains 
the very low yield values within these ranges in Fig. 1. As expected, the 
trend of intrinsic growth rate (ri) versus annual duckweed yield showed 
that higher intrinsic growth rate directly relates to higher yield values. 
However, depending on the harvest parameter values, the yield could be 
low even at high ri values. 

The tradeoffs in yield values with two parameter combinations (CN 
and CP; Hr and Hf; T and E) were studied using heat maps (Fig. 2). Within 
the range of N and P concentrations considered, lower values of CN and 
CP correspond to higher duckweed yield values. Moreover, N limitation 
could be compensated by an increase in P concentration to achieve high 

Fig. 1. Cumulative annual duckweed yield for the full range of parameter values as predicted using the Stella model.  
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yields, and vice versa. With respect to harvest parameters, duckweed 
yields were highest with low harvest frequency (Hf) values, provided the 
harvest ratio (Hr) > 0.2. In agreement with Fig. 1 which demonstrated 
optimum values of temperature (T = 20–27 ◦C) and photoperiod (E =
10–15 h), heat maps revealed the highest yields corresponding to these 
optimum values. 

3.1.2. LASSO regression and development of the general duckweed growth 
and harvest model 

The non-linear LASSO regression model fitted with four parameters 
(Do, ri, Hf, and Hr) and their transformations yielded an analytical 
equation for the general duckweed growth and harvest model (Eq. (4)). 
The combination of Eq. (1) and Eq. (4) offers a simple method to esti-
mate long-term duckweed yield under a given set of operating condi-
tions (Do, CN, CP, T, and E) and harvesting regime (Hr and Hf), without 
the need for simulation software such as Stella. 

Dannual = a0 + a1eri + a2

(
Hr

Hf

)

+ a3(Doeri )
2
+ a4(Doeri )

(
Hr

Hf

)

+ a5

(
Hr

Hf

)2

+

a6(Doeri )
3
+ a7(Doeri )

2
(

Hr

Hf

)

+ a8(Doeri )

(
Hr

Hf

)2

+ a9

(
Hr

Hf

)3

+ a10(Doeri )
4
+

a11(Doeri )
3
(

Hr

Hf

)

+ a12(Doeri )
2
(

Hr

Hf

)2

+ a13(Doeri )

(
Hr

Hf

)3

+ a14

(
Hr

Hf

)4

(4)  

where Dannual is the cumulative annual duckweed yield (gdry m− 2). 
The range of parameter values used for model fitting were: Initial 

mat density (Do) = 0.4–200 gdry m− 2; intrinsic growth rate (ri) =
0.3–0.51 day− 1; harvest ratio (Hr) = 0.05–0.9; and harvest frequency 
(Hf) = 1–30 days. These ri ranges were further narrowed down from that 
used by Lasfar et al. (2007) in order to exclude parameter values that 
produce very low yield. Eq. (4) is therefore only valid for the parameter 
ranges which primarily exclude lower growth rates (ri < 0.3 day− 1). 
Regression coefficients corresponding to each variable in Eq. (4) are 
provided in Table 2. The equation showed that Hr/Hf and its polynomial 
terms had the largest effect on model prediction, as seen by its high 
coefficients. This also indicates the high influence of harvest parameters 
on duckweed yield when compared to other parameters in the model 
including initial mat density and intrinsic growth rate. An R2 value of 
0.95 was obtained between Dannual values simulated by Stella model and 
those predicted using the developed regression equation. The regression 
model fit is illustrated in the Supporting Information (Figure S-3). A 
slight deviation was observed between the predicted and true values of 
high duckweed yields indicating model underprediction of these high 
yield values. This can be attributed to the smaller number of parameter 
combinations producing high yield and hence a limited amount of high 
yield data available for model fitting. Although studies in the past have 

developed regression equations relating duckweed growth to tempera-
ture, photoperiod, and metal concentrations (Diritgen and Nel, 1994; 
Rejmánková, 1973; Zhang et al., 2009), this study is the first time a 
regression model has been developed to predict long-term duckweed 
yield. As field-scale data on annual duckweed yield is collected from 
facilities operating with a defined environment and harvesting regime, 
the model proposed in this study can further be validated. 

3.2. Florida case study 

3.2.1. Stella simulations for the Florida case study 
The dataset involving Do, CN, CP, Hr, Hf, and Ht was generated 

through an initial design algorithm, and was used as an input into Stella 
simulations. Similar to the plots from the general duckweed growth and 
harvest model, the overall trends in the Stella simulations show that the 
initial mat density (Do) does not have significant impact on the end 
result (Fig. 3). Frédéric et al. (2006) reported that duckweed growth rate 
decreases with increasing Do, with the highest growth rate occurring for 
Do between 3.4 and 9.6 gdry m− 2 and lower growth rates observed for Do 
between 86 and 128 gdry m− 2. The insignificant impact of Do in this 
study was expected, as the dynamic nature of the harvesting module 
reduces the effect of Do over the time duration of 1 year. The harvest 
threshold (Ht) also did not have a major impact if it is below 150 gdry 

Fig. 2. Maximum annual duckweed yield for the enhanced duckweed growth and harvest model as a function of: A) initial N and P concentrations; B) harvest ratio 
and harvest frequency; C) photoperiod and temperature. 

Table 2 
Coefficients corresponding to the fitted general duckweed growth and harvest 
model.  

Parameter Coefficient Value 

Bias a0  0a 

Doeri  a1  43.79 
Hr/Hf a2  4658.63 

(Doeri )
2  a3  0a 

Doeri .(Hr/Hf)  a4  60.20 
(Hr/Hf)2 a5  − 4215.52 

(Doeri )
3  a6  0a 

(Doeri )
2
.(Hr/Hf)  a7  0a 

Doeri .(Hr/Hf)2  a8  9.04 
(Hr/Hf)3 a9  948.01 

(Doeri )
4  a10  − 1.40 

(Doeri )
3
.(Hr/Hf)  a11  − 7.82 

(Doeri )
2
.(Hr/Hf)2  a12  − 1.49 

Doeri .(Hr/Hf)3  a13  − 2.89 
(Hr/Hf)4 a14  − 64.77  

a Parameters with values of zero (0) indicate that, although considered, they 
were found through penalized regression to not have a significant effect on the 
model. 
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m− 2. Increasing nutrient concentrations were observed to increase 
biomass yields, but the effect tapered off above CN = 100 mg L− 1 and CP 
= 10 mg L− 1. The system appears to be more resilient to changing 
operational conditions and less dependent on the nutrient concentra-
tions within a certain range of harvesting ratio (Hr). In general, the 
harvest frequency (Hf) inversely affects the yield across the entire 
parameter range (1–30 days) considered, which means more frequent 
harvesting results in higher yields. 

An analysis within 10% of the maximum yield was also performed to 
identify various patterns and scenarios among the dataset (see subset of 
values in Table 3 and full dataset in Tables S–2, Supporting Informa-
tion). This maximum yield dataset includes parameter values in the 
following ranges: Do = 17–199 gdry m− 2; CN = 9.6–113.9 mg L− 1; CP =

2.4–21 mg L− 1; Ht = 0–123 gdry m− 2; Hr = 0.20–0.72; and Hf = 1–5 days; 
Dannual = 6209 to 6898 gdry m− 2. Overall, in terms of nutrient concen-
trations, the majority of the parameters fall within the classification of 
raw wastewater or primary effluent for domestic wastewater (Metcalf 
and Eddy, 2003). Lower values of Hf (i.e., more frequent harvesting) 
with low Hr produced higher annual yields (Fig. 4). The equifinality 
property of the parameter set (which causes different combinations of 
parameters to produce similar duckweed yields) offers flexible options 
to design duckweed growing systems depending on the availability of 
nutrients, environmental conditions, and operational or harvesting 
constraints. 

Among the entire dataset, the maximum biomass yield obtained was 
6898 gdry m− 2. This yield was achieved under the following conditions: 

Do = 169 gdry m− 2; Ht = 76 gdry m− 2; CN = 50.1 mg L− 1; CP = 7.5 mg L− 1; 
Hr = 0.35; and Hf = 1 day. As can be seen from Fig. 4, there is an inverse 
correlation between CN and CP values, which is identical to the trend 
observed in general duckweed growth and harvest model. Low N con-
centration can be compensated with higher P concentration to achieve 
similar yields, and vice versa, provided minimum required CN and CP are 
available in the growing media. Hf and Hr are directly correlated, and 
operating at a higher frequency yields higher duckweed biomass. 
Similar to the N–P concentration correlation, Hr can be adjusted to 
compensate for Hf, as they can be paired at various optima to obtain high 
duckweed yields. 

Apart from maximum yield, other selected scenarios were analyzed 
using the high yield dataset (Table 3) as discussed below. Most of the 
high yield values were observed at low Hf (1 day) and high Do; however 
even with low Do, yields could be maximized by increasing the N/P 
concentrations or Hr. 

3.2.1.1. Low nitrogen scenario. The lowest CN scenario within the high 
yield dataset (with CN = 9.6 mg L− 1) yields an annual duckweed pro-
duction value of 6368 gdry m− 2 (Table 3). The other parameters under 
this scenario include: Do = 181 gdry m− 2; Ht = 0.1 gdry m− 2; CP = 12.3 
mg L− 1; Hr = 0.32; and Hf = 2 days. Low threshold value means high 
residual duckweed concentration after each harvest, which indicates 
that the threshold parameter was essentially not triggered in this sce-
nario. The nutrient concentrations are similar to effluent from a 
wastewater treatment plant that facilitates N removal but with no 

Fig. 3. Cumulative annual duckweed yields obtained for the Florida case study over the range of parameter values considered during optimization. Red highlighted 
points indicate data within 10% of the maximum yield value. 
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designated P removal units, such as the Modified Ludzack-Ettinger 
process (Metcalf and Eddy, 2003). 

3.2.1.2. Low phosphorus scenario. This scenario was selected for the 
following parameter set: Do = 50 gdry m− 2; Ht = 89 gdry m− 2; CN = 64.8 
mg L− 1; CP = 2.4 mg L− 1; Hr = 0.53; and Hf = 1 day (Table 3). This 
combination of P and N concentrations is typical of raw domestic 
wastewater in areas where restrictions are imposed on phosphorus 
detergent use (Sedlak, 1991). In this case, low P concentration can be 

compensated by high N concentration and frequent harvesting to ach-
ieve high biomass yield. 

3.2.1.3. Low maintenance scenario. The highest value of Hf (in days) 
corresponds to the low maintenance scenario in which duckweed is 
harvested on fewer days hence labor costs are reduced. Under this sce-
nario, the Hf was once in every five days, and Hr was 0.69. The other 
parameters were set to: Do = 143 gdry m− 2; Ht = 98 gdry m− 2; CN = 14.5 
mg L− 1; and CP = 9.5 mg L− 1. This scenario yields 6250 gdry m− 2, which 

Table 3 
Subset of Stella simulation parameter sets and results, highlighting selected operational scenarios within 10% of the 
highest duckweed yield. 

Fig. 4. Maximum annual duckweed yield for the Florida case study as a function of: A) initial N and P concentrations; B) harvest ratio and harvest frequency.  
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is 9.6% lower than the maximum (Table 3). However, this is an 
important scenario to incorporate the labor costs for economical pro-
duction of duckweed. Hf above 5 days showed decreasing trend in 
duckweed biomass yield for all combinations of parameter sets. 

3.2.2. Optimization of annual duckweed yield for the Florida case study 
The machine learning model for FL case study revealed a root mean 

squared error (RMSE) of 97.63 gdry m− 2 with testing dataset and 87.17 
gdry m− 2 RMSE with training dataset. An R2 of 0.99 was obtained for 
both testing and training datasets (Fig. 5). The results of the brute force 
optimization (see methods section) predict that a maximum of 7020 gdry 
m− 2 (or 70 dry tons ha− 1) duckweed can be harvested cumulatively in a 
year at the location considered under the following growth conditions: 
Do = 85.9 gdry m− 2; Ht = 98.8 gdry m− 2; CN = 17.9 mg L− 1; CP = 4.9 mg 
L− 1; Hr = 0.2; and Hf = 1 day. This yield value is 1.8% higher than the 
maximum annual yield obtained through Stella simulations. The 
optimal N and P concentrations obtained in this case study are within 
the range of parameter values for optimal duckweed growth reported by 
Lasfar et al. (2007). In their study, duckweed growth rates have been 
shown to be practically constant for N between 3-120 mg L− 1 and P 
between 1-20 mg L− 1, with declining growth rates observed for con-
centrations below or above these ranges. 

The optimal parameter set shows that even with low nutrient con-
centrations, a high yield of duckweed can be obtained with frequent 
harvesting. The significance of frequent harvesting in maintaining a 
high duckweed yield has been emphasized by Said et al. (1979) who 
reported a 58% increase in duckweed yield with daily harvesting when 
compared to weekly harvesting for duckweed grown on diluted cattle 
manure. The higher Ht in the optimized parameter set indicates that it is 
critical to ensure adequate duckweed biomass accumulation through 
careful selection of harvesting regime in these production systems. 
Practical constraints, such as those influenced by the availability of 
wastewater and labor at a given location, can be incorporated into this 
optimization framework. By appropriately changing the optimization 
objectives and/or introducing such constraints, this framework can be 
used to aid in decision-making related to production and logistics in 
biorefineries. 

3.3. Limitations and future scope 

The present study amends an existing duckweed growth model by 
including a harvesting regime for large-scale applications. With addi-
tional model improvements, such as adding a light intensity parameter 
and incorporating dynamics of nutrient uptake competition between 
different organisms, duckweed growth can be better represented to 
improve yield predictions. 

The general duckweed growth and harvest model presented in this 
study calculates the theoretical duckweed yield considering constant 
parameter values throughout the duration of the simulation period. 
Daily variation in environmental variables such as temperature and 
photoperiod was not considered in this model and hence the developed 
general regression model is only recommended for highly-controlled 
environments. For large scale applications with less environmental 
control, a model similar to the Florida case study model would be 
required to incorporate daily input of temperature and photoperiod. 
Practical constraints such as wastewater availability (affecting nutrient 
concentrations in the growth media), and labor availability (influencing 
harvesting operations), would need to be included to simulate more 
realistic scenarios. 

In terms of future applications, the general duckweed growth and 
harvest model offers an excellent option for practitioners interested in 
an easy method to predict duckweed yield. To tailor predictions for a 
specific geographic location, application of the machine learning-based 
optimization used in this study would require first running the Stella 
simulations with location-specific data, and then using the simulation 
results to fit the machine learning model. With the inclusion of addi-
tional model variables such as cloud coverage and duckweed nutrient 
content, other regression methods and optimization algorithms could be 
attempted in the future to compare their performance to the methods 
presented in this study. 

Both the general model and site-specific Florida model did not ac-
count for harvesting and transportation losses, which may have signif-
icant effect on the net duckweed yield in biorefineries. Since harvesting 
contributes a large share of the total operating cost in biorefineries, a 
detailed techno-economic analysis with the proposed model would be 
beneficial in assessing the tradeoffs between maximum biomass yield 
and production cost. 

4. Conclusions 

The incorporation of harvest parameters (harvest frequency, harvest 
ratio, and harvest threshold) play a critical role in improving duckweed 
yield predictions for large-scale applications with regular harvesting 
such as a duckweed-based biorefinery. The regression equations devel-
oped in this paper, which link simulated duckweed yield to growth and 
harvest parameters, offer a generalized and simplistic way for users to 
estimate annual duckweed yields with good accuracy. By integrating a 
machine learning-based duckweed growth model to an optimization 
algorithm, we further presented a framework that generated optimal 
model parameters to maximize duckweed biomass production at a 
specific geographic location. This framework can be used as a decision- 
making tool to find parameter combinations that work best to maximize 
duckweed yield for a given set of location-specific constraints such as 
labor and wastewater availability. Model refinement utilizing other 
yield-affecting parameters like cloud coverage and light intensity, and 
incorporating additional variables like transportation losses, would 
further enhance the model’s performance to better match real-world 
conditions. 
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