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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Duckweed can be used to recover ni-
trogen (N) and phosphorus (P) from 
dairy wastewater. 

• Nutrient loadings to the Chesapeake Bay 
Watershed (CBW) can be reduced by 
replacing alfalfa cultivation with 
duckweed. 

• Spatial optimization identified locations 
for alfalfa-to-duckweed replacement to 
minimize N and P loads to the CBW. 

• A load reduction of 12.8% N and 9.2% P 
is possible with a 40% decrease in al-
falfa area. 

• High protein duckweed yields almost 7 
times the baseline net revenue of alfalfa 
production.  
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A B S T R A C T   

CONTEXT: To promote circularity in agricultural systems, the utilization of aquatic vegetation for ecological 
wastewater treatment is a potential mechanism to capture and upcycle nutrients. Agricultural wastewater is an 
excellent growing medium for aquatic plants like duckweed, offering opportunities for wastewater treatment and 
conversion of harvested biomass into bio-based products, including protein-rich livestock feed, which can 
potentially replace conventional soil-based crops such as alfalfa. 
OBJECTIVE: We hypothesize that nitrogen (N) and phosphorus (P) loadings to the Chesapeake Bay Watershed 
(CBW) can be reduced via replacing alfalfa cultivation with manure-grown duckweed by: a) reducing excess 
manure application on agricultural fields; b) reducing synthetic fertilizer application on alfalfa croplands; and c) 
decreasing the release of fixed N back into the environment from the decomposition of alfalfa crop residue. 
METHODS: This study developed an optimization framework to identify locations where alfalfa-to-duckweed 
replacement could be theoretically employed to minimize N and P loads into the CBW. A relative effective-
ness (RE) indicator representing landscape-specific nutrient delivery capacity was included within the frame-
work. Using county-level data on alfalfa yields, cropping area, and nutrient inputs from alfalfa croplands and 
dairy manure, we identified alfalfa cultivation areas that could be removed and replaced with full or partial 
duckweed cultivation and land conservation for optimal benefits. 
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RESULTS AND CONCLUSIONS: At the county scale, counties in Pennsylvania (especially Lancaster and adjacent 
regions) with widespread farming operations and high RE values consistently indicated the greatest benefit by 
replacing large areas of alfalfa cultivation (> 80% in each county) with duckweed. Using nutrient load mini-
mization as the primary objective function, a 2.9% N reduction and 2.4% P reduction can be achieved at the 
watershed scale by converting only 7.6% of the total alfalfa cropland area into duckweed farms. Upon intro-
ducing production cost minimization as a competing second objective function, up to 12.8% N reduction and 
9.2% P reduction are possible with a 40% decrease in the alfalfa cropping area. A 10-year economic analysis 
demonstrated the possibility for superior return on investment with this approach, leading to almost seven times 
the baseline net revenue with alfalfa production, primarily attributed to the higher protein content and corre-
sponding revenue potential of duckweed. 
SIGNIFICANCE: Many different constraints on alfalfa production (ex., maintaining some baseline production) and 
duckweed replacement strategies (ex., utilization of decommissioned alfalfa area vs. soil conservation) were used 
in this study, which offer a wide range of optimal solutions that consider both environmental and economic 
tradeoffs.   

1. Introduction 

Excessive concentrations of nutrients in the Chesapeake Bay Water-
shed (CBW) have long been known to cause eutrophication and hypoxia, 
leading to declining ecosystem health in the bay region (Russell et al., 
2008). According to the Chesapeake Bay Foundation (CBF, http://www. 
cbf.org), agricultural activities contribute to the largest share of nitrogen 
(N) and phosphorus (P) loads reaching the Bay, of which 17% N and 
38% P are attributed to manure, and 15% N and 28% P are attributed to 
fertilizers (CBF, 2010; Majsztrik and Lea-Cox, 2013). Dairy operations 
alone amount to 20% of manure P and 24% of manure N generated 
within the watershed (Devereux, 2009). State and federal initiatives are 
being steered to achieve the total maximum daily load (TMDL) targets 
set by the U.S. Environmental Protection Agency for all the bay water-
shed segments (USEPA, 2010). However, most restoration efforts have 
been focused on point-source nutrient load reductions, and the EPA does 
not have the authority to enforce a permitting process to curb non-point 
source pollution such as that coming from manure- and fertilizer-laden 
runoff (Hinkle, 2021). 

Alfalfa is considered one of the highest-quality forages, and dairy 
cows efficiently utilize its protein (13–18% on a dry matter basis), cal-
cium, and fiber for producing milk (Jennings, 2005). Many dairy 
farmers located in the CBW's nutrient hotspot regions such as Lancaster, 
PA, grow their own alfalfa as protein feed for their cows. To unload the 
excess dairy manure generated in these regions, farmers typically carry 
out manure spreading on their farms. Since synthetic fertilizers gener-
ally are also applied to these fields, this practice leaves a substantial 
amount of nutrients in the soil that may leach as runoff and subsurface 
flow. Therefore, proper manure and fertilizer management are vital in 
addressing the issue of degraded water quality in watersheds with 
intensive dairy operations such as the CBW. A more sustainable solution 
for attaining water quality benefits could consist of a circular system that 
efficiently utilizes the excess manure and simultaneously upcycles the 
waste nutrients to produce animal feed without using additional 
fertilizers. 

With the simultaneous increase in meat and milk production to feed 
the growing human population (Ritchie and Roser, 2017) and the rising 
trend of plant-based diets, there is a high demand to find alternative 
non-animal protein sources for both feed and food. Duckweed (a small 
floating aquatic plant of the Lemnaceae family) is emerging as a po-
tential candidate for sustainable protein production (Roman et al., 
2021). Duckweed can proliferate under a wide range of environmental 
conditions and accumulate up to 45% protein by dry mass (Leng, 1999). 
Its ability to uptake nutrients when grown in agricultural wastewater 
has been exploited in the past as a promising way to promote circular 
agricultural systems (Adhikari et al., 2015; Iqbal, 2012; Timmerman and 
Hoving, 2016). Duckweed produced in this way can not only be used as 
animal feed, but also as a biofuel feedstock (Calicioglu et al., 2021; Pena 
et al., 2017; Zhao et al., 2015), fertilizer-substitute (Fernandez Pulido 
et al., 2021; Kreider et al., 2019), and potential human protein source 

(Roman et al., 2021). On dairy farms, duckweed offers an excellent 
pathway to convert manure nutrients into valuable feed and other by- 
products through cultivation on diluted manure. Substituting alfalfa 
feed with manure-grown duckweed may help alleviate the problems 
arising from nutrient pollution in surrounding water bodies by reducing 
the field application of manure and fertilizers. Converting low-yielding 
marginal lands to duckweed farms could further provide additional 
economic benefits to farmers and alleviate feed scarcity. 

Due to the widely varying land use and biophysical characteristics in 
the CBW, it is essential to take a spatially targeted management 
approach to reduce the nutrient loads delivered to the Bay. Hotspot 
regions comprising dairy farms and alfalfa cropping areas present ideal 
locations to implement manure-based duckweed cultivation as a sub-
stitute for the existing alfalfa feed production. In this study, we present a 
watershed-scale spatial optimization framework that identifies CBW 
counties for optimal manure-based duckweed cultivation in order to 
minimize N and P loads generated in the watershed. Specifically, we 
focus on reducing the transport and delivery of nutrients contained in 
dairy manure and alfalfa fertilizers by finding critical counties where 
existing alfalfa farms can be replaced with duckweed farms. Since 
duckweed cultivation comes with a high capital cost and return on in-
vestment compared to row crops such as alfalfa, the economic tradeoffs 
of growing duckweed on dairy farms have also been incorporated into 
the optimization framework. 

Overall, we evaluated the economic feasibility and environmental 
benefits of replacing alfalfa production on dairy farms with duckweed 
cultivation by: 1) finding optimal manure-based duckweed production 
areas at a county-scale that would minimize nutrient loads entering the 
Chesapeake Bay; and 2) assessing spatial patterns of optimized duck-
weed cultivation scenarios involving constraints for both alfalfa pro-
duction and economics. 

2. Methodology 

2.1. Study area and data 

The Chesapeake Bay is an estuarine system with a drainage area 
spanning 166,000 km2 across the entire District of Columbia (DC) and 
parts of Pennsylvania (PA), Delaware (DE), Virginia (VA), West Virginia 
(WV), and New York (NY). The primary land cover in the watershed is 
forest (54.5%), followed by pasture (14.9%), developed areas (10.8%), 
and cultivated crops (9.5%) (Kang and Sridhar, 2018). The watershed 
consists of 203 counties, of which 118 have dairy farms. Lancaster and 
Franklin counties in PA together account for approximately 30% of the 
dairy cows within the CBW (Fig. 1). 

County areas were extracted from the U.S. Department of Agriculture 
National Agricultural Statistic Service (USDA-NASS) database (https:// 
www.nass.usda.gov/). The remaining variables used in the study were 
obtained from a Commodity-Specific Net Anthropogenic Phosphorus 
and Nitrogen Inputs (CSNAPNI) model that estimates county and 
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watershed scale N and P nutrient inputs to crop and animal products 
((Algren et al., 2021, 2022); https://github.com/malgren/CSNAPNI). 
Several modifications are currently being made to the CSNAPNI model 
to increase the spatial resolution and incorporate region-specific fertil-
izer rates. However, the latest available version (as of July 2022) was 
adopted for the current study. The results from the CSNAPNI model used 
here are: (1) alfalfa production; (2) N and P in fertilizers applied to al-
falfa; (3) N in soil from atmospheric fixation; and (4) N and P in 
recoverable manure, all at county-scale (in tons per year). Here, the N 
and P values are the gross anthropogenic inputs to the land and do not 
account for losses due to transport and other biogeochemical processes. 
The model uses a yield-based approach to estimate agricultural N fixa-
tion, which for alfalfa is assumed to be 0.031 kg N/kg dry matter (Han 
and Allan, 2008; Hong et al., 2013). Recoverable manure corresponds to 
the amount of manure that is collectible and available for land appli-
cation (Kellogg et al., 2011). ArcGIS tools were utilized to clip the 
counties that intersected the CBW boundary, and proportional ratios 
were applied to determine the value of all variables in the clipped county 
areas (Eq. 1). 

Xclipped = Xcounty*
Aclipped

Acounty
(1)  

where Acounty is the total county area, Xcounty is the actual variable value 
for the county, Aclipped is the clipped area inside the watershed boundary, 
and Xclipped is the value of the variable corresponding to the clipped area. 
The distribution of the number of dairy cows and alfalfa production on a 
county-scale are shown in Fig. 1. 

To account for the effect of geographical characteristics on the 
amount of nutrients delivered to the Bay, relative effectiveness (RE) 
values of N and P established by the Chesapeake Bay Program watershed 
model were used (https://www.chesapeakebay.net/; Chesapeake Bay 
Program (2020); Fig. 2). These indicators are calculated by combining 
riverine and estuarine effectiveness that estimates the improvement in 
dissolved oxygen per pound of nutrient reduction to the local river. In 
other words, they aid in the targeted implementation of nutrient man-
agement practices by identifying regions with higher RE values where 
interventions would most effectively improve the Bay's water quality. 
Since the effectiveness is estimated for 1902 land-river segments that are 
smaller in scale than the county-scale used in our study, area-weighted 
averaging was used to calculate the RE for each county. Although RE 
values exist separately for two types of sources (wastewater treatment 

plants and all other sources), we used the values corresponding to ‘all 
other sources’ to represent a broader range of non-point source nutrient 
pollution contributors. 

2.2. AMALGAM optimization 

A Multi Algorithm Genetically Adaptive Method (AMALGAM) 
developed by (Vrugt and Robinson, 2007) was used in this study to 
perform the spatial optimization of duckweed cultivation locations. 
AMALGAM runs four different optimization algorithms in parallel (Non- 
dominated Sorted Genetic Algorithm (NSGA) II, particle swarm opti-
mization, adaptive metropolis search, and differential evolution) and 
allows information sharing between these algorithms to produce the 
best optimal solution. Studies in the past have demonstrated the effec-
tiveness of using AMALGAM in model calibrations and spatial optimi-
zation frameworks (Cibin and Chaubey, 2015; P. V. Femeena et al., 
2018; Liu et al., 2016). It merges the strengths of different algorithms, 
which when used independently, may lead to widely varying optimal 
solutions depending on factors such as initial parameter values. 
Combining algorithms in this manner has been shown to yield superior 
and more convergent results compared to single-algorithm techniques 
(Zhang et al., 2008). 

The optimizing variable was the percentage of alfalfa cropping area 
removed in each county that has dairy production (118 counties in 
total). Inside the optimizer, these values (between 0 and 100%) were 
randomly generated and provided as input to the module that calculates 
the objective function value for each iteration. The objective functions 
used for the different scenarios are described in Section 2.2.1. A popu-
lation size of 100 was assumed for this study, which means that for each 

Fig. 1. County-level spatial distribution of (a) alfalfa production and (b) the 
number of dairy cows in the Chesapeake Bay Watershed showing hotspot 
counties (Lancaster and Franklin) with the highest alfalfa and dairy 
manure production. 

Fig. 2. Location map of the Chesapeake Bay watershed showing the relative 
effectiveness of nitrogen delivery for all land-river segments (adapted from 
(Chesapeake Bay Program, 2020). 
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iteration, the optimizer generates 100 randomly generated parameter 
values. As the iterations progress, the algorithms narrow down the 
search region of parameter values based on objective function values 
from previous iterations and finally converge to parameter sets with 
minimum objective function values (Fig. 3). All optimization runs had a 
termination criterion of 100,000 iterations – a high value selected to 
ensure that the optimization yields reasonable convergence of objective 
function values. 

The scenarios were run on a MATLAB programming platform, with 
script files consisting of AMALGAM algorithms and additional modules 
to compute our user-defined objective functions. Within the objective 
function module, replacing the land removed in alfalfa with duckweed 
followed two different kinds of substitution strategies depending on the 
chosen scenario: a) Growing duckweed on all of the land removed from 
alfalfa production, resulting in higher protein production than the 
baseline scenario (since duckweed has more protein content than al-
falfa); or b) Growing duckweed on only part of the land removed from 
alfalfa to produce an equivalent amount of protein as the baseline sce-
nario, and leaving the remaining land uncultivated. Both strategies 
could reduce the fertilizer application and fixed N in the soil due to the 
reduced area of alfalfa land under cultivation and simultaneously 
decrease the manure runoff from farms by utilizing it for duckweed 
production. The rationale behind selecting these two strategies is that 
they provide different types of benefits to the farmers and the environ-
ment. Strategy ‘a’, with its larger share of land under duckweed pro-
duction, will have greater nutrient load reduction benefits when 
compared to strategy ‘b’. However, strategy ‘b’ would be a better choice 

if agricultural land retirement (as a soil conservation measure) is a 
priority and socio-economic barriers in transitioning all of their farm-
land to a new crop are of concern to farmers. Across the study, we as-
sume that the total area of land made available for duckweed cultivation 
is entirely used to construct outdoor ponds for growing duckweed. Since 
the entire area available in each county could be far greater than a 
typical pond size, a reasonable assumption involves spatially distributed 
ponds covering the total area. Vertical duckweed farming, which can 
generate higher yields with a lower land footprint than conventional 
ponds, is another potential growth system not considered in this study. 

The equations below illustrate the computational steps used to esti-
mate the new duckweed area and the resulting nutrient and manure load 
reductions for a certain percentage of the land area removed from alfalfa 
production (all values calculated at the county-scale). Eq.s (2) and (3) 
correspond to duckweed area calculations using the two substitution 
strategies described above. 

Strategy ‘a’ (land conversion of all removed alfalfa to duckweed) 

DWarea =
%alfalfa area removed*Alfarea

100
(2)  

where DWarea = new duckweed area and Alfarea = existing alfalfa area. 
Strategy ‘b’ (equivalent baseline protein production) 

DWarea =
%alfalfa area removed*Alfarea

100
*

Alfyield*Alfprotein

DWyield*DWprotein
(3)  

where DWarea = new duckweed area; Alfarea = existing alfalfa area; 

Fig. 3. Flowchart outlining optimization framework utilizing AMALGAM algorithm (method adopted from Femeena et al. (2018)).  
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Alfyield = average alfalfa yield (27.7 dry ton/ha/yr, (Penn State Exten-
sion, 2019)); DWyield = average duckweed yield (30 dry ton/ha/yr, 
(Leng et al., 1995)); Alfprotein = average protein content of alfalfa (15%, 
(Foster et al., 2009)); and DWprotein = average protein content of duck-
weed (35%, (Leng et al., 1995)). Note that the duckweed yield used here 
is an optimistic estimate based on a review conducted by Leng et al. 
(1995) that looked at yields from growing duckweed under real-world 
conditions (reported range = 10 to 30 tons/ha/yr). 

Once the new county areas under duckweed and alfalfa production 
were computed, nutrient loads corresponding to alfalfa production were 
determined by simple proportional relationships (Eq. (4)). 

Nutrnew = Nutrexisting*
Anew

Aexisting
(4)  

where Nutrnew is the new nutrient load (N fertilizer, P fertilizer, or N 
fixed), Nutrexisting is the existing nutrient load, and Anew and Aexisting are 
the new and existing areas under alfalfa. 

Manure loads from each county were estimated assuming a 13 gal/ 
day/animal-unit of dairy manure production (Penn State Extension, 
2017) and using an average value of 1.5 animal units per dairy cow. The 
N and P contents in liquid manure were assumed to be 24 lb./1000 gal 
(2875.8 mg/L) and 9 lb./1000 gal (1078.4 mg/L), respectively (Jokela 
and Peters, 2009). Since raw manure is extremely high in nutrients, it 
cannot be used directly for growing duckweed. A previous study 
demonstrated that duckweed growth is optimal when the N concentra-
tion in the media is 60 mg/L (Femeena et al., 2023). Accordingly, a 2.1% 
manure dilution was considered to support the duckweed yield and 
protein content described previously, and the remaining manure was 
counted towards the total manure that gets land applied and delivered to 
the Bay. The sum of N (from fertilizer, fixation, and manure) and P (from 
fertilizer and manure) at the county-level were multiplied by the cor-
responding RE values of each county to estimate the effective N and P 
loads delivered to the Chesapeake Bay. For the final objective functions, 
watershed-scale nutrient loads were computed, as discussed in Section 
2.2.1. When two objective functions (for nutrients and cost) are 
considered simultaneously, the optimizer tends to minimize the objec-
tive function with the higher order value. To eliminate this bias, scaling 
factors were used to convert the actual objective function values to a 
smaller order index values. 

2.2.1. Scenario selection 
In addition to the baseline (existing) scenario, eight additional sce-

narios were formulated to evaluate the effect of alfalfa-to-duckweed 
farm conversion on watershed-scale nutrient loads and production 
cost (Table 1). The primary differences in the scenarios are: 1) the type 
of objective function used (single objective to reduce nutrient loads or 
two objectives to reduce nutrients and cost of production); 2) duckweed 
replacement strategy (baseline equivalent protein production or con-
version of all removed alfalfa area to duckweed cultivation). An added 
constraint was necessary for an effective optimization run for the single 
objective scenarios (1–6). This is because a single-objective optimization 
for nutrient reduction without any competing constraints would result in 
the most optimal scenario of 100% conversion of alfalfa to duckweed in 
all counties, which is unrealistic. We formulated hypothetical cases 
where a certain percentage of the total baseline alfalfa cropland area has 
to be retained. For instance, scenario 1 ensures that 90% of the baseline 
alfalfa cropland area is maintained or that only 10% of the alfalfa land is 
available for duckweed cultivation. This analysis also considered two 
additional cases with 70% and 50% alfalfa production constraints. A 
constraint on baseline production ensures that the impact on existing 
farming systems is not very high, avoids market fluctuations, and re-
duces socio-economic burdens on farmers who are hesitant in tran-
sitioning to newer crop varieties. 

2.2.1.1. Single objective optimization. The objective function (OF) for 

scenarios 1–6 involves minimizing total watershed nutrient loads from 
the Chesapeake Bay (Eq. (5)). The effective N and P loads from all 
counties are summed and divided by a factor of 106 to scale it down to a 
smaller value, referred to here as the ‘Nutrient load index (NLI)’. It 
should be noted that the variables used in Eq. (5) correspond to tons of N 
and P, which are typically not added together in real-world conditions. 
In addition, since the nutrient loads are multiplied with RE values (that 
range from 0 to 25), OF1 does not have a physical meaning. In other 
words, it does not indicate the actual load value for the watershed but 
rather implies an index representative of the relative amount of nutrient 
loads reaching the Bay. 

OF1 =

∑203

i=1
(AlfNi + ManureNi)*RENi +

∑203

i=1
(AlfPi + ManurePi)*REPi

106 (5)  

where: OF1 is the objective function (also called the NLI);i is the county 
number; AlfNi and AlfPi are the N and P from alfalfa croplands (through 
fertilizers/soil fixation); ManureNi and ManurePi are the N and P from 
dairy manure; and RENi and REPi are the relative effectiveness values for 
N and P, averaged for each county. 

The baseline alfalfa production constraints (90%, 70%, and 50%) 
were incorporated into the algorithm by setting OF1 to a very large 
value (106) if the watershed-level alfalfa production exceeds 90%, 70%, 
or 50% of the baseline production, respectively. Since the algorithm is 
automatically designed to minimize the value of OF1, this approach will 
force the optimizer to eliminate parameter search in the region that 
produces high OF1 values. The final parameter set at the end of 100,000 
runs was selected as the optimal solution. 

2.2.1.2. Two-objective optimization. Duckweed production involves a 
high capital cost in the first year due to construction costs associated 
with building ponds and setting up storage and drying facilities for the 
harvested duckweed. Therefore, it is essential to consider the economic 
tradeoffs associated with converting existing alfalfa farms to duckweed 
cultivation systems. For scenarios 7 and 8, a cost-based objective func-
tion (Eq. (6)), also called the ‘Net cost index (NCI)’, was thus introduced 
in addition to OF1 described in Eq. (5). Specifically, OF2 was set to 
minimize the increase in annual net cost compared to the baseline sce-
nario. The first summation term in the numerator in Eq. (6) corresponds 

Table 1 
Scenarios used in the optimization runs and their corresponding objectives, 
constraints, and duckweed replacement strategy used.  

Scenario Objective(s) Constraint Duckweed Replacement 
Strategy 

1 

Minimize 
nutrients 

90% baseline total 
watershed alfalfa 
cropland area 

All removed land cultivated 
with duckweed 

2 
70% baseline total 
watershed alfalfa 
cropland area 

3 
50% baseline total 
watershed alfalfa 
cropland area 

4 

Minimize 
nutrients 

90% baseline total 
watershed alfalfa 
cropland area 

Baseline protein production 
maintained; Remaining land 
left uncultivated 

5 
70% baseline total 
watershed alfalfa 
cropland area 

6 
50% baseline total 
watershed alfalfa 
cropland area 

7 
Minimize 
nutrients and 
cost 

– 

All removed land cultivated 
with duckweed 

8 
Baseline protein production 
maintained; Remaining land 
left uncultivated  

P.V. Femeena et al.                                                                                                                                                                                                                             



Agricultural Systems 207 (2023) 103640

6

to the net cost (production cost − revenue) associated with the new 
optimized scenario, and the second term is the net cost for the baseline 
scenario.  

where: OF2 is the second objective function (also called the NCI); i is the 
county number; AlfCostnew and AlfRevnew are the annual alfalfa produc-
tion costs and revenue for the new scenario; DWCostnew and DWRevnew 
are the annual duckweed production costs and revenue for the new 
scenario; AlfCostBase and AlfRevBase are the annual alfalfa production 
costs and revenue for the baseline scenario. 

For estimating the annual costs and revenue, the following as-
sumptions were made (all values presented on an annual basis): Alfalfa 
production cost = $45.34 per ton (Penn State Extension, 2019); Alfalfa 
revenue = $229 per ton dry matter assuming a moisture content of 15% 
(Foster et al., 2009). Duckweed production costs were determined by 
performing a detailed techno-economic analysis (TEA) involving: 1) 
capital costs which include the costs for land, pond construction, and 
drying tent; and 2) operating costs associated with duckweed harvesting 
and drying (See Supporting Information for cost breakdown and as-
sumptions used in the TEA). The analysis yielded an annual duckweed 
production cost of $19,847.50 per ha and a revenue of $16,005.16 per 
ha. This cost corresponded only to year one production and was used in 
all the two-objective optimization runs. However, for long-term anal-
ysis, we used only the operating costs ($4447.89/ha/year) from year 
two onwards. Revenue from duckweed cultivation was calculated using 
the same protein feed value as alfalfa and by applying a weighted ratio 

based on protein percent (DWrevenue = Alfalfarevenue*
DWprotein%

Alfalfaprotein%

)
. 

Assuming the protein content to be 15% in alfalfa (Foster et al., 2009) 
and 35% in duckweed (Leng et al., 1995), we estimated a duckweed 
protein feed value of $535.29 per ton dry matter. We also conducted a 
long-term (10-year) economic analysis to evaluate and compare the 
return on investment for alfalfa versus duckweed farming systems. 

Since the two-objective optimizations involve competing functions 
of NLI and NCI, the final solutions for scenarios 7 and 8 are in the shape 
of a pareto-front that corresponds to multiple optimal parameter sets 
instead of a single parameter set (as seen in the case of a single-objective 
optimization). In other words, multiple combinations of OF1 and OF2 
can be considered optimal values; therefore, selecting one optimal so-
lution is subjective and dependent on the study goals. For the purpose of 
this study, three data points (one at each of the extreme ends of the 
pareto-optimal front and one at the center) were manually selected for 
further analyses. ArcGIS software was used to spatially visualize the 
optimal duckweed production patterns in the CBW for each of the eight 
scenarios. Nutrient load reductions, decreases in alfalfa land area, and 
increases in first-year net cost and 10-year cumulative net revenue were 
extracted for comparison across the different scenarios. 

3. Results 

Spatial analysis of USDA and CSNAPNI model data (Fig. 1) revealed 
that Pennsylvania (PA) counties, which in total constitute 33% of the 
total CBW area, account for the largest share of recoverable dairy 
manure (66%) and alfalfa fertilizer loads (65% of N loads and 70% of P 
loads). The existing baseline scenario results in 44.80 × 104 tons of N 
input (6.5% from alfalfa fertilizers and soil fixation, 93.5% from dairy 
manure) and 18.39 × 104 tons of P input (1.1% from alfalfa fertilizers, 

98.9% from dairy manure) generated in the watershed from dairy 
manure and alfalfa fertilizers alone. Of the three major sources consid-
ered, dairy manure dominated the nutrient share (93.5% of the total), 

whereas the contribution from fertilizers and N fixation was very small 
(6.5%). Baseline production costs and revenue associated with alfalfa 
production were estimated to be $46.25 million and $234.02 million, 
respectively, resulting in net revenue of $187.77 million for the entire 
watershed. 

3.1. Optimization results 

3.1.1. Single objective optimization 
With nutrient load minimization as the only objective function, the 

optimizer yielded an optimal parameter set within the first 10,000 runs, 
with negligible reduction in OF1 beyond the 10,000th iteration. The 
optimal NLI values were 0.83, 0.73, and 0.65 for 90%, 70%, and 50% 
baseline alfalfa production constraints in scenarios 1–3 (Fig. 4a). This 
corresponds to N loads of 43.50 × 104, 40.84 × 104, and 38.56 × 104 

tons, indicating a reduction of 2.9%, 8.8%, and 13.9% from the baseline, 
respectively (Table 2 and Fig. 5). Similar decreases in P loads were also 
observed - Scenario 1: 17.94 × 104 tons (2.4%), Scenario 2: 17.19 × 104 

(8.8%), and Scenario 3: 16.53 × 104 tons (10.1%). 
Although alfalfa only covers 7.6% (1200 km2) of the cropland in the 

CBW, it can potentially export a significant quantity of N from land to 
the rivers. At an average export rate of 14 kg/ha/yr, the total N exported 
from alfalfa fields can amount to 1680 tons annually (Shenk and Linker, 
2013). The CSNPANI model data used in this study revealed that alfalfa 
alone contributes to 29,128 tons of N input (as fertilizer and soil-fixed N) 
and 2100 tons of P input in the entire watershed; combining the input 
from recoverable dairy manure, that increases to 76,356 tons of N and 
10,733 tons of P, respectively. Results from single-objective optimiza-
tion indicate that with only 10% of the alfalfa land in the entire 
watershed allocated for manure-based duckweed cultivation, a total 
amount of 12,991 tons of N and 4438 tons of P inputs can be reduced 
annually. If only part of the removed land is used for duckweed culti-
vation (while maintaining baseline protein yield), the overall manure 
treatment capacity is reduced, which results in slightly higher nutrient 
loads or NLI (Fig. 4b). Assuming a protein content of 35% for duckweed 
and 15% for alfalfa, scenario 3 (with up to 50% alfalfa land available for 
duckweed cultivation) would yield an extra protein production of 10.31 
× 105 tons/yr if all of the removed lands are utilized for farming 
duckweed on dairy manure waste. This is 68% higher than the baseline 
protein production of 6.14 × 105 tons/yr with alfalfa alone. While the 
difference in optimal NLI between the two types of duckweed replace-
ment strategies is very small, the full alfalfa-to-duckweed conversion 
strategy results in an additional annual removal of 6100 tons of N and 
2500 tons of P from the total watershed loads. 

The cost analysis showed that the full duckweed-substitution strat-
egy (scenarios 1–3) comes with a higher production cost than the partial 
duckweed substitution strategy (scenarios 4–6), as expected from the 
increased capital cost in the first year associated with farming duck-
weed. While scenarios 1–3 resulted in a 33–185% increase in net cost in 
the first year, scenarios 4–6 had a comparatively lower increase in cost 
at 20–103% for the three different constraints considered (Table 2 and 
Fig. 5). By financing the initial production cost over a longer timeframe 
(typical of most farm equipment investments), farmers could reap long- 
term profits via duckweed protein sales while avoiding high up-front 

OF2 =

∑203

i=1
[(AlfCostnew − AlfRevnew ) + (DWCostnew − DWRevnew) ] +

∑203

i=1
[AlfCostBase − AlfRevBase]

108 (6)   
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costs. When a period of 10 years is considered, the returns from protein 
sales of duckweed compensate for the high capital cost, as exemplified in 
the cumulative net revenue increase (70–312% for strategy ‘a’ and 
35–99% for strategy ‘b’). Replacing all removed alfalfa land with 
duckweed growing systems is also the optimal scenario for both water 
quality benefits and long-term profits. 

3.1.2. Two-objective optimization 
With net cost minimization introduced as the second objective 

function, the solution obtained is in the form of a pareto-optimal front 
(Fig. 6). Since both OF1 and OF2 were to be minimized, all the data 

points along the pareto-front can be considered as an optimal solution. 
Three cases were selected along each of the pareto-optimal fronts of 
scenarios 7 (all removed alfalfa-to-duckweed conversion) and 8 
(equivalent baseline protein production): A1, A2, and A3 correspond to 
the selected cases in scenario 7; and B1, B2, and B3 correspond to those 
in scenario 8. 

Cases A1 and B1, representing the zero cost/maximum nutrient 
scenarios, are the same as the baseline scenario with zero alfalfa-to- 
duckweed conversion. Case A3 is the maximum cost scenario which 
indicates 100% substitution of all removed alfalfa land with duckweed. 
This scenario also provides the largest environmental benefit with a 

Fig. 4. Data points representing each iteration of the single-objective (nutrient minimizing) optimization with different types of duckweed replacement strategies. 
Panel (a) represents scenarios 1–3 for all removed land-to-duckweed conversion, and (b) represents scenarios 4–6 for equivalent baseline alfalfa production. The data 
is truncated at 10,000 runs since changes in the optimal values were insignificant beyond that point. 

Table 2 
Optimization results for the scenarios examined in this study compared to baseline values at the watershed scale.      

Optimal Results Change from baseline 

Scenario Objective(s) Constraint Duckweed 
replacement 
strategy 

Duck- 
weed 
area 
(ha) 

N load 
(x104 

tons/ 
yr) 

P load 
(x104 

tons/ 
yr) 

Reduction 
in alfalfa 
area 
(%) 

N 
reduction 
(%)* 

P 
reduction 
(%)* 

Increase in 
net cost in 
the first year 
(%) 

Increase in 
net revenue 
after 10 
years (%) 

Baseline – – – 0.0 44.8 18.4 0.0 0.0 0.0 – – 

1 

Minimize 
nutrients 

90% baseline 
alfalfa 
production 

All removed 
alfalfa land to 
duckweed 

11,347.5 43.5 17.9 7.7 2.9 2.4 33.2 70.5 

2 
70% baseline 
alfalfa 
production 

38,831.2 40.8 17.2 26.3 8.8 6.5 109.5 192.7 

3 
50% baseline 
alfalfa 
production 

65,776.9 38.6 16.5 44.5 13.9 10.1 184.6 312.0 

4 

Minimize 
nutrients 

90% baseline 
alfalfa 
production 

Baseline 
equivalent 
protein 
production 

4704.7 44.1 18.2 8.1 1.5 1.0 19.6 35.1 

5 
70% baseline 
alfalfa 
production 

15,169.6 42.7 17.9 25.9 4.6 2.8 61.0 66.5 

6 
50% baseline 
alfalfa 
production 

25,965.2 41.5 17.6 44.4 7.5 4.3 103.1 99.6 

7 (Case 
A2) Minimize 

nutrients 
and cost 

– 

All removed 
alfalfa land to 
duckweed 

59,595.3 39.0 16.7 40.3 12.9 9.2 168.2 283.6 

8 (Case 
B2) 

Baseline 
equivalent 
protein 
production 20,965.7 42.0 17.7 35.9 6.3 3.7 85.1 82.4  

* Refers to the percentage reduction in N and P inputs (from fertilizers, N fixation, and dairy manure) for the entire Chesapeake Bay Watershed. 
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23.2% reduction in N and a 19.4% reduction in P inputs from baseline 
values. The increase in first-year net cost for this case is considerably 
high at 386.1% ($724.9 million above the baseline alfalfa production 
cost across the entire watershed). But it also equates to an elevated in-
crease in protein production (146.5% higher than baseline protein 
production from alfalfa). In this scenario, the return on investment is 
extremely high due to the large amount of duckweed produced, and 
therefore, within the second year, cumulative revenue surpasses the 

cumulative production cost resulting in high profits. 
Case A2 can be considered as the ‘true optimal’ solution in our study 

since it occurs towards the center of the pareto front exhibiting a 
balanced minimum value for both nutrient load and cost (NLI and NCI). 
With a 12.8% reduction in N load and a 9.2% reduction in P load, case 
A2 simultaneously comes with an economic drawback: a 168.2% in-
crease in net cost for the first year of duckweed cultivation. This addi-
tional cost, however, will be paid back over the 10-year period, showing 

Fig. 5. Scenario comparisons showing watershed-level nutrient load reduction, alfalfa area reduction, and increases in first-year net cost and cumulative 10-year net 
revenue for the eight different optimization scenarios. 

Fig. 6. Data points representing each iteration of the two-objective (nutrient and net cost minimizing) optimization with different types of duckweed replacement 
strategies. The cases highlighted in the figure are the selected points identified for further analysis. 
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almost a 4-fold increase in cumulative net revenue at 10 years compared 
to if the existing alfalfa production scenario were to continue (Table 2 
and Fig. 5). If economic constraints are not a concern, case A3 represents 
the most ideal scenario demonstrating double the environmental bene-
fits over the ‘optimal’ case A2. 

The parameter search region shrank considerably when the duck-
weed replacement strategy was changed to strategy ‘b’ with partial 
duckweed cultivation for equivalent baseline protein production. This is 
because it acts as a constraint on the optimization where the algorithm is 
forced to limit the duckweed cultivated area to produce only as much 
protein as the baseline scenario. Accordingly, case B3, the highest cost 
case for strategy ‘b’, is 2.5 times less than the similar high-cost case (A3) 
in strategy ‘a’. In terms of annual reduction in nutrients generated, case 
B3 decreases N and P loads by 12.9% and 8.3%, respectively, over the 
baseline. The increase in the first-year net cost to farmers is about 
210.7% (compared to 386.1% in case A3), and 10-year cumulative net 
revenue shows an increase of 3 times over the baseline condition 
(compared to 7.6 times in case A3). Case B2, considered here as the ‘true 
optimal’ case, would decrease the watershed-scale N and P loads by only 
6.3% and 3.7%, respectively, which are slightly less than half of what 
was achieved in the optimal case A2 with the full duckweed conversion 
strategy (Table 2 and Fig. 5). Consequently, the increase in first-year net 

cost is lower than case A2 (85% compared to the baseline) and the 10- 
year cumulative net revenue is only 2 times that of the baseline value. 

3.2. Spatial patterns of optimal duckweed farming locations 

3.2.1. Single objective optimization 
As expected from the high RE values and the substantial quantities of 

dairy manure generation and alfalfa production in PA counties, the 
largest share of alfalfa-to-duckweed conversion occurs predominantly in 
PA and other counties in the upper half of the watershed (Fig. 7). This is 
consistent across all the constrained scenarios 1 to 6 (with 90%, 70%, 
and 50% baseline alfalfa production constraints). For scenarios 1 to 3 
with strategy ‘a’ duckweed replacement (full conversion), the optimized 
spatial pattern showed a total land conversion of 11,347 ha when 10% of 
the alfalfa cropland is available for duckweed cultivation compared to 
38,831 ha and 65,776 ha when 30% and 50% alfalfa croplands are 
available, respectively (Table 2). Only 12 counties out of 203 showed 
>10% land conversion from alfalfa to duckweed in scenario 1, indi-
cating that reasonable nutrient reduction (12,991 tons of N and 4437 
tons of P) can be achieved by just targeting the top 6% of the hotspot 
counties (Fig. S1, Supporting Information). For scenarios 2, 3, 5, and 6, 
which had greater flexibility in land availability for duckweed 

Fig. 7. Spatial pattern showing the optimal distribution of land converted from alfalfa to manure-based duckweed cultivation for single-objective (nutrient load 
minimizing) optimization. Scenarios with two types of duckweed replacement strategies are shown: (a) Scenarios 1 to 3 with full duckweed cultivation in all removed 
alfalfa land (upper panel); and (b) scenarios 4 to 6 with partial duckweed cultivation to maintain equivalent baseline protein production (lower panel). 
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cultivation, the number of counties that achieved modeling optimization 
of >10% land conversion was in the range of 57 to 75 (less than half of 
the total number of counties in the watershed). 

Lancaster county showed the highest effectiveness in reducing 
nutrient loads, with 83% conversion in scenario 1 and 100% conversion 
for scenarios 2 and 3. We obtained similar results for strategy ‘b’ 
duckweed replacement (partial conversion), where Lancaster county 
had 72%, 100%, and 100% land conversions for scenarios 4, 5, and 6, 
respectively. Equifinality is a known issue in optimization studies with 
several variables wherein different parameter combinations result in 
similar results. This may have led to some counties being displayed as 
hotspots in certain scenarios and not in the rest (for example, Broome 
county in NY and Adams county in PA being hotspots in all scenarios 
except 8). However, there were still several counties with a large 
number of dairy cows and high RE values that could be considered 
critical in reducing overall nutrients delivered to the Bay, with examples 
including: Warren and Essex counties in Virginia; Garett county in 
Maryland; Lebanon, Luzerne, Montour, Mifflin, Juniata, York, Chester, 
Northumberland, Berks, Columbia, Clinton, Perry, Snyder, and Dauphin 
counties in PA, which showed recommendations for >50% alfalfa land 
conversion for most of the scenarios studied (Fig. 7). Optimal duckweed 
farming locations revealed similar spatial patterns for the two duckweed 
replacement strategies considered, indicating that the hotspot counties 
remain the same whether full or partial duckweed cultivation is utilized. 
The major difference between the two strategies is the higher mass of 
potential protein production and greater reduction in nutrient delivery 
when full alfalfa-to-duckweed conversion is employed as opposed to 
partial conversion (as discussed in Section 3.1). 

3.2.2. Two-objective optimization 
Similar to the single-objective optimization, optimal patterns in 

scenarios 7 and 8 with both nutrients and cost included in the objective 
functions showed a greater percentage of alfalfa cropland removed from 
counties mainly in PA and those close to the Bay region (Fig. 8). In 
scenario 7, out of the 24 counties that recommended >80% land 

conversion, only three were outside PA: Frederick in MD; Alleghany in 
VA; and Ontario in NY. A noteworthy observation is that Ontario county 
in NY and Allegheny county in VA are not dairy-farm-intensive counties 
and do not appear in the optimal pattern for scenario 8, again high-
lighting the equifinality problem in optimization problems. 

Optimal cases A2 in scenario 7, and B2 in scenario 8, would result in 
new duckweed cultivation areas of 59,595 ha (40.3% reduction in alfalfa 
land) and 20,965 ha (35% reduction in alfalfa land), respectively 
(Table 2). Since A2 utilizes all the removed land for duckweed cultiva-
tion, it has higher nutrient reduction benefits (12.8% in N and 9.2% in P) 
when compared to B2 (6.3% in N and 3.7% in P) and offers additional 
protein production (3.78 × 105 tons more than baseline). 

4. Discussion 

The non-linear multi-objective optimization proposed in this study 
warranted the use of an enhanced evolutionary algorithm, as validated 
by Toscano et al. (2022). While spatial optimization and land prioriti-
zation models have been developed in the past using a host of simple 
optimization methods such as linear programming (Malczewski, 1999), 
the more advanced evolutionary algorithms like NSGA tend to produce 
more accurate results when multiple objectives and constraints are 
involved (Cao et al., 2011; Wang et al., 2021). Prior CBW-focused work 
has primarily employed single-objective optimization to identify cost- 
effective best management practices (BMPs) in the watershed (Z. Kauf-
man et al., 2014; Talberth et al., 2015). Methods like linear program-
ming and the interior-point method have been used successfully in some 
of these studies, but these algorithms, albeit faster, often times converge 
to a local optimum and lead to erroneous solutions (Santos et al., 2003). 
Although employing a single algorithm for spatial optimization could 
have decreased the runtime considerably, a combination algorithm was 
preferable for our study due to the scale, high number of variables, and 
the complexity of the processes involved (Maringanti et al., 2009). With 
the AMALGAM framework, we utilized a proven enhanced optimization 
method that integrated the advantages of different algorithms to 

Fig. 8. Spatial pattern showing the distribution of land converted from alfalfa to manure-based duckweed cultivation for two-objective optimization (minimizing 
nutrient load and net cost). Scenarios with two types of duckweed replacement strategies are shown: a) Case A2 in scenario 7 with full duckweed cultivation on all 
removed alfalfa land (left); and b) Case B2 in scenario 8 with partial duckweed cultivation to maintain equivalent baseline protein production (right). 
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improve the sampling process and reduce the computational burden 
with faster convergence to a global optimum. The results showed suc-
cessful and quick convergence to create an optimal solution in single- 
objective optimization (converged in 2000–3000 iterations), and a 
distinct pareto-optimal front in two-objective optimization (converged 
in 5000–6000 iterations). 

Prior to conducting the optimization runs, Pennsylvania counties 
such as Lancaster and Franklin, known for their widespread farming 
operations, could be visually identified as the notable nutrient hotspot 
regions. In addition, from a geographical and hydrological connectivity 
perspective, RE values were also higher in PA counties owing to the 
shorter travel time of nutrients from catchments in this region to the 
Chesapeake Bay (Fig. 2). Results from quantitative analysis suggest that 
PA is the lead contributor of N and P inputs to the CBW, accounting for 
66% of recoverable dairy manure, meriting spatially targeted nutrient 
management. Similar findings highlighted by several other studies in the 
CBW support this observation (Devereux, 2009; Kleinman et al., 2012). 
Considering that in 2017, the Commonwealth of PA failed to meet their 
agricultural N reduction targets by 36% (EIP, 2017), there is immense 
value in advancing targeted nutrient management of PA farms. 

The major share of dairy manure towards the total N and P generated 
in the watershed (93.5%) showed that manure storage and management 
is very crucial in curbing nutrient pollution. Past studies have found that 
fertilizers are the primary nutrient source in the CBW, accounting for 
28–31% of the total watershed load compared to 40–54% from manure 
(Chesapeake Bay Foundation, 2004). The lower share of nutrients from 
fertilizer and N fixation (6.5%) compared to manure (93.5%) observed 
in our study is attributed to the fact we only considered a single crop 
(alfalfa). Although alfalfa is a nitrogen-fixing crop with lower N fertilizer 
requirements than other row crops, it needs P fertilizers and a certain 
amount of supplemental N during the seeding phase (Oregon State 
Extension, 2020). Hence, there is added benefit in the proposition of 
utilizing alfalfa lands for manure management and soil conservation 
through duckweed farming. 

4.1. Single objective optimization 

Ignoring the economic tradeoffs of implementing duckweed culti-
vation, the results from single-objective optimization revealed that over 
10% N and P reductions (at-source) are possible by using 65,777 ha of 
alfalfa land in the watershed. For context, the U.S. Environmental Pro-
tection Agency (USEPA) in 2010 had established a TMDL goal for the 
Chesapeake Bay that aims to achieve a 25% reduction in N and a 24% 
reduction in P loads present in the Bay by the year 2025 (USEPA, 2010). 
A previous modeling study focusing on a sub-watershed (Spring Creek) 
within the CBW has shown that a 1.7–23% reduction in N and 2.7–30% 
reduction in P is possible by implementing BMPs such as buffer strip, no- 
till, cover crop, manure injection, etc. in up to 6000 ha of land (Amin 
et al., 2020). Another optimization study of the Conewago Creek 
watershed found that reallocating crop rotations in the ~5500 ha agri-
cultural area could alone lower N and P loads by 15% and 14%, 
respectively (Jiang et al., 2021). It is important to note that the nutrient 
loads reported in our study represent the N and P generated at-source 
and are not directly indicative of the actual nutrients reaching the 
Bay, which may be lower due to load attenuation during nutrient 
transport, presence of BMPs, manure processing strategies, etc. But 
given that around 20–25% of net anthropogenic N inputs and 10% of P 
inputs are exported to the Bay (Howarth et al., 2006; Najjar et al., 2010; 
Russell et al., 2008), the relative nutrient reductions quantified here 
could still be representative of the load reductions possible within the 
Bay. With duckweed emerging as a potential new feed crop in many 
countries worldwide (Huque et al., 1996; Sońta et al., 2019; Tanuwiria 
and Mushawwir, 2020), growing it adjacent to livestock farms could be 
viewed as an effective BMP in achieving the CBW's nutrient reduction 
goals. 

As per 2012 statistics, PA, VA, and MD have been identified as the 

largest sources of pollutants in the CBW and are together required to 
achieve an additional reduction of 172.5 million pounds (78,244 tons) 
of N by 2025 to meet the Chesapeake Bay Program targets (Majsztrik 
and Lea-Cox, 2013). As stated earlier, it is not reasonable to directly 
compare these values to the at-source nutrient inputs reported in our 
study. However, assuming that 20–25% of anthropogenic N flux ends up 
at the watershed outlet (Russell et al., 2008), Scenario 6 with the highest 
land conversion, could in effect reduce N loads reaching the Bay by 
12,484–15,605 tons a year. Considering the amount of nutrients that can 
be recycled through manure-based duckweed systems, it would be an 
excellent pathway towards achieving the above-mentioned target, 
especially for the manure hotspot counties in the CBW. 

4.2. Two-objective optimization 

For the two-objective optimization, the most environmentally sus-
tainable scenario was Case A3, which had the most land area under 
duckweed cultivation and displayed the highest reduction in N and P 
loads (23.2% in N and 19.4% in P). Even if we account for load atten-
uation, this can still be crucial in achieving the USEPA TMDL targets on 
nutrient reduction required in the Bay waters (25% for N and 24% for P; 
USEPA (2010)). Unfortunately, this scenario is logically almost impos-
sible due to the likely socio-economic barriers in overcoming farmer 
resistance to adopting alternate crops and infrastructural limitations 
related to installing new crop-growing systems. The optimal cases A2 
and B2 had nutrient reduction benefits ranging from 6.3 to 12.8% in N 
and 3.7–9.2% in P. Of these, case A2 (under Scenario 7) utilizes all 
removed alfalfa land for duckweed production and hence, offers an 
advantage of additional protein production (61.6% more than baseline), 
which could benefit farmers economically. An average PA dairy farm 
purchases a good portion of its protein feed (287 kg/cow/yr) from 
external sources (Holly et al., 2019). Assuming a duckweed growth rate 
of 10 g/m2/day and protein intake of dairy cow to be 11 lbs./cow/day, 
cultivating duckweed in a 1.4 ha pond for seven months can produce 
enough protein to feed 100 cows annually (Robinson, 2023; Said et al., 
1979). Feed and fertilizer purchases are undeniably a large environ-
mental concern due to their associated carbon footprint and greenhouse 
gas emissions. Additionally, from a nutrient balance perspective, feed 
and fertilizer imports are known to decrease the nutrient use efficiency 
in farms when the imported nutrients are in excess of their removal 
through crop uptake (Soberon et al., 2015). By allowing duckweed to 
grow on excess nutrients generated in dairy farms, farmers can not only 
increase the production of protein feed and generate added revenue but 
also limit their dependence on external feed and fertilizer imports. 

One of the most useful outputs from the two-objective optimization is 
the final range of points along the pareto-optimal front. Each of these 
points represents a unique solution and spatial pattern linked to 
different combinations of objective functions and constraints and 
therefore is valuable in aiding the decision-making process regarding the 
economic and environmental tradeoffs in duckweed farm implementa-
tion. Nutrient recovery techniques using aquatic vegetation, such as the 
one proposed in this study, can potentially be included as part of the 
Watershed Implementation Plans (WIPs) developed by states in the CBW 
to implement BMPs for meeting the Chesapeake Bay TMDLs. The total 
net cost of implementing the required WIP BMPs between 2011 and 
2025 was estimated to be approximately $3.6 billion (in 2010 dollars); 
and after 2025, it is predicted that the net cost linked to full imple-
mentation of all WIP BMPs will be around $900 million annually (Z. 
Kaufman et al., 2014). For the scenarios analyzed in this study, imple-
menting duckweed farming would incur a net cost ranging from $18.1 
million (Scenario 4: 4705 ha duckweed land) to $252.7 million (Sce-
nario 3: 65,777 ha duckweed land). 

While different types of BMPs have been proposed to address water 
quality issues in the CBW, some are challenging to implement due to 
their high installation costs. A relative cost analysis conducted by the 
Chesapeake Bay Foundation illustrated that while small-scale practices 
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such as grassed buffers and conservation tillage would cost $7.50 per kg 
of N remediated, stormwater retrofits can get quite expensive at $1100/ 
kg (Chesapeake Bay Foundation, 2013). Based on our findings from the 
different scenarios, the increase in year one net cost for duckweed 
growing systems would be $5.30–$7.70 per kg of N remediated, which is 
in the lower range of cost/benefit ratios of other established BMPs. With 
research showing that significant cost savings can be realized through 
careful selection of cost-effective BMPs and targeted implementation of 
these BMPs (D. E. Kaufman et al., 2021), implementing circular bio-
economy practices using duckweed in select hotspot counties may be 
viewed as an environmentally sustainable and economically viable BMP 
alternative. 

4.3. Spatial analysis 

The importance of RE values in impacting water quality in the Bay is 
clearly documented in past work focusing on the development of CBW 
TMDLs and has been successfully incorporated in several modeling and 
optimization studies (D. E. Kaufman et al., 2021; Linker et al., 2013; 
Robertson and Saad, 2011). Although a majority of hotspot counties 
selected in our study are known for extensive farming operations 
(including dairy and alfalfa), some counties with a relatively lower 
number of dairy farms, such as Luzerne, PA, and Warren, VA, were 
identified as hotspots for duckweed cultivation primarily due to their 
high effectiveness of nutrient transport to the Bay (i.e., high RE values). 
In a related context, many farming-intensive counties in the northern 
New York region (such as Cortland, Madison, and Otsego, with >5000 
dairy cows/county) do not appear in the list of most optimal counties for 
duckweed production due to their relatively farther distance from the 
Bay and low effectiveness in nutrient delivery (Fig. 2). The same ratio-
nale can be linked to why Franklin county, the second most dairy- 
intensive county in PA, is not as effective as Lancaster in reducing 
nutrient loads to the Bay. 

Even though the decrease in the percentage of land area under alfalfa 
cultivation is not considerably different in the two optimal cases of 
scenarios 7 and 8 (40.3% versus 35%), the one with scenario 7 results in 
more than double the amount of duckweed area due to the full utiliza-
tion of the removed land for duckweed farming. Employing only part of 
the alfalfa cropland for duckweed cultivation (replacement strategy ‘b’) 
as in scenario 8 can provide soil conservation benefits, especially when 
retiring highly erodible and environmentally sensitive farmlands, as 
encouraged by the USDA voluntary Conservation Reserve Program 
(CRP) established through the Food Security Act of 1985 (Bucholtz et al., 
2004). In addition, since duckweed grows on a soil-less medium, 
installing cultivation systems (ex., ponds) on marginal and less fertile 
lands offers a profitable opportunity to farmers affected by poor crop 
yields. Leveraging existing marginal lands for various uses is a widely 
explored research area. Some past work has demonstrated excellent 
benefits of land-applying manure on marginal lands for increasing 
productivity (Saha et al., 2021) as well as using these lands to grow 
perennial crops for bioenergy production (Sanderson and Adler, 2008; 
Valcu-Lisman et al., 2016). Utilizing similar areas for duckweed culti-
vation could further enhance the potential use of these less-productive 
lands to offer additional economic gains for farmers. 

One of the challenges we encountered in the spatial pattern analysis 
was the problem of equifinality. When the optimization variables (RE 
values and nutrient inputs) are not significantly different between the 
counties, there is a high likelihood of equifinality, in which different 
combinations of hotspot locations exhibit similar nutrient reductions 
(Her and Seong, 2018; Thorp et al., 2015). Therefore, it is necessary to 
interpret multiple optimal solutions so that only counties that consis-
tently appear as hotspots should be considered for targeted nutrient 
management. In that context, Lancaster and adjacent counties in central 
PA are the critical regions for consideration, and the outcomes of this 
study distinctly prioritize manure management in PA for the overall 
water quality benefit of the CBW. In addition to several modeling studies 

validating the nutrient hotspot status of Lancaster (Kleinman et al., 
2012; Young et al., 1985), a statewide assessment of PA soils showing 
the highest presence of excess P in Lancaster soils further supports our 
finding (Kogelmann et al., 2004). All eight optimization scenarios used 
in this study highlighted the relevance of considering nutrient delivery 
factors in designing decision-making tools for spatially targeted nutrient 
management practices. Expanding this work could involve an integrated 
watershed modeling approach considering both nutrient runoff poten-
tial and effective pollutant transport capability that would help identify 
critical locations at a finer scale and assess the actual discretized impacts 
on eutrophication in the Chesapeake Bay. 

5. Conclusions 

Spatial optimization of duckweed cultivation locations in the Ches-
apeake Bay Watershed was conducted in this study to identify hotspot 
counties that are most critical in terms of manure and fertilizer man-
agement. Growing duckweed on dairy manure offers an excellent op-
portunity to upcycle nutrients that otherwise increase the risk of 
nutrient transport to surrounding water bodies, leading to water pollu-
tion and eutrophication issues in the Chesapeake Bay. Eight different 
scenarios were designed to evaluate the potential of dairy manure-based 
duckweed cultivation as an alternative protein production approach to 
replace alfalfa cropping in the watershed. The optimization runs resul-
ted in similar spatial patterns with the highest land conversions dis-
played by counties in Pennsylvania (Lancaster and adjacent counties 
above the Bay) for both duckweed replacement strategies: (a) 
completely replacing all removed alfalfa land with duckweed cultiva-
tion; and (b) partially replacing the removed alfalfa land to maintain 
only equivalent baseline protein production. Depending on the per-
centage of alfalfa land available for conversion (10%, 30%, or 50%), the 
former strategy would help reduce N and P loads by up to 14% and 10%, 
respectively, and yield up to an additional 68% protein production 
compared to the existing scenario. While this strategy is associated with 
a high capital cost, utilizing all of the removed lands for duckweed 
cultivation has a high return on investment, making it an economical 
choice in the long run. One area of improvement to expand this study is 
to include hydrological and stream routing processes in estimating de-
livery loads since they can highly influence the fate and transport of 
inland nutrients generated in all the counties. Due to the scale of the 
study, counties with no dairy production were excluded as variables 
from optimization. With more data on manure trading between different 
watershed regions, we could assess how that practice would impact the 
identification of hotspot locations for targeted manure-based duckweed 
farming. 

Completely transitioning all alfalfa croplands to duckweed farms in 
counties with dairy operations would ideally result in up to a 23% 
reduction in N and a 19% reduction in P loads which can play a key role 
in achieving the Chesapeake Bay TMDL targets. While such a massive 
agricultural land conversion may seem impractical when considering 
the economic and cultural barriers, the optimization framework pro-
vided here seeks to aid stakeholders in decision-making by offering 
different types of solutions available for a wide range of environmental 
and economic constraints. The flexibility in modifying the objective 
functions and constraints within the framework further extends its 
applicability to study additional user-defined scenarios and to evaluate 
their environmental and economic benefits and tradeoffs. 
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