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Abstract 
This paper presents a cognitively inspired approach for visual scene categorization and 
abstraction. Our approach uses first-person video from real, dynamic environments to create 
episode-like memories of video scenes. Videos from newly encountered environments can then 
be matched to previous episodes and used for prediction. Our process utilizes the final layer of a 
convolutional neural network (CNN) as a high-level, scene-specific representation which is 
robust enough to noise to be used with wearable cameras. Inspired by results from cognitive 
science and neuroscience, we use output maps created by a CNN as a sparse, abstract 
representation of visual images. These output maps characterize a visual scene in terms of the 
spatial and temporal distribution of objects in the scene. The system is demonstrated on video 
taken using Google Glass. When compared with human evaluations the system correctly matches 
70% of scene segments. Finally, high-level scene prediction is demonstrated by showing that the 
system can match scenes using only a few initial segments and can then predict the objects that 
will appear in the near future. Empirically, object predictions based on the initial scene segments 
resulted in a 95% match. 

1.  Introduction 

This paper presents an interdisciplinary approach to the problem of scene recognition, 
categorization, and prediction. Our approach is inspired by neuroscience and cognitive science 
theories. Our implementation of these ideas draws from recent techniques from machine learning 
and computer vision, yet connects to high-level symbolic reasoning about categories. Our hope is 
that this work will serve as a conceptual and computational bridge between low-level sensor-
based scene categorization techniques and high-level methods influenced by insights from human 
thinking.  
 Inspiration for our approach stems from neuroscience and cognitive science. Recent evidence 
suggests that concept cells may serve as an internal, neuronal representation of external stimuli 
and memories (Roelfsema, 2006). Studies have demonstrated that the presentation of a familiar 
person’s face elicits a specific pattern of neural firings (Quiroga, Reddy, Kreiman, Koch, & Fried, 
2005). The pattern of cell firings has been shown to relate to specific concepts. These so called 
“concept cells” encode specific stimuli as a sparse network of connected firing neurons. The 
firing patterns of these sparse networks results in the formation of new declarative memories 
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(Eichenbaum, 2004; Squire, Wixted, & Clark, 2007). The encoding of concepts is hierarchically 
organized along the processing pathway such that recordings taken from deeper layers of neurons 
exhibit increased abstraction indicated by their response to more complex features and greater 
visual invariance (Palmeri & Gauthier, 2004). This increasing abstraction culminates with 
hippocampal processing of abstract, personally relevant concepts into episodic memories 
(Logothetis & Sheinberg, 1996).  
 The creation of episodic memories constitutes a fast, specific method of learning. Norman and 
O’Reilly (2003) present a framework which combines the creation of episodic memories in the 
hippocampus with the extraction of generalities in the neocortex. Their framework is based on the 
idea that learning specific events and generalizing from those events are computationally 
incompatible tasks. For this reason, humans have evolved complimentary systems which allow 
one to memorize particular experiences quickly. Over time, separate experiences in memory are 
integrated to extract experiential generalities. At a low level, the researchers describe the 
underpinnings of their framework in terms of activation patterns of networks of neurons occurring 
in either the hippocampus or the neocortex. At a high level, the learning that occurs relates 
closely to exemplar/prototype models of category learning (Rosch, 1973; Smith & Zarate, 1990). 
Exemplar models of learning assume that categorical information is represented in terms of 
specific examples that have been experienced. Prototype models, on the other hand, categorize 
new stimuli with respect to an averaged representation of the category.        
 In previous work we approached the problem of creating exemplar models of particular 
experiences from a purely symbolic perspective by manually requiring people to enter symbolic 
descriptions of the high-level features they saw in static images (Wagner & Doshi, 2013). Results 
from these preliminary experiments supported the overarching idea that exemplars and prototypes 
could be used to create distinct categories of situations which could, in turn, then be used to 
predict aspects of a newly encountered scene given only the new scene’s perceptual features. 
Unfortunately, this process was slow and not scalable to real-world problems.  
 Motivated by these results we sought to develop a computational process that could bridge the 
notions of concept cells and category learning in a manner that was implementable on a computer 
or robot. Recent progress has been made using deep learning to create multi-layer convolutional 
neural networks (Russakovsky et al., 2014). Convolutional neural networks (CNN) learn a 
hierarchy of visual features ranging from low-level filters to object parts to entire objects 
themselves. The most abstract of these features tend to display greater visual invariance and 
robustness, just like their neural counterparts. We reasoned that the use of output maps taken from 
these higher level features would allow us to categorize scenes from blurry video taken in natural 
environments. Intuitively, CNNs transform low-level video images into high-level, scene specific 
representations which are resistant to noise. As our experiments demonstrate, the system is robust 
enough to be used on video captured by Google Glass. Most traditional approaches to scene 
categorization relies on static images and a predefined number of categories (Quattoni & 
Torralba, 2009). Our system also does not require predefined categories.    
 The primary contribution of this paper is the development and demonstration of a method 
which characterizes scenes in terms of the presence of higher-level objects and their spatial 
arrangement in order to be able to match and make inferences about the objects one will see in the 
near future. This paper also illustrates how the raw output from a higher layer of a CNN can be 
used to create exemplars of specific scenes captured as video from a first-person perspective.  
 The remainder of the paper begins by describing our process for creating high-level concept 
maps from first-person video using a CNN. Next, the process for creating episode-like 
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representations from these concept maps is detailed. A series of experiments examining the 
system’s ability to match video segments both in terms of the evaluations made by humans and in 
terms of specific categories are then described. A final experiment explores the system’s ability to 
make predictions about the near-term appearance of visual objects in the environment based on 
previously experienced scenes. The paper concludes with a discussion of future work and 
research directions.      

2.  Creating High-level Concept Maps from First-Person Video  

The first contribution of this work is the development of a process which allows one to create 
high-level representations from first-person video and to use these representations to evaluate the 
similarity of different scenes. A key point is that this process allows us to evaluate the distance 
between two frames of video not in terms of low-level representations such as pixels or edges, but 
rather from the perspective of high-level objects and their position in the environment. 
 The process begins when a CNN is used to convert individual video frames into a set of 256 
output maps (Figure 1). CNNs are a class of deep learning architectures that alternate between 
two stages: 1) convolution, in which the inputs are convolved with learned filters that are then fed 
through a non-linear function and 2) pooling, which summarizes the output of a local group of 
output neurons. This technique was first popularized by (Lecun, Bottou, Bengio, & Haffner, 
1998), who reported state-of-the-art performance in text recognition and has received significant 
attention recently due to achieving substantially higher performance than existing techniques in a 
variety of tasks including object classification, speech recognition (Krizhevsky, Sutskever, & 
Hinton, 2012), and text analysis (Simard, Steinkraus, & Platt, 2003). Within the computer vision 
field, the use of CNN’s has resulted in highly accurate recognition of objects from still images.   

For this paper, we use Caffe, an open-source framework for deep learning. Caffe includes 
several neural networks which have been pre-trained on the ImageNet dataset (Jia et al., 2014). 
AlexNet, the model used in this work, was trained on 1.4 million images capturing approximately 
1000 different categories of object. AlexNet is capable of recognizing a thousand different objects 
with over 90% accuracy (Russakovsky et al., 2014) and consists of a five convolutional layer 
architecture with three fully connected layers.  

Our research uses the output generated by the fifth convolutional layer as a higher-level 
representation roughly capturing the objects and their location in a scene. The output generated by 
the fifth layer consists of 256, 13x13 “maps.” In contrast to the output from lower layers, these 
fifth layer output maps constitute a higher-level representation roughly capturing the objects and 
their location in a scene. Yet, unlike the output from higher layers, the output from the fifth layer 
has not been reduced to symbolic labels. The output maps from the fifth convolutional layer of 
the network capture the identity, strength, and spatial distribution of objects throughout the 
image.  

The management of 256, 13x13 maps, however, is unwieldy. For this reason we use an 
Improved Fisher Vector in conjunction with the pre-trained Gaussian Mixture Model (GMM) to 
produce a fixed length encoding of the frame which summarizes the strength of association 
between the set of output maps to the different modes in the GMM. The resulting Fisher vector is 
an extremely sparse representation of the distribution of objects and their location in the image 
frame. The cosine distance, cos , , can then be used to evaluate the distance from 
one Fisher vector to the next. The total distance between frames is calculated by summing these 
individual distances.  
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The result of this process is an overall distance between two frames of video. Because the 
representation is based on high-level features such as objects and their position in the 
environment, we hypothesized that our approach would be robust enough to noise and blur that it 
could be used on video captured by a wearable camera. This is a critical distinction of the 

Figure 1. Our process for calculating the distances between segments of video is presented above. First, a
convolutional neural network converts video frames into output maps which can roughly capture the high-
level objects and their spatial arrangement in the image. Next, each output map is translated into a Fisher
vector, a sparse representation of the information. A collection of Fisher vectors represents a segment of
video frames. The cosine distance is used to calculate the distance between Fisher vectors.  
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difference between our method and other methods. We also believed that this process would 
allow us to cluster visual scenes with respect to higher, more abstract concepts. Our method 
characterizes two locations as similar if similar items are identified at the locations. For example, 
a McDonald’s restaurant will be identified as more similar to a picnic than a library because of 
the objects co-identified with picnics and restaurants (i.e. utensils, glasses, plates, etc.). This leads 
to interesting situational characterizations when used in conjunction with first-person streaming 
video. For instance, while walking to a library the camera captured several images of a Starbucks 
coffee shop and identified the location as similar to a restaurant only while the camera viewed the 
coffee shop location.   

3.  From Concept Maps to Visual Episodes  

When our process is applied to first-person video, the output maps that result bear some relation 
to the common notion of episodic memory. Notably, output maps: 1) contain a record of sensory 
processes (although no affective component is included); 2) represent visual images of the 
stimulus; 3) retain a first-person perspective; 4) capture short time slices of the experience; 5) 
capture temporal information about experiences; 6) are rapidly forgotten as individual frames are 
compressed into Fisher vectors representing larger segments; and 7) are autobiographical. We 
consider the 3-7 minute first-person videos that we captured to constitute a single episode.  
 Early experiments using the process indicated the similarity of one episode to another varied 
significantly over the course of a video. For example, a restaurant’s parking lot is a very different 
visual environment than the establishment’s bathroom. We therefore arbitrarily divided the videos 
into 20 seconds segments. Because they occur over a relatively short time span, these segments 
were meant to capture comparatively similar aspects of the episode. Moreover, segmenting 
compresses the episode into in series of distinct, temporally connected portions. In this manner, 
entire scenes can be broken down into individual segments and using the process outlined above 
(Figure 1), distances between segments can be generated allowing for clustering or similarity 
matching. Currently the segments are uniformly distributed across the episode. We are 
developing a technique for automatically creating segments of variable lengths. 
 We hypothesized that videos from the same category of environments would result in similar 
patterns of segments. For example, at a fast-food restaurant customers typically enter the 
establishment, order food, fill drinks and wait for their orders to be filled, eat, and finally leave. In 
other words, a restaurant episode often affords a regular pattern of segments that can be analyzed, 
described, compared, and used for prediction. Such regularity allows for additional information 
beyond objects and their spatial relationships to be used when performing tasks such as scene 
classification and scene abstraction. More importantly, this analysis could also allow one to 
predict the objects and scene fragments that will follow, an important task for several applications 
such as robotics. Further, even if the pattern is not strictly followed (for instance the person goes 
to the bathroom) the total similarity of the entire episode is likely to be greater than to episodes 
from dissimilar categories. The experiments that follow examine the process and its potential for 
making predictions about the near-term visual environments. 

4.  Experiments 

Our experiments first required the generation of first-person video data from a variety of different 
environments. Recently, it has become possible to collect video from a first-person perspective 
using wearable cameras such as Google Glass. These videos capture one’s movement, views, and 
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activities from a first-person perspective. Moreover, video information collected via Google Glass 
could potentially be used for robotics or human computer interaction tasks. The videos that we 
recorded captured the interactions and objects that occur in several different scenes. This platform 
was chosen mainly because of its small, unobtrusive design which allows a high degree of natural 
interaction. The Google Glass camera operates at a resolution of 1280 x 720 and a frame rate of 
30 fps. The videos that resulted were not altered or preprocessed to improve quality. Nine 
different videos between 3-7 minutes long were recorded by two different experimenters acting 
independently and at different times and days. The experimenters acted naturally as they 
interacted with people and objects in the scene. The scenes were intentionally chosen from 
different categories of locations, such as fast-food restaurants, parks, and libraries. Table 1 
describes each of the nine scenes. Since the initial development of this paper we have expanded 
this dataset to include 34 different videos. The results present here, however, are based on these 
original 9 videos. Each of the videos was then divided into 20 second segments. Twenty second 
segments were used because it was felt that this length was long enough to capture a meaningful 
snapshot of a particular scene. 

Table 1. Different types of recorded scenes, their category, and number of different instances. 

Category Scene Type  Number of Scenes 
Fast Food Burger King, McDonalds, Krystal 3 

Library Georgia Tech (x2), Emory 3 

Park University Park, Public Park 2 

Cafeteria Hospital Cafeteria 1 

 
Once the videos were collected, they served as data for the experiments described below. In 

order to reduce the processing time, we only selected the first frame for every second of video. 
Each frame was then passed as input to the process described in Figure 1.  

4.1  Comparisons to Human Evaluations 

Our first experiment established ground truth by comparing the system’s estimate of scene 
segment similarity to evaluations made by people. Because there are many different ways to 
judge similarity, the purpose of this experiment was to establish, to the extent possible, ground 
truth on which we could roughly gauge the accuracy of the system. We hypothesized that the 
system’s estimate of similarity would strongly correlate to the estimates made by human subjects. 
 Crowdsourcing was used to obtain human subject evaluations of segment similarity. 
Crowdsourcing is a method for collecting data from a relatively large, diverse set of people 
(Paolacci, Chandler, & Ipeirotis, 2010). Crowdsourcing sites, like Amazon’s Mechanical Turk, 
post potential jobs for crowdworkers, manage worker payment, and worker reputation. The use of 
crowdworkers offers a quick and efficient complement to traditional laboratory experiments. 
Moreover, the population of workers tends to be somewhat more diverse than traditional 
American university undergraduates. In order to ensure the best possible data, individuals were 
required to have a 95% acceptance rate for their past work and were only allowed to participate 
once. To ensure thoughtful evaluations, each worker was asked to briefly describe their rationale 
behind their evaluations. Participants were paid an effective hourly rate of $8.87. Approximately 
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10% of the surveys were rejected because of a failure to follow the instructions or accept the 
consent agreement. The accepted data originated from 224 different people.  
 The nine scenes from Table 1 were divided into 20 second segments resulting in a total of 161 
different segments. Subjects were presented with one 20 second target segment and four 
randomly chosen segments. They were asked to rate the similarity of each randomly chosen 
segment to the target on a scale of (1-10) and to briefly describe their rationale. Once this task 
was complete they were then presented with a different target and set of different randomly 
chosen segments for evaluation. Each participant evaluated 2 groupings of targets and random 
segments. Because of limits on the number of subjects, only 64 of the possible 161 target 
segments were used in this experiment. The selection of target segments used in the experiment 
was random. Overall, each target-random segment combination was evaluated once by seven 
different people.   

The evaluations made by the study’s participants were compared to the evaluations made by 
our system in several different ways. As expected, for some segment-to-target comparisons, there 
was little or no consensus among the human raters in terms of similarity score. We arbitrarily 
defined high consensus segment-to-target evaluations as those in which the inter-rater standard 
deviation was less than 2. For these high consensus evaluations, the correlation with our system 
was 249 0.609. The percent match was 76.3%, which is statistically significant (
0.01). If we consider both evaluations with and without consensus, we found a 70% agreement 
between our system and the participants’ evaluations. This level of agreement is statistically 
significant from a random baseline, 0.01. We found a 384 0.498 correlation between 
the similarity scores generated by our system and those of the participants. For data involving 
human subjects, this represents a strong, positive correlation (Hemphill, 2003) and supports our 
hypothesis. 

These results strengthen our contention that the segment evaluations made by the proposed 
system correlate to those made by people. This is potentially important for applications that 
involve people, such as having the system identify locations that match a person’s desired 
location or locations to avoid. For example, alerting a user when they have entered a room that it 
is similar to a bathroom may aid the visually impaired. These results do not, however, indicate the 
extent to which segments and scenes cluster around a category, such as restaurant. We therefore 
conducted an experiment exploring if segments clustered around abstract categories of locations, 
such as restaurants, libraries, and parks. 

4.2  Segment Matching 

Given the correlation to human evaluations, we decided to investigate whether the distances 
generated by the system could be used for matching different video scenes. If so, it might then be 
possible to use the system to match one’s current scene to a previously experienced scene and to 
use that information to predict upcoming objects and events. Moreover, clusters of similarly 
matched video segments could potentially be generated to represent abstract categories of visual 
environments. To this end, we hypothesized that segments originating from the same general 
category (restaurant, park, etc.) would be more similar to each other than segments from different 
general categories. We believed that the system would generate clusters of segments which 
matched the general categories listed in Table 1. In order to test this hypothesis the system was 
used to generate distances between the 161 segments created in the experimental setup from 
Section 4.1. 



J. DOSHI, Z. KIRA, AND A. WAGNER 

8 

Figure 2. The graph above compares similarity scores for segments from the 8 scenes to segments taken
from the McDonalds scene. The data depicts a spread across scenes with some segments matching multiple
scenes. Nevertheless, the best match for each category of segments is a member of the same class. As
indicated by the circle in read, the best matches to the McDonald’s target are segments from the other
restaurant scenes. Some segments taken from library scenes also match well to restaurant target. Finally,
parks do not match well to restaurants. The individual data points correspond to different segments. 

Figure 2 illustrates a single representative target segment compared to all 161 segments across 
all 9 scenes. The x-axis indicates the segment number and the symbol type denotes the scene of 
origin. The y-axis indicates the similarity score. The target segment was from the McDonalds 
restaurant scene. As depicted in the figure, the best matches are to the other fast food restaurants. 
The worst matches are to segments from park scenes. The figure also shows the skew of 
similarity across the scene. In other words, a range of match similarities occur with respect to the 
scene itself, the best of which occur in scenes from the same category. For the McDonalds scene, 
the best match was from a member of the restaurant category in 13 of the 15 segments (not shown 
in figure).  

Figure 3(a) compares every segment of the Burger King scene to every segment from the 
McDonalds scene. The top left of the graph depicts segment 1 from each scene. The diagonal 
from the top left to the bottom right matches each segment temporally. Red shades indicate a 
closer match. The strongest red pattern occurs along the diagonal for this comparison. This 
indicates that the most similar segments are from temporally corresponding segments in each of 
these scenes. By contrast, the Figure 3(b) compares the Burger King scene to one of the Park 
scenes. In this case, the top left to bottom right diagonal does not indicate strong matches. Strong 
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Figure 3. This figure is best viewed in color. It depicts a colorized version of the distances for a segment to
segment comparison for complete scenes. To the left, a scene captured at McDonalds is compared to a
scene captured at Burger King. The diagonal line indicates comparisons of segment (1,1), (2,2), and so on
for each video. In (a) strong matches occur along this diagonal indicating that the system is evaluating the
temporal pattern between these environments as similar in spite of the fact that the videos were taken by
different people and  at different locations and times. Moreover, the total match strength over the whole
comparison is greater for (a) than (b). In (b) we see little matching along the diagonal which indicates that
the temporal order of the segments taken from a restaurant are not similar to those taken at a park. There is
one interesting exception, however. The first and last column in (b) represents video segments taken
outdoors while the person moves from their car through the parking lot to the restaurant door. These video
segments record the presence of trees, bushes, and grass which matches the objects found in a park. For
these figures the park scene was clipped to 15 segments.     

matches do arise, however, in the first and last segments of the Burger King video. These matches 
result from video taken in the parking lot as the experimenter exits their car and enters the 
restaurant or leaves the restaurant. This Burger King restaurant’s parking lot had several trees and 
bushes which were matched to the trees and bushes typically observed in the park. Overall, these 
results show not only can the system match specific episodes to one another, they indicate that, 
for matches, the visual information in the scenes is temporarily consistent. Keep in mind these 
scenes were recorded on different days, at different locations, and by different people.  

The results support our hypothesis that scenes originating from the same abstract category 
generate the best matches and that the best matches correspond to similar segments within a 
scene. We believe that the ability to match first-person video segments to other previously 
experienced segments could be a powerful, new technique. Unlike the use of kernel methods 
popular with computer vision, our approach utilizes the CNN’s ability to translate video segments 

into a series of higher-level objects and their spatial location and uses this information to generate 
matches. The use of an abstract representation offers a method for categorical inference from 
visual input. One objective of this work is to be able to predict the high-level visual features of a 
soon to be encountered environment based on an individual’s current environment and previous 
experience. The next experiment describes promising preliminary results in this area. 

4.3  Episode Matching and Prediction 
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A system that can match its current scene to previously encountered scenes and predict which 
objects it will encounter in the near future would be an important step towards creating systems 
that can use their previous visual experiences to inform future plans. For example, the system 
could match a person’s current video segment in which they are ordering food at a counter, to 
previous experiences (video scenes) at other restaurants. This information could then be used to 
predict the objects that will be seen in the near future (i.e. forks, spoons, etc.). Ideally this 
information could be used to assist the user in some way.  

With this goal in mind, an experiment was conducted that examined if the initial segments from 
a scene could be used to match the person’s current environment to a previously encountered 
episode. If a high percentage of segments can be matched to the correct category then this would 
serve as preliminary evidence that such a system might be possible.  

 The experiment followed the same general setup as before (Section 4.1). In this case, however, 
one target scene from Table 1 was withheld to represent the current scene. The system used the 
first  segments from the current scene to determine if the scene matched the fast food, cafeteria, 
or park categories (the cafeteria scene was dropped because it consisted of only a single video). 
Similarity scores were calculated from the current scene to all of the segments from these 8 

scenes. The match was considered correct if the most similar scene was from the same category 
as the current scene.  
 We hypothesized that the initial segments from a scene could be used to accurately match the 
scene to a previously experienced scene category. Initially it we believed that the accuracy of the 
match would depend on the number of segments used to probe memory. For example, we 
believed that three consecutive 20 second segments of video from the user’s current environment 
would provide better matches than two consecutive segments.  
  Figure 4 depicts the results from this experiment. Importantly, the percent match is high across 
all cases and far exceeds a random baseline of 19.4%. The high percent match is encouraging, yet 
further experiments must be conducted to examine whether this result holds when a greater 
number of scenes are used. The results also show that as the number of segments used to select a 
match increases, the percent match initially increases slightly from 87.9% to 90.9% but then 
drops to 89.1%. The number of segments used to locate a match therefore had little impact on 

Figure 4. On average 88.6% of segments from an arbitrary current scene were matched to scenes taken
from the same category. The percent match varied only slightly with respect to the number of segments
from the current scene that were used to locate a match.   
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performance. It is not clear to at this time why increasing the number of segments did not increase 
performance.     
 In a final experiment we evaluated the system’s ability to predict future objects from a 
currently experienced scene (Figure 5). Here again one target scene from Table 1 was withheld to 
represent the current scene. The system used only a single segment from the scene to select the 
closest matching scene. Once a match was found, we iterated along both the current scene and its 
closest match, counting the number of objects predicted from the matched scene that occur in the 
current scene. Recall that the CNN can be used to recognize over 1000 different objects. When 
averaged over all segments we found a 94.76% 0.18 correct prediction rate. This strong result 
supports our contention that, at least for the setup tested, the system can use experiences from the 
past to predict which objects an individual will encounter in the future. 

Overall, the results from these three experiments are meant to convey the breadth of what we 
expect this approach to achieve. The results hint that the system can be used for prediction and to 
match one’s experiences in a particular scene to a category of scenes and previous experiences. 
Moreover, because the experiments used raw data taken from a wearable computer, we have 
reason to believe that practical applications derived from the system are achievable in the near-
term. One area for future work will focus on strengthening the results by expanding the set of 
scenes considered.   

5.  Related Work 

Implementations of episodic memory have been investigated previously as part of several 
different cognitive architectures. Soar is a well-established architecture that includes a model of 
human working memory (Anderson et al., 2004; Laird, Newell, & Rosenbloom, 1987; Langley & 
Cummings, 2004; Winkler, Tenorth, Bozcuoglu, & Beetz, 2014). Soar’s model of memory, for 
instance, includes representations of procedural, declarative, and episodic memory. Although the 
different architectures are unique and offer several different tradeoffs, each relies on symbolic 
representations of memories. In contrast, the system that we present relies on connectionist 
representations of high-level information as a sparse network of neural-network based activations. 
From an architectural standpoint, we envision the process described in this paper serving as a 

Figure 5. The final experiment first matches segments from the current scene to a previously experienced 
episode. The matched episode’s remaining segments are used to predict which objects the individual will 
encounter in the near future.   



J. DOSHI, Z. KIRA, AND A. WAGNER 

12 

bridge connecting low-level sensor input to higher level symbolic representations to assist with 
human-level reasoning.    
 Computational models of visual analogy have been developed and tested on visual intelligence 
tests (Davies, Goel, & Yaner, n.d.; Gentner, 1983). These systems tend to first translate visual 
content into symbolic representations and then use analogical reasoning on the symbolic 
representation. Our approach differs in that it does not employ a symbolic representation but can 
be converted to a symbolic system in order to tie-in with these more developed systems.     
 Research in the area of scene classification and recognition has recently become an important 
field of focus. Researchers have predominately focused on the task of classifying single images in 
terms of a predefined labeled category (Fei-Fei & Perona, 2005; Juneja, Vedaldi, Jawahar, & 
Zisserman, 2013; Oliva & Torralba, 2001). Traditionally, these approaches tend to use low-level 
feature descriptors such as SIFT (Lowe, 2004) or HOG (Dalal & Triggs, 2005) to characterize the 
target scene. Xiao et al. (2010), for example, utilized an extensive dataset of different scenes 
derived from over 130,000 images to test a variety of low-level feature descriptors on the task of 
scene classification. Other systems use predefined categories of scene images and learn classifiers 
with respect to these categories (Quattoni & Torralba, 2009). In contrast, our process does not 
require predefined categories and matches streaming video, a more challenging dynamic problem.  
 More recently, CNNs have been used in which a variety of features are learned (Girshick, 
Donahue, Darrell, & Malik, 2013; Krizhevsky et al., 2012; Lecun et al., 1998). Donahue et al. 
(2013), for instance used deep CNNs to examine the task of scene classification. They used Caffe 
to classify scenes from the SUN-397 scene category database obtaining a recognition rate of 
40.94%. Later work by the same group explored the use of long short term recurrent 
convolutional networks on video sequence classification (Donahue et al., 2014). Recurrent neural 
networks have recently become a popular method for learning representations of video (Mao et 
al., 2014; Srivastava, Mansimov, & Salakhutdinov, 2015; Venugopalan et al., 2014).    
 For several reasons, we have intentionally avoided directly comparing our system to these 
systems. First, the purpose of our system is different. Our motivation is not simply to create a 
system which is state-of-the-art in scene classification. Rather, our purpose is to develop a 
process that generates perception grounded representations which can be used for higher-level 
reasoning. Second, our approach was designed for video generated by a wearable camera. Most 
approaches by the deep learning community rely on datasets that have been neatly partitioned into 
precise action categories, such as the UCF-101 dataset. Although we did not show it, the videos 
created by a wearable camera would likely not be well classified by neural network trained on 
action videos. Finally, many of the training and test videos used in this research are from a 
stationary camera. Because one primary goal of this research is to implement this system on a 
moving first-person camera, we felt that it was inappropriate to compare this work to video and 
images taken from a stationary camera included within these datasets (Xiao et al., 2010). Our 
approach differs in that we utilize the output maps generated by higher layers of the CNN. The 
more abstract features captured in these higher layers are relatively stable across the frames of a 
video in spite of blur and camera motion. This facet of the research makes our system 
implementable with a wearable camera. 

6.  Conclusion 

This paper has presented a system that uses the output maps generated from a CNN with first-
person camera video input to create concept cell inspired representation of the objects and their 
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spatial location in a scene. We have shown that methods for calculating the distance between the 
output maps generated by a CNN afford a means for determining scene similarity and/or distance. 
We have demonstrated that: 1) segment similarity correlates to the similarity judgments of 
people; 2) that if the scene is broken into segments then these similarity scores can be used to 
cluster scenes with respect to abstract categories and; 3) that the system offers a potential means 
for predicting future encounters with objects. 

The connection of the system we present to cognitive systems is worth highlighting. Although 
our system does not include traditional high-level reasoning functionality, it does connect real 
world perception in unadulterated environments to the precursors of higher level reasoning, 
namely categories of episodic memories. Several established cognitive architectures have also 
used real-world perception (e.g. Robo-SOAR and ACT-R/E) (Laird, Yager, Hucka, & Tuck, 
1991; Trafton et al., 2013). Unlike these approaches, the perceptual information our system uses 
is completely unstructured and ethologically valid. The episodic memories fashioned from our 
process could potentially be used to reason about novel environments, perform analogical 
reasoning, or perhaps even visualize an environment by recalling or restructuring the images on 
which the output maps are based. Overall, we feel that this process could be used as a tool to 
supply higher-level cognitive architectures with structured, experiential information from 
unstructured video.      

Admittedly, our current system has several limitations. One limitation is that it takes many 
hours to process additional scenes for matching. The time to find a match for a scene, on the other 
hand, is approximately 2-4 seconds, which may be a limitation for applications that require fast 
scene recognition. The system is not, however, very sensitive to blur or noise. Because of 
naturally occurring head motion, the videos we captured tended to be blurry. Yet we chose not to 
deblur the videos or to remove blurred frames. The video was input to the system without further 
processing. The fact that we tested on consumer grade hardware and that the system did not 
require preprocessing to reduce blur is testament to the robustness of our approach. We are 
currently in the process of testing our method on a larger dataset which includes 15 different 
scenes.     

To the best of our knowledge, this work represents the first time that the output maps from a 
CNN have been used as a sparse first-person representation of the visual environment for the 
purpose of scene understanding. We believe that our approach can be used to reason about one’s 
location from visual information, for visual planning, and for higher-level scene abstraction.  

Future work will focus on creating visual prototypes and mental visualizations of future 
environments. We believe that visual prototypes can be created by extracting the segments which 
are common to a category of experiences. Mental visualizations, on the other hand, can likely be 
created by combining segments or even portions of output maps to create new segments and 
episodes. The system might also afford a new method for vision and landmark based navigation 
to aid a person or a robot. The possibility recognizing scenes and using experiences from similar 
scenes to predict the presence of objects in the near-term visual future would be a large step 
towards developing an artificially intelligent system. 
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