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1. INTRODUCTION

Healthcare presents a large problem space towhich novel robotic solu-
tions can be applied. An important and evolving question is how healthcare-

focused robots will interact with and assist the people they serve. Assisting a

patient is, in many ways, fundamentally different from interacting with a

healthy adult. Being a patient implies some type of ailment that could poten-

tially debilitate or impair the person’s judgment. Patient-robot interaction

may therefore require a unique perspective on how and why a robot should

interact with the person. As a caregiver, situations may arise in which the

robot provides companionship, protects the patient’s dignity, restrains a per-

son to prevent self-harm, or discretely observes their behavior. As researchers

in this space, it is imperative thatwe recognize that to be effective, robotsmust

be accommodating and flexible, with the capability to interact with a wide

range of personality types, disabilities, and levels of intelligence.

The dynamic nature of patient-robot interaction presents challenges and

opportunities for novel research. For some cases, the possibility of creating a

“one size fits all” robot-aided therapy is unrealistic. As we move from robots

as assistive tools, to robots as active collaborators in maintaining and

upgrading one’s physical and mental health, we must develop systems that

autonomously individualize their behavior over the course of treatment

with respect to the needs of the patient. Creating systems that perceive

and model a person’s mental state is an important problem that is currently

being investigated by the human-robot interaction (HRI) and social robot-

ics communities. This chapter presents their progress and also examines an

anticipated upcoming generation of robots that will socially interact with

patients, model their moods, personality, likes, and dislikes, and use this
Human Modeling for Bio-Inspired Robotics © 2017 Elsevier Inc.
All rights reserved.

273



274 A. Wagner and E. Briscoe
information to guide the robot’s assistance related decisions. These robots

will need to recognize when a person trusts them, or when a person is being

deceptive; and also decide whether to act deceptively in return for a bene-

ficial patient outcome. We review the major research in areas related to

cognitive, behavioral, and psychological modeling of a patient by an

assistive robot.

The chapter begins by examining the dimensions or attributes by which

people are commonly characterized, especially as relevant to a person needing

assistance, focusing on qualities utilized in human-human interaction, such as

age and emotional state. The person’s condition is another important

distinguishing factor that a more general purpose assistive robot might need

to consider. For example, does the person have a neurological deficit that

might influence how the robot should interact with the person? A hearing

deficit might make verbal commands difficult or impossible to understand

for some patients. Lessons learned while developing a medication and water

delivery robot for older adults suggest that the mobility of the potential user

has a critical impact on their viewand likelihoodof using the system [1].Emeli

et al. interviewedolder adults asking about their interest in a robot taskedwith

delivery. Although some individuals expressed interest, the person’s current

mobility played an important factor in their assessment of the system (Fig. 1).

Next we present methods for behavioral modeling frommore traditional

robotics settings, such as from the field of HRI and social robots. As will be

demonstrated, the use of psychological modeling by HRI researchers is still

in its infancy.
Fig. 1 Awater andmedication delivery robot. Users requested service from the robot by
pressing a button on their smart phone indicating their location. The robot then trav-
eled to a medication and water station for pickup of the items to be delivered, traveled
to the stated location, and stopped within an arm length of the person.
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We then present the dominant approaches for psychologically modeling

a person. Different categories of models exist related to the fields fromwhich

they arose. Economic models, for example, focus on the decisions people

make and how these decisions impact their internal state or utility. Typically,

different economic models of human behavior are assessed in terms of their

ability to predict people’s decisions in tightly controlled laboratory

experiments. These approaches, although not directly related to assistive

scenarios, are important because they offer a formal, grounded, computa-

tional means for modeling a person that can be implemented in the software

that controls a robot.

Cognitivemodels are another important category of approach formodel-

ing people. Cognitive models attempt to approximate the different types of

processes that underlie cognition. Various architectures have been advanced

as different visions of how animals and people think.Often these architectures

are assessed in terms of the accuracy of their predictions of human behavior,

and the timing of these behaviors. Next, we discuss how human characteris-

tics may be measured, based on explicit signals, in order to be utilized in

individual-based models. The chapter concludes by summarizing the work

done in the area of human modeling by assistive robots, and suggesting

new avenues for future work.

2. DIMENSIONS OF HUMAN CHARACTERIZATION

Human characterization serves a critical purpose, whether conducted
by other humans or machines. Several of the social sciences, such as cogni-

tive and social psychology, share a similar goal of determining characteriza-

tions of humans that serve to explain both their commonalities and

individual differences. Often investigators seek to understand how and

why people differ and how those differences may be measured, wherein

by defining people using common dimensions, they can better explain,

understand, and predict an individual’s behavior. Developing computational

methods for representing these dimensions also provides a means for artificial

reasoners (eg, robots) to mimic and take advantage of known human cate-

gorization techniques.

Whether explicitly or implicitly, people constantly categorize the indi-

viduals with which they interact. As cognitive processes are optimized to

compensate for limited processing power by maximizing resources, humans

often form impressions and infer traits based on their immediate categoriza-

tion of other individuals rather than waiting to experience each specific trait
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firsthand [78]. Research into how people categorize other people varies, for

example, by spanning both social and individuated concepts [2,3]; focusing

on either a person’s salient characteristics (such as height) or behavioral charac-

teristics (such as personality); or involving top-down (category-oriented) or

data-driven (attribute-oriented) inferences [4]. It is also expected that when

people evaluate one another, they do so in stages, where initial categorization,

confirmatory categorization, recategorization, and piecemeal processing (as

described by Fiske et al. [5]) are mediated by attention and interpretation

and influenced by information and motivation.

While not exhaustive, many of the dimensions used to characterize

humans that have been identified through social science research, and that

are especially relevant to benefiting HRI, are described in the following

paragraphs.
2.1 Personality
Perhaps the most common method, either explicitly or implicitly, of

describing a person is by assigning them a range of personality traits. There

are several primary theories describing personality [6], including the “Big

Five” [7], Eysenck’s PEN [8], and Myers-Briggs Type Indicator [9]. These

theories “decompose” people into multiple dimensions. For example, using

the Big Five, people are characterized along five factors: openness, consci-

entiousness, extraversion, agreeableness, and neuroticism (see Table 1 for a
Table 1 “Big Five” Personality Dimensions [7] and Their Associated Trait Ranges
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more comprehensive description of the dimensions and their associated

range of traits). Despite its potential to be dynamic (there is debate as to

whether people have consistent personalities [10]), personality profiling

has proven valuable in predicting a number of behaviors, such as job perfor-

mance in occupational settings [11].
2.2 Emotions and Moods
Understanding a person’s mood or emotional state is critically important,

especially with regard to potential HRI. One primary approach in the study

of emotions has been to view emotions as arising from a palette of “basic

emotions.” These perspectives tend to perceive basic emotions as “low level”

feelings such as anger, disgust, fear, joy, sadness, surprise [79]. The identifica-

tion of emotion “types” based on the theory of Ortony, Clore, and Collins

[12], also known as the “OCC” model, assumes that emotions develop as a

consequence of certain cognitions and interpretations, which are based on

one’s understanding of the world in terms of agents, objects, and events

(see Table 2 for the 22 emotions described in the model). How emotions

might emerge is very dependent on how individuals perceive and interpret

events. One can be pleased or displeased about the consequences of an event

(pleased/displeased); one can endorse or reject the actions of an agent (approve/

disapprove) or one can like or not like aspects of an object (like/dislike).

A further differentiation consists of the fact that events can have conse-

quences for others or for oneself, and that an acting agent can have different

roles. The consequences of an event for another can be divided into desirable

and undesirable; the consequences for oneself as relevant or irrelevant expec-

tations. Relevant expectations for oneself finally can be differentiated again

according to whether they actually occur or not (confirmed/disconfirmed).

Moods, in contrast, are not usually characterized by their direction at a

person or event. While someone might show an emotion (anger) toward a

specific object (eg, a colleague), as the specific emotion dissipates, they may

feel a general bad mood. In some models of emotion (eg, [13]), an individ-

ual’s perception of a generated emotion is considered the agent’s feelings,

which are modulated by both emotion, the individual’s appraisal of the

current situation, and mood, which is a memory of recent emotions [14].
2.3 Intelligence
Intelligence is a well-studied individual characteristic whose measurement

has been used to predict a wide variety of human behavior, such as job



Table 2 The Types and Specifications of the 22 Emotions Specified by the OCC
Model [12]
Emotion Type Specification

Joy (Pleased about) a desirable event

Distress (Displeased about) an undesirable event

Happy-for (Pleased about) an event presumed to be desirable for someone

else

Pity (Displeased about) an event presumed to be undesirable for

someone else

Gloating (Pleased about) an event presumed to be undesirable for someone

else

Resentment (Displeased about) an event presumed to be desirable for

someone else

Hope (Pleased about) the prospect of a desirable event

Fear (Displeased about) the prospect of an undesirable event

Satisfaction (Pleased about) the confirmation of the prospect of a desirable

event

Fears-confirmed (Displeased about) the confirmation of the prospect of an

undesirable event

Relief (Pleased about) the disconfirmation of the prospect of an

undesirable event

Disappointment (Displeased about) the disconfirmation of the prospect of a

desirable event

Pride (Approving of) one’s own praiseworthy action

Shame (Disapproving of) one’s own blameworthy action

Admiration (Approving of) someone else’s praiseworthy action

Reproach (Disapproving of) someone else’s blameworthy action

Gratification (Approving of) one’s own praiseworthy action and (being pleased

about) the related desirable event

Remorse (Disapproving of) one’s own blameworthy action and (being

displeased about) the related undesirable event

Gratitude (Approving of) someone else’s praiseworthy action and (being

pleased about) the related desirable event

Anger (Disapproving of) someone else’s blameworthy action and

Love (Liking) an appealing object

Hate (Disliking) an unappealing object
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performance [80]. Most current factor models of intelligence typically rep-

resent cognitive abilities as a three-level hierarchy, where at the highest level

is a single factor referred to as g, which represents the variance common to all

cognitive tasks [81]. Intelligence has also been linked to personality traits,

especially openness and intellect [7], where individuals who fall higher on

the openness dimension generally score higher on measures of cognitive

ability [15] and are more creative [16].
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2.4 Social Intelligence
In addition to traditional measures of intelligence, social intelligence [82] is a

quality that represents a person’s ability to express, recognize, and manage

social signals and social behaviors [17], such as politeness and empathy. As

a subset of social intelligence, emotional intelligence involves a person’s ability

to monitor his own and others’ feelings and emotions and to make informed

decisions based on this assessment [18]. The five key factors of emotional

intelligence are: self-awareness, self-regulation,motivation (passion for work

and resiliency), empathy, and social skills. In order to be useful for a robot,

these dimensions must be represented within a computational framework.

The following sections present some of the most common and

well-known computational frameworks for modeling people.
3. CONSTRUCTING BEHAVIORAL MODELS FOR HRI

Because a robot has a physical presence in the world, the ways that
people interact with these machines can, in some ways, be unique. For

instance, Bethel et al. compared robot interviews to human interviews in

terms of the misinformation effect [19]. The misinformation effect occurs

when a person’s recall is influenced by postevent information in a way that

makes recall less accurate. In criminal investigations, for example,

questioning by the examiner influences the eyewitnesses’ memories of

the event. Bethel et al. found that use of a robot interviewer resulted in

greater memory recall and accuracy in spite of misinformation. In an assistive

setting, use of a robot might allow a patient to more accurately state the rea-

son for their ailments.

Human-robot research has also shown that people are likely to heed the

orders of a robot. McColl and Nejat found that 87% of older adults that they

tested complied with a robot’s prompts to eat [20]. Salem et al. found that

people typically comply with a robot, even when its instructions are in error

[21]. They found that two-thirds of subjects would even pour orange juice

over a plant if asked to by the robot. Most rationalized the request in

some way.

It is worth noting that anthropomorphism can strongly influence the ways

that a person interacts with a robot. Anthropomorphism is the tendency to

attribute human characteristics to nonhuman objects. When the object being

anthropomorphized is a robot, this tendency can lead to inaccurate

expectations related to the robot’s behavior, intentions, or communication

tendencies [22]. HRI researchers have, at times, resorted to developing
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robotic “creatures” in order to reduce anthropomorphism [23]. Others have

embraced anthropomorphism by making their robots as humanlike as possible

[24]. Gratch et al. have pioneered the use of humanlike virtual characters for

the purpose of training, and for psychotherapeutic effectiveness [25]. The

nature of a robot’s interactions with the patient will likely determine whether

anthropomorphism is embraced or avoided.

The field of HRI has begun to explore the possibility of a robot modeling

a person and using this information to guide its behavior. This work has typ-

ically fallen under the rubric of mental modeling and the development of

shared mental models. Unlike an economic model or a cognitive model,

a mental model is simply one’s understanding of another person’s thought

process [26]. As such, the notion of a mental model is rather vague and

ill-defined. Also, unlike economic and cognitive models, mental models

have no natural computational underpinnings. Hence, roboticists tend to

create their own. Propositions are a common format for representing an

individual’s beliefs [27]; probabilistic statements are also often used [28].

Belief-desire-intention models (BDI) have also been used to model the

psychological state of a person. Beliefs represent the information that the

person is currently aware of, or in some way knows. Desires represent

the person’s goals or motivations, and intentions denote a person’s deliber-

ative course of action [29]. Although useful in simulation and virtual envi-

ronments, BDI methods are limited in their ability to capture the richness

and variability associated with human decision making.

Partially-observable Markov decision processes (POMDPs) have also

been suggested as a means for representing a model of the robot’s interactive

partner. POMDPs model the decision process as a chain of connected states

[30]. At each time step, the robot observes information about the current

state of the environment which is ultimately used to select an action during

the next time step. Although the resulting behavior is provably optimal,

exact POMDP solutions are computationally intractable for most nontrivial

problems; approximate solutions are the norm [31].

In addition tomodeling the person’s mental state, it may also be useful for

an assistive robot to model the risks to the patient associated with a therapy.

Exoskeletons, for example, are poised to become an important therapeutic

tool and perhaps even a long-term solution for some types of paralysis. It may

be beneficial for these systems to model the risks associated with particular

types of movements, such as climbing steps, and warn the user of the risk.

Finally, there are important ethical ramifications associated with a robot’s

creation and use of psychological models when interacting with a person.
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Such machines may be empowered to recall an enormous amount of data

associated with a person or type of person. Depending on the circumstances,

this information could easily be used to manipulate or unjustly coerce a

patient. Developers of robotic systems must consider the extent to which

psychological modeling is appropriate and justified.

Given the limitations of current approaches, we can generate greater

realism by incorporating elements of human psychology and the signals these

elements produce.

4. ECONOMIC DECISION-MAKING MODELS

The earliest and most well-developed formal models of human deci-
sion making originate from economic theory. Jeremy Bentham developed

the idea that economic exchange and the decision making that underlies it

are driven by one’s attempt to maximize pleasure and minimize pain, and

can be measured as such [32]. A person’s motivations and resulting behavior,

Bentham argues, are a direct reflection of the utility of one’s actions. At its

core, utility theory claims that people use subjective assessments of the value

of an action choice to make decisions. If an individual views a particular

action or course of action as offering higher subjective value than some other

course of action, that action is favored over others.

In contrast to many traditional psychological theories, utility theory is

formalized mathematically. This mathematical grounding provides a com-

putational framework which is implementable on an assistive robot

attempting to model and predict a person’s behavior. Utility theory assumes

that a person receives a quantifiable pleasure, u2, when making a deci-

sion. Utility functions, U :X!, are used to describe an individual’s pref-

erences in relation to fixed set of choices. A preference is defined as a

relation, ≼, over X such that for every x,y2X , U xð Þ�U yð Þ implies

x≼y. Rational behavior results when an individual selects actions which

maximize their utility function. In theory, understanding a person’s utility

function allows one to predict the person’s behavior.

Expected utility theory considers one’s preferences when the utilities that

result from an action choice are uncertain [33]. Uncertainty is typically

modeled as a gamble resulting in outcome (x) with respect to a known prob-

ability distribution (p). The expected utility, EU, is then arrived at as the

product of the outcome utilities and the probabilities. The outcome of sev-

eral gambles, x¼ x1, x2,…, xNf g, is thus calculated as EU x½ � ¼
XN

i
pixi.
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John von Neumann and Oskar Morgenstern showed that an individual

whose preferences satisfy certain axioms always prefer an action which max-

imizes their expected utility [34]. Alternatively, an individual whose prefer-

ences violate the von Neumann and Morgenstern axioms makes decisions

which guarantee losses. Intentionally selecting an action which will result

in losses is considered irrational. A rational individual is thus argued to be

an individual who selects actions that maximize their own utility.

One of the primary criticisms of expected utility theory is that it falsely

assumes that people act in a rational, utility-maximizing manner. In reality,

well-known biases constantly influence human decision making. For

instance, people tend to be averse to losses. A person’s decisions are more

strongly influenced by the desire to avoid losses (loss aversion bias) than the

desire to seek gains. The manner in which a situation is described or framed

also impacts decision making (framing effects). Framing a choice as a gain or a

loss has been shown to bias decision making. Humans are also biased to pre-

fer the status quo. The status quo is used as a point of reference for evaluating

whether or not a choice will result in a loss or a gain. People tend to discount

the value of additional gains or losses the further the gain or loss is from one’s

reference point. For example, the perceived difference in utility between

receiving $100,000 and $100,100 is considered small, whereas the perceived

difference in utility between receiving $0 and $100 is considered great, even
though the value of the difference is the same. Finally, people tend to over-

estimate the likelihood of low-probability events and underestimate the

probability of high-probability events.

Prospect theory was developed to better account for the behavior people

actually exhibit when faced with choices under risk and uncertainty [35].

Prospect theory holds that the expected utility should be evaluated as

EU x½ � ¼
XN

i
w pið Þv xið Þ, where EU is the expected utility associated with

making decisions x1, x2, …, xN and p1, p2, …, pN are their respective

probabilities. The function v maps outcome values to utilities and the func-

tion w weighs probabilities in order to capture one’s risk preferences. Fig. 2

depicts the typical shape of a prospect theory value function. The y-axis illus-

trates the individual’s current reference point. Losses and gains are evaluated

with respect to the reference point. The steeper slope on the loss portion of

the graphmodels loss aversion. The curved tails indicate the lessening impact

of additional gains or losses, a reflection of gain/loss satiation.

Fig. 3 depicts a probability weight function from prospect theory. The

curved line used for the weight function mimics certainty effects by
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overestimating the likelihood of low-probability events and overestimating

the likelihood of high-probability events. Overall, the addition of a proba-

bility weighting and utility valuation function and the shape that these func-

tions take allow prospect theory to better model a person’s economic

decision making as well as their biases.

Although prospect theory was a major advancement, a problem

remained [36]. Let x and y be the outcomes that result from gambles
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A1 and A2. If P x> tjA1ð Þ is the probability that an outcome of Gamble A1

exceeds t, then the decision (A1) is said to “stochastically dominate” decision

(A2) if and only if P x1> tjA1ð Þ�P x2> tjA2ð Þ for all t, assuming A1 6¼A2.

Unfortunately, because of the shape of the weighted probability function,

prospect theory predicts situations in which A2 is chosen over A1 in spite

of the fact thatA1 is stochastically dominated byA2.Cumulative prospect theory

is a theoretical and practical refinement of prospect theory which does not

violate stochastic dominance [37]. Fig. 4 depicts a weighted probability

function that maintains stochastic dominance.

Many extensions and refinements of these behavioral decision theories

have been proposed. In contrast to utility theory, regret theory focuses an

individual’s motivation to minimize the negative feelings associated with

regret [38–40]. Regret theory holds that the preference over choices A1

can be represented formally as:

A1�A2,
XN

i

pi v A1 xið Þð Þ� v A2 xið Þð Þð Þ

where v is the utility function. Regret theory explains certain decisions bet-

ter than prospect theory. For a more formal and detailed treatment of regret

theory, see Ref. [40].
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The preceding theories are based on rational models of human behavior.

Decision field theory, on the other hand, is a dynamic theory that does not

assume a fixed, rational set of preferences [41]. Decision field theory includes

a model of preference evolution that allows it to generate a better account of

decision regularity and make predictions about decision time under certain

conditions. For more detailed information related to decision field theory,

Busemeyer and Diederich provide a survey of the field [42].

For robots trying to model a person, decision theories offer a computa-

tional starting point. They are easily implemented on a robot and share some

common conceptual traits with more traditional robotics frameworks such

as reinforcement learning. Yet decision theories also tend to assume rational

or semirational behavior and underestimate the idiosyncratic, emotional,

and automatic nature of human behavior. Moreover, some argue that a sin-

gle scalar utility value is too impoverished a model to represent a person’s

state. Nevertheless, this approach has been employed successfully for more

than 60 years by economists and others. With respect to robotics, Wagner

showed that a robot could learn categories of models related to different

types of people [43]. These stereotyped models could then be used to make

predictions about interactions with newly encountered people. These tech-

niques could presumably be used by an assistive robot as a strategy for boo-

tstrapping its early interactions with a new patient. Later, with time and

experience, the system could tailor its interactions to needs of the particular

patient.
4.1 Neuroeconomics
Given the limitations of utility-based economic models of human decision

making, researchers began to investigate methods that augment traditional

economic models with results and data from neuroscience. They called this

new direction neuroeconomics. Neuroeconomics is an interdisciplinary field

which seeks to build from utility-based theories while also including evi-

dence from neuroscience. As a field, neuroeconomics makes a concerted

effort to include automatic and emotional processing in their models of

human behavior [44]. There is a great deal of evidence that human decision

making is strongly influenced by automatic, unconscious processes [45,46] as

well as emotion [47]. Emotion, in particular, has a tendency to hijack a per-

son’s decision-making faculties and generate behavior which is typically

viewed as irrational. Emotion also impacts learning which, in turn, influ-

ences decision making [13]. Significant evidence suggests that memories



286 A. Wagner and E. Briscoe
are imbued with affective information, which upon recall, generates similar

emotions to the time the memory was created.

Neuroeconomics embraces the use of brain imaging as a means to bet-

ter understand the mind’s processing while making decisions. Typically,

brain images are used to compare brain activity while people are engaged

in an experimental or control task. Often the tasks used involve economic

games such as the prisoner’s dilemma or the investment game. King-Casas

et al., for example, used a hyperscan functional Magnetic Resonance

Imager (fMRI) to monitor participant’s neural responses while playing

a two-person investment game [48]. In this game one person assumes

the role of investor and the other of trustee. The investor is given $20
and may invest any portion of the money with the trustee. Money that

is invested with the trustee then appreciates (is multiplied by 3). The

trustee must then decide how much to return to the investor. King-Casas

et al. monitored subjects over 10 rounds of play. They found neural cor-

relates which indicated a person’s intention to trust their partner.

These types of studies provide insight into the areas of the brain that are

activated in specific decision-making situations as well as the temporal pro-

cess underlying that decision. For instance, it has been shown that situations

involving distrust activate the parts of the brain associated with the fear emo-

tion [49], whereas situations involving trust do not activate any specific area

of the brain [50].

Significant work in this area has also shown that decisions are made when

the brain integrates inputs from multiple systems to generate a utility-like

value. This multiple systems model claims that information from these dif-

ferent systems is processed in a qualitatively individualized manner and

weighted accordingly [51]. For example, the emotional or affective system

quickly and unconsciously processes information to generate a reflexive

response. The analytic system, on the other hand, is a slower, conscious

effort which influences behavioral decisions. The behavior that results is a

combination of signals from these different sources (Fig. 5).

The multiple systems model of cognition can be used to explain several

aspects of human behavior. For instance, Shiv and Fedorikhin [52] showed

that self-regulation decreases with increased cognitive load by asking people

to choose between cake or fruit salad while remembering either a 2-digit or

7-digit number. Significantly more people choose cake when asked to

remember the 7-digit number. Presumably remembering the larger number

marshals resources away from the executive functions of the mind, allowing

one’s lower functions to play a larger role in decision making.
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Integration of these signals is not necessarily limited to behavior. Percep-

tual processes, for example, are intimately influenced by motor activity.

Jessica Witt has found that motor experience derived from practice actually

increases a person’s perceived size of the target [53]. For instance, better

baseball batters perceive pitched baseballs as larger. The same has been dem-

onstrated with field goal kickers and golfers. Witt even found that, when

compared with nonthreatening objects, people perceived spiders as moving

faster [54].

This interplay of different, competing systems influences people’s deci-

sions during interactions with a robot. Robinette et al. examined a situation

in which a robot guided subjects to a meeting room [55]. Later, an emer-

gency evacuation occurred and the same robot offered to guide them out

of the building. In virtual environments subjects that were initially led by

a robot that navigated poorly generally choose not to use the robot. In a real

instantiation of the experiment, subjects universally chose to follow the

robot regardless of how poorly it had navigated earlier. The multiple systems

hypothesis provides a possible explanation for this behavior. In the virtual

environment, people’s high executive functions consider the robot’s repu-

tation when making a decision. In the real environment, when alarms are

sounding, their lower more automatic cognitive functions dominate and

the robot’s reputation is no longer considered.

4.2 Cognitive Architectures
The challenge of evaluating potential interaction outcomes may be

addressed by representing features as components in a human cognitive

architecture, such as those proposed by Anderson and Lebiere [83], Revelle

et al. [15], or Newell [84], which consists of computational components
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that, in coordination, are argued to produce human-level intelligence.

These architectures allow a robot to “understand” and predict human

behavior on some level [56]. Several of these architectures, such as H-

CogAff, ACT-R, and Soar, operate at a high level of comprehensiveness,

where they include key psychological moderators, such as personality.

By utilizing the cues provided by both humans and contextual informa-

tion, cognitive architecture(s) may greatly enhance a robot’s ability to inter-

act with an individual. Trafton et al. [56] specifically discuss an expansion of

ACT-R, ACT-R/E to provide robots with theory of mind (knowledge of

others’ cognition) so as to improve their functionality. With an understand-

ing of how people might perform in different situations, the robot can better

achieve its own goals. For example, reasoning about how people are likely to

react during emergencies (such as a fire) in order to protect themselves may

impart a robot with knowledge that will aid it to locate victims. Likewise,

the ability to detect and reason about emotion may be a critical component

of robotic caregivers [57]. These types of models can be used as a source of

information by the robot for decision making.

In regard to assistive robots, one should expect that the person’s mental

state will strongly influence their decision making relative to the robot. For

instance, emotional patients, younger and older patients, and those with

traumatic brain injuries may not consider the longer-term benefits of the

robot. It is important that an assistive robot respond to the person it is trying

to help. Failing to monitor and react to changes in the person’s mood or

behavior is likely to lead to little desire by the person to use the robot

and may even result in patients injuring themselves to prevent assistance.

Overall, economic models of human decision making may have a large

role to play with respect to assistive robotics technologies. These models

offer a formal, computational means for the systems to predict and possibly

understand the person’s behavior. While these models have limitations,

there are currently few well-developed alternatives. Perhaps the most

well-developed alternatives are the cognitive models presented in the next

section.

5. INFERRING PSYCHOLOGICAL MODELS

Implementing social science research allows an artificially intelligent
machine to better represent, understand, and ultimately interact with a

human. Better machine understanding of human behavior may result in

more natural and beneficial HRI (eg, [58]). In order to take advantage
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of the knowledge that has been provided by social science research,

machines must be able to perceive and interpret information about the

human with which it is interacting. Efforts in social signal processing

[59,60] have determined that social signals commonly identified by psy-

chologists and sociologists can be recognized and captured by machinery,

such as microphones and cameras, and processed into intelligence through

algorithmic techniques, such as machine learning. The ability to utilize

these signals allows a machine (robot) to create “mental” models of people

in a way very similar to humans. These models then allow for reasoning

about human behavior, which can be optimized towards tailoring success-

ful machine interactions.

Nonverbal behavior is a continuous source of signals that convey infor-

mation about the traits of people, such as their emotions and personality [85].

Ekman and Friesen [61] notably categorized communication types that

result from nonverbal cues. These include: affective/attitudinal/cognitive

states (eg, fear, joy, stress, disagreement, ambivalence, and inattention),

emblems (culture-specific interactive signals like wink or thumbs up),

manipulators (eg, touching objects in the environment), illustrators (eg, fin-

ger pointing and raised eyebrows), and regulators (eg, head nods and smiles).

Using nonverbal behaviors is not necessarily sufficient, as they carry a

great deal of ambiguity [85]. For example, an awkward posture may indicate

aggression or an injury. Culture is also a contributing factor to individual

differences [86], and must be considered during nonverbal cue interpreta-

tion. To overcome these complications, it is advisable to marry features

across modalities, though attention to the context in which the behavior

arises is also critically important.

In order to model the behavior of a person, it is necessary to discover the

subset of features relevant to a specific signal [17]. Often, the best approach is

to select the most relevant features from all available data; however, this may

result in only selecting features that are not relevant to any specific individual

but only to an average model.

5.1 Detecting and Modeling Psychological Characteristics
5.1.1 Personality
Humans exhibit a number of cues that can be used to infer personality (eg,

[62,63]). These cues may take many forms, such as the language that a person

uses [64], a person’s environment [65], or the tone in which they speak [66].

Personality cues may be used to create profiles to understand and, in some

cases, predict an individual’s behavior. For example, Walters et al. [87]
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investigatedwhether personality, as characterizedby certain personality traits,

could be used to predict the likely approach distance preferred by the human

subjects in robot interaction experiments. They found that their variable

“proactiveness,” primarily made up of creativity and impulsiveness, was pos-

itively correlated with the preferred human-to-robot approach distance. A

person’s personalitymay also beutilized tohelpoptimize robotic interactions,

where extroverted individuals may prefer language that emphasizes friendli-

ness andwarmth, and introverted individualsmayprefer slowmovements and

more silence.

5.1.2 Emotion and Mood
The previously described OCC model, which defines 22 emotions

(described in Table 1), is extremely useful for modeling emotional agents

as the authors explicitly constructed the model to allow for “reasoning about

emotion” [12], by assuming that individuals perform a subjective assessment

of their relationship to the environment. Objects, events, and actions are

evaluated in an appraisal process based on specific criteria, and result in mul-

tiple emotions of different intensities. As a person interacts with objects or

agents, they evaluate the benefits or potential harm that they may cause,

based on concerns such as goals, standards, or tastes. If those concerns are

satisfied, which may be detected through recognition of cues such as facial

recognition [67], the individual experiences a positive emotion (eg, admi-

ration, joy); otherwise, a negative emotion (eg, frustration) is elicited. Past

research has found many cues to emotion detection, much of it arising from

research in affective computing [68]. Past research has also determined other

methods for automatic emotion detection, such as facial expression analysis

using artificial machine vision [69], voice analysis to detect the emotion of

the interlocutor [88], or multimodal analysis [70]. The detection efficacy of

modalities differs across emotions, where some emotions are better identi-

fied by voice, such as sadness and fear, but others are better detected through

facial expression analysis, such as happiness and anger [89]. By representing

the generation of emotions, and, over a longer temporal scale, moods, arti-

ficial agents can utilize small cues, such as changes in facial expressions, to

provide additional meaning to communications and detect subtle changes

in an individual.

5.1.3 Measuring General Intelligence
Though intelligence is traditionallymeasured through standardized testing (eg,

[71]), other methods infer intelligence through its relation to other observable
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traits, such as personality and expressed interests (eg, [72,73, 90]) and even

physical characteristics (eg, [74]). Understanding a person’s intelligence may

also aid inHRIs.Forexample,wheninteractingwithhighly intelligentpersons,

interactions may benefit from presenting ideas in more technical depth, using

words that are more difficult and asking challenging questions.

5.1.4 Measuring Social Intelligence
Inferring social intelligence is a bit more straightforward than general intelli-

gence, as relevant behaviors may be expressed through various cues in reaction

to interactions, such as gestures and facial expressions. The use and incorpo-

ration of human social signals is often referred to as socially aware computing [59].

Vinciarelli et al. [17] describe the primary social cues as falling into the

following classes: physical appearance, gestures and posture, face and eyes

behavior, vocal behavior, and space and environment. Relevant for social

intelligence, Salovey and Mayer [18] proposed a model that identified four

different factors of emotional intelligence: the perception of emotion, the abil-

ity to reason using emotions, the ability to understand emotion, and the ability

to manage emotions. An individual’s place at each of these dimensions may be

used to determine optimal interaction methods [75].

5.2 Utilizing Context
Modeling behavior is extremely dependent on the situation and context in

which that behavior is exhibited.Human behavior is highly variable, changing

and adapting according to the situation. What may be construed in one situ-

ation (eg, a smile upon greeting another, indicating happiness) can be repre-

sentative of something completely different in another (eg, a smile after seeing

another get hurt, indicating malice). In order to utilize a behavioral cue in one

context, it is necessary to understand that context—potentially by determining

the 5 W+ questions (who, what, when, where, why, and how) [17].

Similar to categorizing individuals, categorizing the situation may pro-

vide meaningful knowledge for optimizing a robot’s response. For example,

in situations where a decision must be made immediately, such as in emer-

gencies, individuals may be forced to rely on instinct- or experience-based

processes, which may be viewed as irrational [76]. Decision making in these

situations differs from nonemergency reasoning, where there are higher

stakes, higher uncertainty, and increased time pressure [77]. These consid-

erations support the need for a comprehensive means to understand and rep-

resent human behavior, especially as it is likely to change in different

contexts and situations.
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6. CONCLUSIONS

Robots are becoming an important facet of physical and rehabilitative
therapy. Exoskeletons and autonomous social robots may soon assist people

with daily tasks. We argue that as robots become prevalent, it will be impor-

tant that they model the people and patients that they interact with in a way

that includes the many different psychological facets that make humans

human. We have explored many of the major research directions by which

these models are realized and developed. The inclusion of methods for

behavioral and psychological modeling as a part of a robot’s decision making

is a new and exciting area of research. As this avenue of research grows, one

should expect to see robots that are less aligned with our traditional notion of

robots. These systems will appear more human and interactive. Although

these models will likely be beneficial for a number of tasks, researchers

and the community at large must give serious consideration to the ethical

implications of creating robots which psychologically model humans.
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