
26
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This article presents a conceptual framework for human-robot trust which uses computational representa-

tions inspired by game theory to represent a definition of trust, derived from social psychology. This con-

ceptual framework generates several testable hypotheses related to human-robot trust. This article examines

these hypotheses and a series of experiments we have conducted which both provide support for and also

conflict with our framework for trust. We also discuss the methodological challenges associated with inves-

tigating trust. The article concludes with a description of the important areas for future research on the topic

of human-robot trust.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Robotics; Ex-

ternal interfaces for robotics;

Additional Key Words and Phrases: Human-robot trust, trust, social robotics, risk

ACM Reference format:

Alan R. Wagner, Paul Robinette, and Ayanna Howard. 2018. Modeling the Human-Robot Trust Phenomenon:

A Conceptual Framework based on Risk. ACM Trans. Interact. Intell. Syst. 8, 4, Article 26 (November 2018), 24
pages.

https://doi.org/10.1145/3152890

1 INTRODUCTION

Trust plays an important role during interpersonal interactions. It allows employers to leave the
shop knowing that their employees will act responsibly. It allows depositors to place their entire
fortune in the vaults of a bank believing that their assets will be safe. Trust permits a trustor to
act in a manner that puts them at considerable risk, believing that the actions of their counterpart
will mitigate that risk [61]. Although we all experience it, trust is a phenomenon that is described
through many different lenses. From a research standpoint, many technical definitions have been
posed [3, 8, 13, 16, 24, 26, 28, 29, 53]. Those that have taken a close look at these definitional
differences have concluded that, for the most part, many of the definitions for trust are largely in
agreement [43]. Although the phrasing and focus may differ, many researchers agree that the term
“trust” suggests a situation in which an individual is vulnerable and their vulnerability rests with
the actions, behaviors, or motivations of another individual.

Although one must be careful not to put too much stock into the origin and meaning of a sin-
gle word, the definition of a word helps shape its connection to some underlying phenomenon.
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The important challenge then becomes how to formally ground and operationalize the notions
set forth in the definition in a way that scientifically informs one’s research. Conceptual frame-
works serve this purpose. A conceptual framework allows one to organize ideas, make conceptual
distinctions, and, ideally, leads to the discovery of important interrelationships and interdepen-
dencies. For interactions involving humans and robots, developing a conceptual framework for
trust is particularly important. Because robots are embodied, their actions can have serious con-
sequences for the humans around them. Injuries and even fatal accidents have occurred because
of a robot’s actions.

Our framework is meant to be descriptive with respect to interpersonal trust and prescriptive
with respect to human-robot trust. Developing a framework that allows a robot to recognize and
react appropriately to indications of human trust has important implications for home healthcare,
search and rescue, and military applications. It is similarly vital to prevent people from trusting
a robot too much. For example, we recently conducted a survey of parent’s attitudes related to
robotic rehabilitation exoskeletons for children with mobility impairments and found that the
majority of parents expected that their children would use the device for high-risk activities such
as running, jumping, or climbing [5]. Moreover, 62% of parents indicated that they would typically
or completely trust their child to handle any risky situations. The average age of the children
was less than 9 years old. A social robot should be able to recognize when people trust it too
much, e.g., trust it to perform functions beyond its capabilities, and act to dissuade the person
from placing themselves at risk. For these reasons, it is critical to develop a formal, principled
conceptual framework of trust that is implementable on a robot. Most research in this area has
explored a different problem: understanding the factors that influence a person’s trust in a robot
[11, 17]. Our research, in contrast, has focused on the development and testing of a computational
framework for understanding trust and methods that allow a robot to both identify who is trusting
it and whom it should trust.

The purpose of this article is thus to present an overarching theory for human-robot trust and
the experimental evidence that we have generated in support of and in conflict with that theory.
The experiments presented in this article were conducted over a 4-year period, involving more than
2168 unique subjects, and focused on evacuation situations in which a robot offers to guide a person
during an emergency [41, 56]. The portrait that the resulting data paints is complex, highlighting
the conceptual and methodological challenges associated with empirically studying human-robot
trust. Nevertheless, our experiments support several important conclusions and highlight several
areas where additional research is needed before robots become ubiquitous members of our social
environment. Although aspects of this research have been briefly discussed in other conference
and journal publications [38–40], this is the first presentation of the framework as a whole.

The remainder of this article begins by presenting the portion of the vast trust literature which
is most closely related to this research. In reviewing the literature, different conceptualizations of
trust are examined while also considering the feasibility of implementation on a robot (Section 2).
Next, our conceptual framework for representing trust is developed and, in conjunction with
the definition for trust, our conditions for gauging if a situation demands trust are presented
(Section 3). Section 4 begins with several hypotheses proffered by our framework and then
investigates empirical evidence for and against each of these hypotheses. The article concludes
by discussing the utility of our approach and avenues for future research.

2 RELATED WORK

The concept of trust in an autonomous system has long been investigated from many different
perspectives [8, 18, 19, 27, 28, 33, 46, 47]. Information withholding (deceit) [33], agent reliability
[47], agent opinion based on deceitful actions [19], compliance with virtual social norms [18], and
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compliance with an a priori set of trusted behaviors from a case study [27] have all been used to
measure trust in multi-agent systems. Models of trust range from beta probability distributions
over agent reliability [19] and knowledge-based formulas for trust [27] to perception-specific pro-
cess models for trust [18].

Neuroscientists have used economic games to study trust development [15, 22, 35, 49]. Work in
this area has shown that the development of a trusting relationship occurs with repeated, positive,
and predictable interactions [9, 10, 61]. Work by King-Casas et al. [22] captured fMRI images of
an individual while they played a two-player investment game. The fMRI images showed that the
subject modeled and predicted the behavior of their counterpart. Deviations from the subject’s
predictions resulted in surprise signals along with a reassessment of the counterpart. Rilling et al.
[35] used an iterated Prisoner’s dilemma game coupled with fMRI images to explore social coop-
eration and was able to show that cooperation in this paradigm reflects positive reinforcement of
altruism. These results have played an important role in shaping our framework by showing that
modeling and predicting the behavior of one’s interactive partner is a key component to trust.

With respect to robots, research has primarily focused on elucidating the factors that influence
a person’s trust in a robot. Confidence and risk have been identified as factors [11, 61] as has the
robot’s behavior [6] and appearance [25, 32]. Carlson et al. [7] finds that reliability and reputation
impact trust in surveys of how people view a robot. Hancock et al. [17] performed a meta-analysis
over the existing human-robot trust literature identifying 11 relevant research articles and found
that, for these articles, robot performance is most strongly associated with trust. Desai et al. [11]
performed several experiments related to human-robot trust. This group’s work primarily focused
on the impact of robot reliability on a user’s decision to interrupt an autonomously operating robot.
They found that poor robot performance negatively affected the operator’s trust of the robot. In
contrast to the work by Desai et al., our work on trust during robot-guided emergency evacuation
does not afford an opportunity for the human to take control of the robot. Instead, we examine a
situation in which a person must choose to either follow the guidance of a robot or not. While we
still capture the level of trust a person places in an autonomous robot, we believe that an evacuee’s
perspective on trust is significantly different from an operator’s perspective on trust. The evacuee
has no control over the robot and must decide between his or her own intuition and the robot’s
instructions in a situation that presents physical danger to the person.

Some researchers have found that people will ignore their prior experience with the robot and
their own common sense when a robot asks them to perform an odd and potentially destructive
task. Salem et al. [45] performed an experiment to determine the effect of robot errors on unusual
requests. They found that participants still completed an odd request made by a robot in spite of
any previous errors. Bainbridge et al. [2] found that participants were willing to throw books in
the trash when a physically present robot gave the instruction, but not when the robot was located
in another room communicating through a video interface. This prior research and our own work
demonstrates that people have a tendency to comply with a robot’s order, and will even place
themselves at risk believing that the robot knows more than they do.

3 A CONCEPTUAL FRAMEWORK OF TRUST

Several characteristics are critical for a human-robot framework for trust. First, the framework
must be implementable on a robot. It must therefore be possible to translate the framework into
usable software. It must also be possible for a robot to perceive the information required by
the framework. A framework which does not offer a means for constructing the computational
representations on which it relies is not implementable. Second, the framework should focus
equally on the robot as the trustor or the trustee. Because social exchanges are dynamic, focusing
solely on the robot’s role as trustee limits the usefulness of the framework. Third, the framework
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must make testable predictions relevant to how people perceive trust and how a robot should
act in situations demanding trust. Finally, the framework should, ideally, connect to other frame-
works organically. Trust should not be imposed as a separate and distinct module of standalone
computational processing.

In order to couch a social phenomenon such as trust within a framework, one needs an opera-
tional definition that, to the extent possible, uniquely defines and characterizes the phenomenon.
Drawing from Mayer’s work on interpersonal trust [29] and Lee and See’s work on trust in au-
tomation [24], we developed an operational definition of human-robot trust which is formulated
within a game theory context. We define trust as, “a belief, held by the trustor, that the trustee
will act in a manner that mitigates the trustor’s risk in a situation in which the trustor has put its
outcomes at risk”. Our definition differs from Mayer’s in one minor respect. Mayer characterizes
trust as one’s willingness to be vulnerable. We replace vulnerability with risk only because risk
is a more precisely and computationally defined concept suitable for implementation on a robot.
Lee and See [24] develop an automation-focused definition of trust as “the attitude that an agent
will help achieve an individual’s goals in a situation characterized by uncertainty and vulnerabil-
ity.” Lee and See’s characterization of trust as an attitude differs from our characterization of trust
as a belief and Mayer’s characterization of trust as willingness. We use belief because the term
has a long-standing definition within the game theory and artificial intelligence communities. In
game theory, beliefs serve as evidence used to evaluate a probability distribution over an agent’s
potential decisions [30]. In artificial intelligence, a belief is a form of knowledge representation,
which also may be used as evidence for or against a course of action [43]. We view these different
notions of belief as compatible and use beliefs as a form of knowledge that are used to evaluate a
probability distribution over potential decisions. By generating an operational definition of trust,
we have thus created a basis for reasoning and representing the phenomenon in game theoretic
terms. As we explain in Section 4.1, we have validated the definition empirically.

The conceptual framework we present is not equal to game theory. The framework simply uses
game theory’s underlying computational representations (Normal and extended-form games). We
do not make the standard game theoretic assumption: that the players know the game in advance
and more importantly, that the players act with rational self-interest because we are not interested
in the traditional game theory solution concepts. Rather our intent is to develop a computational
process used to control a robot during social interactions.

Game theory suggests a computational process for interaction and offers representations for
trying to understand the computational underpinnings that allow trust to emerge during social
interactions. Overall, our work suggests that trust emerges from social situations in which one
individual must place themselves at risk and another individual holds the power to mitigate that
risk. Representations from game theory allow us to model trust formally.

Our definition highlights the role of three important factors that influence trust: the trustee, the
trustor, and the situation (Figure 1). Research by Hancock et al. [17] highlight similar factors after
evaluating the trust literature and interviewing subject matter experts. Consider, for example, the
trust fall. The trust fall is a type of game in which the trustor leans backward and the trustee
catches the trustor. With respect to the definition of above, the trustor decides to lean back if
she believes that the trustee will mitigate her trust by catching her. The trustor’s decision to lean
back is undeniably influenced by characteristics related to the trustee. If the trustee appears weak
or incapable of catching the trustor, the perceived risk of leaning back increases. Similarly, if the
trustee seems unlikely, unmotivated, or unwilling to catch the trustor, the perceived risk of leaning
back also increases. On the other hand, if the trustee appears strong and motivated to catch the
trustor, then the perceived risk decreases. The characteristics of the trustor are similarly important.
If the trustor has been dropped while recently playing the game, then the perceived risk may be
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Fig. 1. Three interrelated factors influence trust decisions in our framework. These factors are used to esti-

mate the risk associated with a decision.

greater. If the trustor has back problems, the perceived risk is greater. Finally, the characteristics
of the situation also determine one’s estimation of risk. If the person is leaning over a soft bed
of grass, then the perceived risk is less than if one is leaning over a bed of rusty nails or broken
glass.

During the process of making a trust-based decision, these factors come together to produce
a decision. It is not the true numerical valuation that determines this decision, but rather, the
trustor’s perception of that risk and their evaluation of risk from an egocentric perspective. The
saliency of the factors is important and extremely difficult methodologically to control. Individuals
may not recognize all of the risks involved with making a decision. Even more likely, individuals
may not recognize that they have alternatives available. The lack of recognition of alternatives is
an important confounding issue related to trust. Oftentimes, a third-party observer may evaluate
a trustor’s decision as an indication of trust, whereas, in reality, the decision was made because
the trustor felt that they had no other option. Our view of trust has been that the trustor must
recognize that they have an alternative, but shades of gray tend to emerge. For instance, choosing
to lean back may feel like the only option, in spite of one’s consideration of risk, because the social
pressure to do so is great.

Social interactions involving trust can be represented using elements of game theory. Repre-
sentations of interaction have a long history in social psychology and game theory [21, 30]. Game
theory uses normal-form and extended-form games (Figure 2) to represent interactions [30]. We
will use the term outcome matrix as a general term to describe both normal- and extended-form
games. A deeper treatment of this material from the game theory perspective would highlight the
difference between these two types of representations. Game-theoretic representations of interac-
tion consist of (1) a finite set N of interacting individuals; (2) for each individual i ∈ N , a nonempty
set Ai of actions; (3) the utility or reward obtained by each individual for each combination of ac-
tions that could have been selected. Let a1

j ∈ A1be an arbitrary action j from individual 1’s set of

actions. Let (a1
j , . . . ,a

N
k

) denote a combination of actions, one for each individual, and letu1 denote

individual 1’s utility or reward function: u1 (a1
j , . . . ,a

N
k

) → R where R is the reward received by

individual 1 if the individuals choose the actions (a1
j , . . . ,a

N
k

).
Our framework for trust results when our definition of trust is applied to game theo-

retic representations of interaction. A social situation demanding trust can be modeled as an
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Fig. 2. A normal-form game/outcome matrix is depicted in the top of the figure. A two-action version of

the investor-trustee game is depicted in an example outcome matrix on the top right. The same situation is

depicted as an extended-form game in the bottom left. For presentation purposes, the example depicts only

two actions per player.

extended-form game between one player named the trustor and another named the trustee
(Figure 3). In an extended-form game, the trustor will act before the trustee. The trustor is thus
ensured of placing himself at risk with the expectation that the trustee will mitigate this risk. As
depicted in Figure 3, the trustor decides between action atr

i and atr
j . Action atr

i is described as

the trusting action because this action places the trustor at risk. Action atr
j is characterized as the

no-trust action because this action does not place the trustor at risk. For example, for the trust fall
game, the trustor chooses between leaning backward (trusting action) and not leaning back (no-
trust action). Similarly, the trustee chooses between actions, ate

i and ate
j . Action ate

i is described as

the maintain trust action because selecting this action will mitigate the trustor’s risk, increasing the
likelihood of future acceptance of risk by the trustor. Action ate

j is described as the violate trust ac-

tion because selecting this action violates the trustor’s belief that the trustee will mitigate their risk.
If the trustor selects action atr

i , then he/she risks some outcome or reward equal to {atr
i ,a

te
i } −

{atr
i ,a

te
j } = otr

i,i − otr
i, j , where otr

i,i is the outcome for the trustor when the trustor selects the trusting
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Fig. 3. The outcome matrix above represents the decision problem faced by trust fall players. The risk equa-

tion uses the information from the matrix to assess factors that impact a trust evaluation. We have used this

framework to understand the decision process that occurs when a robot offers a person guidance during an

emergency.

action and the trustee maintains trust andotr
i, j is the outcome for the trustor when the trustor selects

the trusting action and the trustee violates trust. This is the risk associated with leaning back. Once
the decision to lean back is made, their fate rests in the hands of the trustee. An established formula
for calculating risk is R (x ,y) =

∑
L(x ,y)p (y), where L(x ,y) is the loss associated with choosing x

when the true value is y and p (y) is the probability of event y occurring. In social decision theory,
risk can be similarly calculated as R ({atr

i ,a
te
i }, {atr

i ,a
te
j } ) =

∑
L({atr

i ,a
te
i }, {atr

i ,a
te
j })p (ate

j ) where

the functionL({atr
i ,a

te
i }, {atr

i ,a
te
j }) denotes the loss by choosing {atr

i ,a
te
i } over {atr

i ,a
te
j } andp (ate

j )

is the probability that the trustee will choose ate
j . The result is a value R ({atr

i ,a
te
i }, {atr

i ,a
te
j } ) ∈ �

which can then be compared to the trustor’s measure of risk-aversion, θ , a variable representing
the trustor’s risk-aversion for this type of risk at this moment.

The components of this formulation directly map to the factors discussed in Figure 1. If the
trustor and the trustee select actions simultaneously, then the action selection probability should
be represented as the joint probability distribution, p (atr

x ,a
te
y ) where the trustor knows whether

atr
x is atr

i or atr
j . If the trustor and trustee select actions sequentially, then the action selection proba-

bility should be represented as a conditional probability, p (ate
y |atr

i ). In both cases, the action selec-
tion probability reflects the trustor’s model of the trustee. This model might be highly uncertain,
reflecting the trustor’s lack of experience with the person or it may be highly certain, a reflection
of a long history of interactions with the person and the ability to predict their behavior. For the
trust fall, the action selection probability may be based on an estimate of the person’s age (too
young or old to catch the person) or perceived motivation (laughing or lack of attention). The
term, L({atr

i ,a
te
i }, {atr

i ,a
te
j }), reflects the potential loss in a situation or during an interaction.

There are many different types of losses that can occur. Some examples are financial loss, physi-
cal loss in the form of injury, and emotional loss. Multiple forms of ls may also occur during the
same interaction. The value θ is a risk-aversion variable which can be conditioned on a number of
different factors, such as previous experiences in similar situations, related to the characteristics
and perhaps the personality of the trustor.

Our framework implicitly includes the notion of trustworthiness. Wagner and Arkin [57] and
Wagner [52] demonstrated that a robot could construct a model of its human interactive part-
ner and use these models to predict the person’s behavior in well-controlled environments.
Wagner [53] demonstrated that cycles of interaction with a human could be used by the robot
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to iteratively refine its model of the person. Trustworthiness results when the robot or the per-
son has a reasonably certain model of their interactive partner and believes that their partner will
mitigate the trustor’s risk [24]. Thus, our framework predicts and it has been shown that iterative
favorable interaction with a robot increases trust [34]. Categorical models or stereotypes may also
be used to bootstrap the process of evaluating an individual’s trustworthiness [54]. Wagner [55],
for example, used Halloween costumes to perceptually imitate different occupational categories
such as doctor, police officer, and fire fighter and demonstrated that a robot could learn a functional
mapping which predicted the individual’s behavioral preferences based on their type of uniform.
As discussed in Section 4.2.4, he later showed that the same method could be used by a robot to
bootstrap evaluations of trust during game play with a human [54].

Game-theoretic representations can also be used to represent a temporally evolving series of
interactive decisions. These collectives are structured in Finite State Machine–like structures and
can be used to plan or learn interactive strategies some or all of which may involve trust [20,
52]. Trust itself is often described as an evolving process in which one learns whether or not an
individual is trustworthy [34].

It is worth noting that these factors can be applied to either people or robots. For human-robot
interaction applications the robot may play the role of trustor or trustee. As trustor, the robot must
predict how a person will act and evaluate its own risk-aversion for the situation. As trustee, the
framework can be used to evaluate whether a person is placing themselves at risk in expecting the
robot to act in a certain manner. Hence, this method affords a means by which a robot could model
and predict the trust-related behavior of a person, or alternatively, use this formulation to guide
its own trust-related behavior. As shown in the section that follows, we have used the methods
described here to examine both perspectives on trust.

Our framework for trust has natural connections to reinforcement learning. In particular, the
reward function u1 (a1

j , . . . ,a
N
k

) → R, which is used to create the outcome matrix representation,

is similar in many ways to the reward function required for reinforcement learning. The represen-
tations we use are also a type of stochastic game which is a generalized form of a Markov Decision
Process, a common framework for representing robot control problems. The next section details a
series of experiments examining this framework.

4 SUPPORTING EVIDENCE

Our framework for human-robot trust generates a number of testable hypotheses. These hypothe-
ses have been the focus of a series of studies investigating the framework’s core ideas and their
relation to human-robot interaction. We have examined the following hypotheses:

(1) A series of conditions exist for deciding if an outcome matrix requires trust on the part of
a trustor [52, 58].

(2) Social situations which meet the conditions for trust are identifiable to a person as requir-
ing trust [56].

(3) When acting in situations which demand trust, the risk equation influences a person’s
decision-making. More precisely, (1) the prior trustee behavior, (2) the type of loss and
amount of loss, and (3) the trustor’s risk-aversion, impact a person’s risk assessment and
decision to trust a robot [42]. Some of our related work is also in conflict with this hy-
pothesis [37].

(4) The same conceptual framework can be used by a robot to decide whether or not to trust
a person [54].

The subsections below summarize our research results with respect to these four hypotheses
and their support for or conflict with our proposed framework.
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4.1 A Set of Conditions for Trust

The first hypothesis generated by our framework for trust is that a series of conditions exist by
which a particular outcome matrix representing a social situation can be evaluated as either re-
quiring or not requiring trust. This hypothesis and the conditions for trust follow from the use of
our definition for trust within a game theory framework.

Section 3 described risk in terms of a loss function and the probability of an action being selected.
With respect to outcome matrices, loss is evaluated in terms of loss of outcome or utility. This
section noted that the selection of the atr

i (the trusting action) may result in a loss l = otr
i,i − otr

i, j

where l > 0. Because small risks tend not to have a large impact on decision-making, a constant
ε1 can be defined representing the minimal amount of loss necessary for a risk to influence one’s
decision-making. The loss necessary for trust is then quantified as otr

i,i − otr
i, j > ε1. Note that the

outcome values (otr
i,i and otr

i, j ) vary across the trustee’s action choices (Figure 3). Hence, whether

or not the trustor loses outcome when selecting the trusting action depends entirely on the action
choice of the trustee. Stated as a condition for trust, (1) the outcome received by the trustor depends

on the actions of the trustee if and only if the trustor selects the trusting action.

Our definition for trust also implies that the trustor has a choice and may choose not to trust. In
other words, the trustor may also select the untrusting action. The untrusting action is an option
that does not require risk. Formally, |otr

i,x − otr
j,x | < ε2, where ε2 is a constant representing the maxi-

mal amount of change in outcome to still be considered risk free. In this case, the outcome received
by the trustor is not strongly influenced by the actions of the trustee. Stated as a condition, (2) the

outcome received when selecting the untrusting action does not depend on the actions of the trustee.

Conditions (1) and (2) imply a specific pattern of outcome values. The trustor is motivated to
select the trusting action only if the trustee mitigates the trustor’s risk. If the trustee is not expected
to select the action which is best for the trustor, then it would be better for the trustor to not select
the trusting action. Restated as a condition for trust, (3) the value, for the trustor, of having trust

maintained is greater than the value of not trusting at all, is greater than the value of having one’s

trust violated. Formally, the outcomes are valued otr
i,i > otr

j,x > otr
i, j where x is 1 or 2.

Finally, the definition demands that, (4) the trustor must hold a belief that the trustee will select

action ate
i with sufficiently high probability, formally p (ate

i ) > k where k is some sufficiently large

constant.

Our framework for trust thus delineates a set of conditions that, if met, produce the situational
underpinnings for trust. We assume as a precondition that the trustor acts without knowing how
the trustee will act, otherwise there would be no risk. From the perspective of creating a social
robot or agent, these conditions can be used to evaluate incoming outcome matrices or extended-
form games to determine if the robot is acting in the role of trustor or trustee. Although we present
the conditions as all-or-nothing, our theory does not preclude the inclusion of intermediate levels
of trust. Conditions (1) and (2) both include parameters (ε1 and ε2) that allow for intermediate
values. Moreover, the risk equation in Section 3 also allows for differing levels of trust.

To examine the second hypothesis listed in Section 4, we empirically examined these conditions
using narratives that were presented to human subjects via Amazon Mechanical Turk [31]. We
decided to use textual narratives (i.e., stories) as a way to present the matrices in a manner that
most people could understand. We felt that narratives allowed greater flexibility for creating
situations that closely matched the original situation. Moreover, the use of narratives only
required basic reading skills in order to participate in the study. Finally, because outcome matrices
are often described as short stories (i.e., prisoner’s dilemma, stag hunt game [50]) the use of
narratives was a natural fit [1].

In order to empirically evaluate our conditions for trust, we needed to create narratives that
matched outcome matrices that met and did not meet the conditions. We were able to further
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Table 1. Different Categories of Trust and No-Trust Matrices are Presented

with Representative Examples [56]

divide the matrices which violated the definition of trust into sub-categories based on the way
the definition was violated. For instance, a matrix which contains equal outcome values did not
put the trustor at risk and hence violates our definition for situational trust. Table 1 depicts the
different matrix types. The first matrix in Table 1 represents a situation that requires trust and
meets our conditions for trust. The other four matrices violate at least one condition on trust.
The Equal Outcomes matrix violated all conditions by providing a situation where the trustor
risked nothing in the interaction. The Trustor-Dependent, Trustee-Independent matrix presented
a situation where only the trustor’s actions affected the outcome, thus the trustor was not placing
any risk in the hands of the trustee. This violates the first and third conditions. Likewise, the
Trustor-Independent, Trustee-Dependent matrix represents a situation where the trustor has no
control whatsoever. If the trustor is not able to make a decision then the situation does not meet
our definition of trust. This matrix violates conditions two and three. Finally, the Inverted Trust
matrix presents a scenario where the trustor receives the worst reward when the trustee intends
to fulfill trust and the best reward when the trustee intends to break trust. Thus, the trustor would
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wish that the trustee would act in a manner that breaks trust, rather than maintains it. This matrix
violates the third condition.

Each participant was asked to read and evaluate twelve scenarios. The narratives that we cre-
ated were based on several different scenarios that we felt offered some flexibility in terms of
storytelling. One was an investment scenario meant to verbalize the investment game depicted in
Figure 4. A second scenario described a navigation task based on our interest in emergency evac-
uation. The final scenario was a hiring decision. The narratives were written to be as simple as
possible while still allowing the flexibility to test each of our outcome matrices. The names Alice
and Bob were consistently used to represent the characters in the scenario. The narratives began
with a sentence or two introducing the scenario. Next, each of the four potential actions and out-
comes are described. The narrative ends with a statement describing the decision and resulting
action that was taken by Alice or Bob and a question asking the subject whether or not they be-
lieved that the chosen action indicated trust. In order to rule out potential confounding factors,
half of the narratives displayed a positively stated action and the other half displayed a negative
action (“Bob chooses to hire Alice” versus “Bob chooses NOT to hire Alice”), the ordering of the
narratives, and the outcome amounts were all randomized. Participants were asked to explain each
individual answer.

Our research prefers to use all-or-nothing decisions about trust to test our hypotheses. We do
so for two reasons. First, some related and important situations are all-or-nothing. For instance,
when a person chooses to lean back during a trust fall, they cannot generally half-lean back. The
decision is all-or-nothing. Second, all-or-nothing decisions generate more useful data. We measure
trust behaviorally and with self-reports. A well-known weakness of Likert scales is the tendency
of subjects to select middling scores. Forcing subjects to make a decision mollifies this problem.

For this study, 128 participants provided 1920 responses to the questions asked by the narra-
tive. No significant difference regarding gender or magnitude of the outcome matrix values was
found. The full results from this study are reported in [56]. Overall, we found a strong correla-
tion (ϕ (1920) = +0.592) between the predictions of our conditions and the evaluations made by
participants with respect to the Trust/No-Trust matrices depicted in Table 1. Participants strongly
agreed that the Trust Matrix narratives presented were indeed situations that required trust (93%
agreement over 640 responses) but had some disagreements about some of the no trust situations
(66% agreement over all 896 responses for designated no trust scenarios). These results demon-
strate that human subjects, to a very high degree (ϕ = +0.592), agree with the conditions for trust
that our framework generates under certain conditions. This study serves as evidence for our sec-
ond hypothesis presented in Section 4, namely that social situations which meet the conditions for
trust are identifiable to a person as requiring trust. The pattern of responses largely supported our
proposed framework. Although, the fact that there was only 66% agreement with some situations
in the no trust condition hints that, in some cases, people generate reasons to trust [37].

From the perspective of creating a social robot or agent, these results indicate that these condi-
tions can potentially be used to determine if a person believes that a social situation involves trust.
This information may contribute to a robot’s ability to model a person and be used to influence
the robot’s behavior during interactions with a person.

4.2 The Influence of Risk Factors on Decision-Making

The third hypothesis generated by our framework for trust is that the following three factors
influence one’s estimation of trust: (1) the trustee’s prior behavior, (2) the type of loss, and amount
of loss, and (3) the trustor’s risk-aversion. To examine the impact these factors had on people’s
decision to trust a robot, we conducted a number of studies in which a person is asked to find the
exit in a simulated maze or office environment and decides whether or not to trust the directions of
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Fig. 4. Written narratives describing situations meeting the conditions for trust or not meeting the conditions

for trust [55].
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a robot [55, 42]. The sections that follow examine the evidence these experiments have produced
related to the importance of these three factors.

4.2.1 Impact of Situation-Specific Loss. Situation-specific loss (L) is meant to encompass both
the amount and different types of losses one faces during a decision to trust. In our opinion, this is
an under-researched aspect of trust, perhaps because Institutional Review Boards limit the types
of risks which human subject studies can employ. For this reason, experiments involving trust tend
to limit risk to a loss of money. Our results have shown that loss of money is often not enough to
generate risk deliberation by subjects [41].

Although, our narrative experiments examined different amounts of loss, because subjects were
asked only to evaluate whether or not the description required trust, we were not able to determine
if and how much the magnitude of the loss impacts the decision to trust a robot. Research by King-
Casas et al. [22] indicates that the difference between the expected reward and the resultant loss
plays a significant role in the change of trust one person has in another. With respect to human-
robot trust, to the best of our knowledge, this is currently an open question.

Our experiments place a subject in a maze and ask them to find the exit [41, 42]. Participants
first viewed an introductory message that described the navigation task they were to perform. This
page included photos of an exit and the guidance robot. They were then offered the opportunity to
practice navigating in a maze. They had a first-person view of the practice environment and used
their keyboard arrow keys to move. After the practice session, they were presented with illustrative
examples of prior human-robot performances in the maze. The nature of these examples varied
depending on the particular experiment. The participant was then asked to decide whether or not
they would like a robot to provide guidance during the first round of the experiment. After making
their choice, the person then navigated the maze and completed a short survey.

Our research has studied how the type of loss influences the decision to trust a robot. Specifically,
we have looked at loss in the form of financial incentives versus death of a simulated character. In
one condition subjects were offered a financial bonus for exiting the maze quickly. These subjects
were paid a base payment of approximately $2 for completing the study. They were then offered a
$1 bonus for completing the maze quickly. We assumed that a 50% bonus would serve as consider-
able motivation for completing the maze in a timely fashion. During the experiment participants
were offered the assistance of a guidance robot. The amount of time required to complete the maze
was impacted by the quality of guidance provided by the robot, if they elected to use it. Using writ-
ten text and videos, they were informed that they could expect to receive $1 if the robot guides
them efficiently, $0 if the robot is a bad guide, and some number in between otherwise. Because
participants were recruited via Amazon’s Mechanical Turk service, we assumed that they were
strongly motivated by money.

Self-reports asking the participants if they trusted the robot and the participant’s decision to
follow the robot served as two different measures of trust. We hypothesized that the use of financial
incentives would result in a decrease in both measures when the robot provided poor guidance
and no decrease in trust when the robot provided good guidance. This prediction was wrong.
We found that although people tended to self-report a loss of trust, they nevertheless continued
to follow the robot in the second round. This result caused us to question our use of monetary
bonuses as a motivational technique and as a source of risk.

In a second condition, we modified our scenario to be an emergency evacuation. In this modified
scenario, participants were told that our goal was to discover how people leave a building during an
emergency. Instead of receiving a bonus for a fast completion, they were told that they would only
survive if they found the exit in time. As before, a countdown timer appeared in the middle of the
screen to tell them the remaining time. Participants were compensated $1.00 for their participation
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in single-round experiments. Figure 5 depicts the interactive portion of the experiment with the
emergency evacuation motivation.

Presenting the same maze navigation task as an emergency resulted in self-reports of trust that
closely matched participant decision to follow the robot during a second round. In fact, the results
from this experiment show that people were 15.1% less likely to follow the robot during the first
round, hence showing greater deliberation from the onset. After a single failure, we found a 50%
decrease in the decision to follow which approximately matched participant self-report of trust.
In the bonus condition, the decrease in the decision to follow was only 30%. Participant comments
also indicated that the emergency motivation strongly influenced both the self-report and the
decision to follow.

Overall, these results may serve as evidence that a person’s motives cause that person to assess
different types of risks and the loss they cause differently. Specifically, people were more motivated
to ensure the survival of a simulated character than they were to ensure the gain of a financial
incentive. During a subset of these experiments we asked participants about their motivations for
participating in the experiment. We found that 53% of participants reported that the bonus was the
most important motivation, 24% noted that completing the study quickly was most important, and
23% claimed enjoyment was their primary motivation. Based on the comments from participants,
we determined that those who did not trust the robot continued to use it in the second round
because they considered it better than no source of guidance at all [42]. The different individual
motives of participants thus influenced their decision to select the trusting action but, in this case,
not their self-reporting of trust. As discussed in Section 4.2.2, different experimental conditions
seem to cause participants to self-report trust because they selected the trusting action. Taken as
a whole, these results appear to indicate that different types of risks must be examined by the
research community before insights about trust in general can be made.

4.2.2 Impact of the Trustees. As detailed in Section 3, predictions about the trustee’s behavior
are another factor which influence trust [42]. To explore the impact of experience with the trustee
we created a multi-round robot evacuation experiment. This experiment required the participant
to navigate two different mazes. As in the experiments described in Section 4.2.1, participants first
viewed an introduction screen, were then trained on how to navigate the simulation environment,
received information on prior robot performance, asked to decide if they wanted to use a robot,
then navigated the maze and completed a short survey. During the multi-round experiments, they
were then offered another opportunity to decide if they wanted to use the guidance robot in a
second, different, maze. They then navigated the maze in the second round and completed a short
survey about their second round decision. The robot’s guidance performance in the second round
always matched its performance in the first round. The experiment concluded with a final survey
that collected demographic information. Experimentally, a multi-round paradigm allowed us to vi-
olate the participant’s trust in the first round and then evaluate the impact on the person’s decision
to use the robot and self-reported trust during the second round. Using this procedure, we were
able to measure the change in trust across rounds as well as the correlation between self-reported
trust and the decision to follow.

The results from this experiment are presented in [42]. Overall, we found that participants re-
ported a significant decrease in self-reported trust when the robot performed poorly in the first
round compared to those that used a good robot (a 53% decrease). These results provide evidence
that the trustee’s recent actions influence the trustor’s estimation of trust and their decision-
making. More directly, recent poor performance results in a large aggregate reduction of trust
and tendency not to follow the robot. We conclude that prior performance of the trustee has a
significant impact on the trust evaluation of the trustor.
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Fig. 5. Online experiments used to investigate trust. The image on the left presents a maze navigation ex-

periment in which participants were offered a bonus for quickly finding the exit [41]. The amount of time

that has elapsed is pictured to the left and the amount of the participant’s bonus is pictured to the right.

The amount of the bonus decreased as the time taken to navigate the maze increased. The image on the

right depicts a similar maze navigation experiment that was described as an emergency situation [42]. The

participants were told that their task was to act as if they were in an emergency evacuation and had to find

an exit within 30 seconds in order to survive.
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In a later version of this two-round experiment which was meant to be more realistic, the robot
meets the person at the entranceway to an office building to guide a person to the location of a
meeting [38]. The robot, however, gets lost going to the meeting room, taking an unnecessarily
circuitous route. After arriving in the meeting room, the participant is then asked to complete a
short survey. An unexpected emergency then occurs and the robot reappears asking the person
whether or not they would like it to guide them to an exit. Our results using this scenario also
show a large decrease in trusting behavior and self-reports by the participants when the robot
takes an overly circuitous route compared to a direct controlled route to the meeting room.

We recently attempted to recreate this experiment in a real-world experiment [37]. Employing
a Wizard-of-Oz design in which the experimenter manually controls the behavior of the robot, the
robot first leads the participant to a meeting room, either going directly to the room or moving in
circles in a nearby room. The participant was then tasked with reading an article about naviga-
tion and completing a survey. While the participant reads the article, the hallway was filled with
artificial, non-toxic smoke, intentionally triggering fire alarms. Upon leaving the room, the partic-
ipant encounters the robot, directing him/her in a different direction from which they entered the
meeting room and in conflict with an emergency exit sign.

Our framework predicts that, like the simulation experiments, subjects will not follow the di-
rections of the robot if the robot has previously committed a navigational or control error. We
predicted that, because the robot had made mistakes leading the subject to the meeting room,
the risk (R) would be deemed too high given that p (ate

j ) is high. Yet the results show that people

typically followed or stood by the robot (93%, 27 out of 29) in spite of its previous failures and
universally followed it (100%, 13 out of 13) when it did not fail. When asked if they trusted the ro-
bot, 81% indicated that following the robot meant that they trusted it. Hence, in this case, utilizing
post-hoc reasoning to deduce their answer to the trust self-reports based on their prior actions.

We are currently exploring why people trusted the robot in spite of its previous poor behavior.
Several explanations are possible. It may be that the subjects did not view the robot’s circuitous
guidance behavior as an indicator of its behavior during the evacuation. Yet, most subjects reported
recognizing the robot’s early mistake and still choose to follow it during the evacuation. It may
also be that subjects did not recognize the situation’s risk. Several explained away the risk as part
of the experiment. Others stated that, although they saw and smelled the smoke, they did not feel
they were in immediate danger. As noted above, IRB approval and ethical guidelines prevent us
from putting subjects in real danger. Finally, and perhaps most interestingly, prior evidence shows
that during emergencies people become very complacent and willing to accept directions [23].
Regardless of whether they indicated that the experiment seemed realistic or not, participants also
followed the robot’s directions. It might thus be the case that adrenaline-based cognitive process-
ing causes people to focus on the single most obvious evacuation route, ignoring others. In this
case, the most obvious route was the route to which the robot was pointing. From a human-robot
trust perspective, this situation may not meet the conditions for trust because the participants
did not realize that they had a choice. Survey results indicate that many people did not notice
the evacuation sign and focused almost entirely on the robot. They thus did not deliberate over
their possible options. Additional experiments will allow us to determine whether or not these
real-world results are in conflict with the framework we propose.

In a closely related recent study, researchers examined whether people would hold open a door
to allow a robot into a secured dormitory [4]. The robot presented itself outside the locked doors
of a dormitory and asked unsuspecting individuals or groups of individuals for assistance entering
the building. In one condition, the robot was disguised as a food delivery robot. The researchers
report that groups of people allowed entry to the robot about 70% of the time even without the

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 4, Article 26. Publication date: November 2018.



Modeling the Human-Robot Trust Phenomenon 26:17

disguise. Individuals allowed entry to disguised robots about 80% of the time. Fifteen participants
identified the robot as a potential bomb threat, yet thirteen of these fifteen still provided entry to
the robot. This work provides further evidence that people will defer to a robot. Although they
may not trust it, they will nevertheless accept increased guidance from a robot.

4.2.3 Impact of the Trustor Risk-Aversion. The final factor which influences trust is the trustor’s
tendency to be risk-seeking or risk-averse. We consider risk-aversion to be a variable, θ , which is
based on the trustor’s history or personality. Much research has shown that risk-aversion is a
factor which impacts trust in general [12, 48, 61]. Yamagishi [61], for instance, explores how prior
traumatic interpersonal relations generate a tendency for risk-aversion, preventing these people
from trusting anyone. People in this situation tend to undertrust to the extent that it impacts their
daily decision making and relationship understanding. In congruence with our framework, for
certain people, lack of trust generalizes beyond the situation or even trustee specific factors, and
is simply a characteristic of the trustor themselves.

Our previous research, unfortunately, did not measure participant’s risk attitudes prior to the
experiments. Based on the discussion from Section 3, we believe that the type of risk must be
matched to the type of risk-aversion. For example, a wealthy individual may be risk-seeking and
therefore more likely to trust with respect to financial matters, but that same individual may also
be risk-adverse with respect to emotional risk and for this reason avoid relationships. For human-
robot trust, when the human assumes the role of trustor, evaluating that person’s likelihood to trust
will depend on knowing their risk-aversion characteristics for the type of risk in question. When
the robot is the trustor, risk-aversion must be calculated based on the system’s history in relation
to the risk in question. The section that follows describes some preliminary research exploring
how a system’s risk-aversion may be changed based on its recent prior history.

4.2.4 A Robot’s Decision to Trust a Human. For some human-robot interaction applications,
the robot may play the role of trustor, making predictions about how a person will behave in a
situation and evaluating the risk posed to it. In military conflicts, for example, the robot needs to
assess threats and react accordingly. Moreover, some situations may require that the robot act as
trustor and trustee in rapid succession or even at the same time. Hence, a suitable framework for
trust should apply regardless of whether the robot assumes the role of trustor or of trustee. Our
fourth hypothesis from Section 4 examines this aspect of the framework.

The Investor-Trustee game is a paradigm used by trust researchers that, when played iteratively,
forces each player to iteratively assume the role of trustor and trustee [22, 36]. In the game, during
each of several rounds an investor acts as the trustor selecting some amount of money (I ) to invest
with a trustee. Any money invested appreciates (3I = R). Finally, the trustee repays a portion of
the total amount (R) back to the investor. Figure 2 shows a game theoretic representation of the
game. Typically, the game is played over a number of rounds, allowing each individual to build and
refine a model of the other player. King-Casas et al. [22] used this paradigm in behavioral economic
experiments and found that the reciprocity during the previous round was the best predictor of
changes in trust for both the investor and trustee (ρ = 0.56; ρ = 0.31, respectively, where ρ is the
correlation coefficient).

We used the Investor-Trustee game to examine whether our framework for trust could be used
by a NAO robot to evaluate the trustworthiness of a human player. Each round of the game in-
volved the selection of an amount to invest by the robot and the selection of an amount to repay by
the person. The robot could invest up to 4 chips representing $5 each. Investments were made by
verbally stating the amounts. Repayments by the human were similarly communicated verbally
to the robot. Speech recognition was used by the robot to determine the amount returned. We
hypothesized that if the person selects actions signifying that he or she trusts the robot, then the
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Fig. 6. The figure depicts a NAO robot playing the Investor-Trustee game with a human. The robot plays the

role of investor using an evolving model of the person to predict their response to a particular investment.

Table 2. Partner Features and Values

Uniform Color Badge Present Head Gear Head Gear Color Hair Color Beard

P0 Green No No NA black no
P1 Green No No NA black yes
P2 Green No Yes Green NA yes
P3 Green No No NA blonde no
P4 Green No No NA blonde yes
P5 Brown No No NA black no
P6 Brown No No NA red no
P7 Brown No No NA blonde yes
P8 Brown No Yes black NA yes
P9 Brown No No NA black no

robot could use our framework to recognize the selection of the trusting action and the fact that
it signifies trust (Figure 6).

The robot played ten rounds of the game with ten notionally different human partners. The
humans were notionally different in that the same person (the experimenter) used different cos-
tumes and accessories to give the appearance to the robot that it was interacting with individuals
that had different perceptual features. The different notional partners were used to explore the
possibility of the robot learning different categories of individuals and using this information to
bootstrap the trust evaluation process [55].

The experiment consisted of both a control condition and an experimental condition. In both
conditions the robot interacted with the same notional human partners displaying the same per-
ceptual features in the same order (Table 2). Further, in both conditions, partners P0-P4 resembled
doctors and partners P5-P9 resembled firefighters. Thus, perceptually, two different categories of
human trustee were presented to the robot.
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At the start of game (round 0) the robot began by observing the partner’s perceptual features
(Table 2). Next the robot selected and stated an amount to invest. The round concluded when the
robot recognized the human’s verbal statement indicating the return. Both the actions selected
and the amounts received by both partners were recorded.

The human followed a fixed pattern, which was based on their type, when deciding how much
investment to return. Individuals from the doctor category returned four chips regardless of the
robot’s investment. This category of partner was meant to simulate a person that did not trust the
robot.

Individuals from the firefighter category returned 0 if the robot invested 0 and 1 if the robot
invested 1. If the robot invested 2 or more during the first 5 rounds, then the person would signal
their trust in the robot by returning all of the chips in round 6 with the expectation that the robot
would increase its investment in round 7. If the robot maintains trust by increasing investment
in round 7, the person would continue to return more than had been returned in the first five
rounds. If, on the other hand, the robot violates the trust by not increasing investment in round
7, the human punishes the robot by returning half of the repayment in the first five rounds. This
category was meant to simulate a person that attempts to signal their trust in the robot and then
responds if the robot maintains or violates that trust.

The robot’s decision on how much to invest reflected its experience playing the game. The robot
was programmed to begin playing the game in a manner that maximized its own profit. During
the control condition, the robot did not use our framework to test for trust and hence failed to
recognize the human’s increased risk-taking and to respond with increased investment. During
the experimental condition, however, the robot used our framework to recognize the human’s
signal of trust in the robot. The robot then modified its model of the person which, in-line with
the framework, resulted in increased risk taking that maximized both its and the person’s return.
This resulted in increased investment on the part of the robot, as shown by comparing the solid
lines (experimental conditions using the framework) in Figure 7 to the dotted lines (controls with
the framework).

Figure 7 depicts the results from the experiment. The amount of chips earned in each interaction
is displayed along the y-axis. The different partners that the robot interacted with are displayed
along the x-axis as P0-P9. The first five human partners were from the doctor category and the
later five were from the firefighter category.

In all conditions, initially the robot invests the maximum amount (4 chips) with the human.
The human, in turn, returns 4 chips. Hence, the robot receives a total of 4 chips and the human
8. As the robot gains experience with the partner it determines that the partner will likely return
only 4 chips. At this point it reduces its investment to 2 chips. Because the human strategy for
this category of trustee is to always return 4 chips, the robot’s profit after reducing its investment
increases to 6 chips while the trustee’s profit decreases to 2 chips.

This pattern of interaction continues until a new category of human trustee is introduced (P5).
The firefighter’s investment strategy differs from the doctor in that the firefighter attempts to
increase investment by sacrificing all of its return during one round. On the 6th round of play with
P5, the trustee performs this strategy by returning the entire investment to the robot.

In the control condition, this signal goes unnoticed. The human reacts by reducing the return
to 2 chips. The robot determines that, based on the reduced return, it should only invest 1 chip.
The human responds to the reduction in investment by reducing the return to only 1 chip. As a
result, the robot and the trustee find a new, lower, steady state of investment and return of 1 chip,
resulting in profits of 4 chips and 2 chips, respectively.

The experimental condition is identical to the control condition until round 6 with partner P5.
In this round, the human also signals trust by returning the entire investment and appreciation to
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Fig. 7. The graph above depicts the number of chips earned during each round of the Investor-Trustee game

for both the robot and the human in each condition. The dotted lines indicate the results in the control

condition. The solid lines indicate the results in the experimental condition. During the 6th round of play with

partner P5 the human trustee returns all of the robot’s investment in an attempt to signal the person’s trust

in the robot. In the experimental condition the robot recognizes this signal and changes its disposition to be

more altruistic towards the person, resulting in greater outcome for both individuals. In the control condition,

the robot does not respond to the person’s trust signal and the human trustee retaliates by reducing the

return to the robot [54].

the robot (8 chips). Here, however, the robot recognizes that the return is not what it predicted. It
then uses the conditions described in Section 4.1 to determine if the situation demands trust. Once
the robot has verified that the situation demands trust and that the person has selected the trusting
action and thus risked more, it changes its behavior to maximize the reward obtained by both the
robot and the person. This change in behavior causes the robot to place greater importance on the
outcome received by the partner, which, in turn, causes the robot to increase its investment to 4
chips. The human trustee responds by returning 6 chips. Hence, in this condition, the human and
the robot receive 6 chips each for the remainder of the experiment.

Although limited in scope, this experiment demonstrates that the robot can use the framework
in well-defined situations to evaluate the risks its human partner is taking and can use this infor-
mation as a basis for changing its own behavior with the goal of preserving trust. Clearly, much
additional and more ecologically valid work needs to be performed here. Still, the experiment
shows a computational process by which a robot can begin to make trust-based decisions.

This section has presented the results from a series of experiments exploring the conditions
and reasons that people trust robots. Evidence for and against our framework illustrates both the
complexity and the promise of this approach.

5 CONFLICTING EVIDENCE

In two instances, the data collected from a portion of the experiments conflicts with the frame-
work’s hypotheses. The results from Section 4.1, for instance, indicate that, for one type of matrix
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(Trustor-Independent, Trustee-Dependent), only 66% agreed when our conditions indicated that
the situation did not demand trust. In other words, 34% of subjects disagreed with our predictions
for this type of matrix. We found that, as a general trend, the more difficulty subjects had relating
the matrix and narrative to commonly experienced social interactions, the more they tended to
invent reasons to decide if the situation demanded trust or not. This trend is in agreement with
the theoretical notion of psychological distance, which states that more abstract cognitions tend to
be more psychologically distant, the less actionable they are [51]. With respect to trust, decisions
about these types of situations become less certain as the person brings their individual recent
memories and experiences to help them decide. In such instances, our framework becomes less
suitable to make predictions and our results from this experiment reflect this trend.

In the second case, described in Section 4.2.4, the results from an emergency evacuation ex-
periment demonstrated that naïve subjects will accept a robot’s guidance in spite of flawed per-
formance by the robot and even statements by the experimenter that the robot is broken. Prior
research has shown that during emergencies people become passive in their decision-making and
willing to accept most instructions [23]. This behavior may be caused by stress hormones [14]. In
these situations, people tend not to deliberate over the factors associated with trust. For instance,
they may ignore the trustee’s reputation entirely. They may also fail to realize that they have other
options. Thus, whether or not trust is actually involved in their decision-making is open to debate.

These results indicate that the decision to trust is not as simple as our framework describes the
process to be. Emotions, attention, and memories influence decision-making in complex, individu-
alized ways which cannot easily be captured in a single framework. Nevertheless, developing such
a framework remains valuable if for no other reason than to help delineate and categorize aspects
of this social phenomenon.

6 CONCLUSIONS

The preceding sections have highlighted several ways in which our framework informs human-
robot trust research. These sections have examined supporting evidence in the form of human
subject assessments of narrative descriptions of trust situations, decisions related to timed guid-
ance through a maze with financial incentives versus survival incentives, and multi-round maze
navigations which allows the trustee’s history to impact trust. We have also presented evidence
that conflicts with the predictions of our framework. Most notably real-world experiments demon-
strating that people will follow a robot in spite of its previous mistakes.

The objective of this article is to present a framework for human-robot trust which might inform
researchers of profitable avenues for future research. We have noted several areas that are under-
researched. For instance, examining people’s decisions to trust in relation to their risk-averse/risk-
seeking predilections. We have also attempted to draw attention to important methodological is-
sues related to human-robot trust. For instance, presenting results that highlight the impact of the
type of risk on a person’s decision to trust.

Human-robot trust is an important topic of study. Recently the world witnessed the death of a
passenger in a self-driving vehicle. YouTube videos of people sitting in the backseat of their car
while the vehicle self-drives at highway speeds are also now appearing [62]. It is becoming clear
that, at least in some situations, people trust autonomous robots too much [37]. Future work will
be needed to understand why people trust robots to such a great extent and to develop techniques
that will inform people of the robot’s limitations before it is too late.
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