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Abstract. This paper examines the use of game-theoretic representations as a 
means of representing and learning both interactive games and patterns of inter-
action in general between a human and a robot. The paper explores the means 
by which a robot could generate the structure of a game. In addition to offering 
the formal underpinnings necessary for reasoning about strategy, game theory 
affords a method for representing the interactive structure of a game computa-
tionally. We investigate the possibility of teaching a robot the structure of a 
game via instructions, question and answer sessions led by the robot, and a mix 
of instruction and question and answer. Our results demonstrate that the use of 
game-theoretic representations may offer new advantages in terms of guided 
social learning. 
Keywords: Game theory, social learning, interactive games 

1 Introduction 
Social interaction often involves stylized patterns of interaction [1]. These patterns 
may dictate how and when a person interacts, what actions they choose, and how their 
goals and motivations change. Interactive games, such as Rock-Paper-Scissors and 
poker, often structure a person’s interactive behavior in a predetermined manner con-
ducive to the game. Recently artificial systems have become adept at both playing and 
learning how to play many different games [2]. Comparatively little attention, howev-
er, has been paid to the social aspects of game playing and game learning. For in-
stance, how can a social robot or agent learn to play a game from a person offering 
only disorganized verbal instructions? How can a system teach a person to play a 
game using subtle social cues and questions to determine if and to what extent they 
understand? How can such a system be developed to cope with the differences in 
play, instructions, and learning that occur across ages and cultures? 

This paper constitutes a preliminary examination of these questions. The overarch-
ing goal of this work is to develop a system that could learn a wide variety of games 
from the type of interactive instructions provided by a typical person. Hence, we 
strive for generality both with respect to the game and the instructor. Moreover, we 
believe that our approach can also work when the robot acts as the instructor, explain-



ing how to play a game. An important initial step towards creating such a system is to 
determine how to computationally represent interactive games. 

Game theory researchers have extensively studied the representations and strate-
gies used in games [3]. The types of games examined as part of game theory, howev-
er, tend to differ from our common notion of interactive games. Games in game theo-
ry tend to encompass limited interactions over a small range of behaviors and are 
focused on a small number of well-defined interactions. The Ultimatum Game, for 
example, requires one individual to divide a valuable resource while the other indi-
vidual in the game can accept the division and receive a share or reject the division 
and both players receive nothing. Moreover, game theory focuses on conceptualiza-
tions for strategic interaction. In contrast, interactive games like Monopoly and poker 
offer players several different actions as part of a sequential ongoing interaction in 
which a player’s motives may change as the game proceeds or depend on who is play-
ing. 

We contend that learning a pattern of interactions, such as those used in most inter-
active games, is a critical component for human-robot interaction because many in-
terpersonal interactions follow prescribed patterns [4]. Methods developed for learn-
ing the structure of an interactive game could potentially be applied to the human-
robot interaction scenarios encountered in a wide variety of social environments. For 
example, in most western cultures when meeting a new person the expected pattern of 
interaction is to introduce oneself, to shake the other person’s hand, and to then wait 
for the other person to state their name.  

This paper investigates methods by which a robot could learn the structure of an in-
teractive game from a person. We focus on direct instruction. In particular, this article 
demonstrates the use of written instructions and the use of questions by the robot that, 
when answered by a person, convey the structure of the game. Further, we show that 
the robot can use a game-theoretic representation to reason about and select specific 
probing questions with the intention of learning about unknown aspects of the game. 
Overall, our immediate goal is to highlight the potential advantages of this approach 
in terms of teaching a robot these stylized patterns of interaction. Our long-term goal 
is to develop the computational underpinnings that will allow a robot to learn new 
patterns of interaction from an inexperienced person’s instructions. The remainder of 
the paper begins with a brief background discussion of game theory and interactive 
games, followed by experiments and results.  

2 Background and Related Work 
Game theory has been the dominant approach for formally representing strategic in-
teraction for more than 80 years [3]. Game theory assumes that the players of a game 
will pursue a rational strategy. A game is a formal representation of a strategic inter-
action among a set of players. A solution to a game describes classes of strategies for 
how best to play a game. There are many different types of solution concepts in game 
theory, the Nash Equilibrium being the most famous example of a solution concept.   

Several different categories of games exist [3]. Games in which players select ac-
tions simultaneously are typically represented as a normal-form game (fig. 1 center). 



Formally, a normal-form game is defined as a tuple , ,…, , ,…,  where  is the 
set of players,  is the action space of individual i, and , … , → ℜ is a pay-
off function. Games in which players select actions sequentially are generally repre-
sented as extensive-form games (fig. 1 left). In addition to the formal elements of a 
normal-form game, extensive-form games include a set of histories  for each player 
and function ℎ  for selecting the player whose turn is next. Perfect information 
games are a class of extensive-form games in which each player knows every player’s 
history. In imperfect information games players do not know the actions chosen by 
other players. A stochastic game is a series of normal-form games in which the ac-
tions selected in one game probabilistically determine the subsequent game. Stochas-
tic games include a transition function , , … , , → 0,1 . These games are 
generalizations of both normal-form and extended-form games. They also generalize 
Markov Decision Processes (MDPs) for multiple individuals. Stochastic games start 
at initial state  and are played with each player selecting an action and possibly 
receiving a payoff. The game moves to stage  with probability determined by the 
distribution  until reaching a termination state. A stochastic game may last either a 
finite or infinite number of stages. 

 Fig. 1. Computational representations for the Ultimatum game, Rock-paper-scissors-lizard-
Spock and Kuhn’s poker are depicted above. The Ultimatum game is a sequential game be-

tween two players represented as an extensive-form game. Rock-paper-scissors-lizard-Spock is 
a simultaneous game represented as a normal-form game. Kuhn’s poker is represented as a 

mixture of normal and extensive-form games. The selection of an action by a player results in a 
transition to the next stage of the game. 

Most robotics related applications of game theory have focused on game theory’s 
traditional strategy specific solution concepts [5]. Often, the structure of the game is 
preprogrammed and a game theory based controller is used to select the agent’s ac-
tions. Recently this approach has resulted in tremendous advances in the quality of 
play in information imperfect games such as poker [6]. Nevertheless, this research is 
narrowly tailored to the development of agents that play optimally. In contrast, the 



work here is not concerned with how well an agent or robot plays, but rather its ability 
to learn and represent different, unknown games.           

Game theory has also been used as a means for controlling a robot [5, 7]. Game 
theory based robot control has similarly focused on optimization of strategic behavior 
by a robot in multi-robot scenarios. In particular, the use of Partially Observable Sto-
chastic Games has been used as a means to control a robot team. In contrast to the 
prior work, we explore methods that will allow a human to teach a robot the structure 
of an interactive game such as Rock-Paper-Scissors and poker. Significant research 
has also explored the development of robots that learn games such as air hockey [8]. 
In contrast to strategic games, games such as air hockey tend to emphasize the physi-
cal and perceptual demands of play. Robot soccer, because of its dual physical and 
strategic demands, arguably represents the most challenging category of game. Re-
search related to this game has explored both the physical demands [9] and the strate-
gic demands [10].  

Very little work has examined the use of game theory as a means for controlling a 
robot’s interactive behavior with a human. Lee and Hwang attempt to develop a con-
ceptual bridge from game theory to interactive control of a social robot [11]. Our own 
work has centered on the use of the normal-form game as a representation and means 
of control for human-robot interaction [12]. Yet, in this prior work we focused only 
on the use of the representation to control a robot’s behavior and not the direct learn-
ing a game’s interactive structure. 

3 Representing Interactive Games 
Game-theory representations have been used to formally represent and reason about a 
number of interactive games [13]. Games such as Snakes and Ladders, Tic-Tac-Toe, 
and versions of Chess have all been explored from a game theory perspective. The 
methods used to represent these games are well known.  

The normal-form game and the extensive-form game serve as building blocks to 
represent a complete interactive game. Simultaneous stages of an interactive game are 
represented in normal-form as a matrix (figure 2). Each player’s potential actions are 
listed along the dimensions of the matrix. Payoffs for selecting a particular set of ac-
tions are included as values within the matrix. Sequential stages of an interactive 
game are represented in extensive-form as a tree. A player’s potential actions are 
denoted by the branches of the tree. Nodes of the tree indicate which player makes a 
decision at each particular stage of the game. Payoffs for selecting a particular set of 
actions are depicts at the stage in which the payoffs are received.  

The cells in a normal-form game and the terminating branches of an extensive-
form game direct the players to the subsequent stages of the game. Resembling a 
probabilistic-finite-state automaton (FSA), each state is a normal-form or extensive-
form game representation and each transition occurs when arriving at a cell or a ter-
minal tree node. Represented in this manner, the challenge of learning a new interac-
tive game is reduced to learning the structure and underlying components of the 
game-theoretic representation. The section that follows investigates this challenge.   



 
Fig. 2. Normal and extensive form games are used to represent the components of an interac-
tive game. Sequential stages are represented in extensive form. Numbers are used to indicate a 
player’s turn. Simultaneous stages are represented as a normal form game. Transitions connect 

components and denote the selection of an action. 

4 Teaching a Robot an Interactive Game 
The primary contribution of this work is to examine, present, and demonstrate tech-
niques for learning the types of game-theoretic representations described above from 
the information provided by a human teacher. The most obvious and applicable meth-
ods for learning the structure of an interactive game are direct instruction and question 
and answer. 

Direct instruction describes the explicit teaching of skills needed for some purpose. 
Some psychologists argue that direct instruction represents the most effective way to 
teach and to learn [14]. To directly instruct a robot to play a game, the human teacher 
simply communicates the underlying structure of the interactive game to be learned. 
This communication can be in the form of a list of spoken, written, or demonstrated 
instructions necessary for performing a task. Written instructions can be used in place 
of verbal instructions. In this case, an interactive game’s set of instructions can be 
used to learn a new game.   

The use of a game-theoretic representation requires that specific information is 
communicated to the robot. In general, for each stage of the game, the robot must 
know who is playing, what actions are available to each player, what reward or cost is 
associated with the selection of each action pair, whether actions are selected simulta-
neously or sequentially by the players, and which stage of the game results from the 
selection of an action pair. When direct instruction is used, these questions are ad-
dressed directly as a list of spoken, written, or demonstrated instructions.  

A less obvious means for teaching a robot an interactive game is to allow the robot 
to ask questions about the game that the person answers. In this case, the robot acts as 
an inquisitor asking questions that allow it to build the game representation from the 
ground up. The evolving game representation in this case determines what ques-
tions the robot must ask in order to flesh out the representation. The first question 
asks how many players are participating. For each stage of the game, the robot then 



asks whether the players act sequentially or simultaneously. Next, the robot inquiries 
about the actions available to each individual at that stage. For each cell in a normal 
form game or terminal node in an extensive form game, the robot inquiries about the 
reward received and which, if any, subsequent stage results from the selection of the 
action pair. Figure 3 depicts an example of a question and answer session used to 
learn the first stage of the interactive game depicted in figure 2. We contend that a 
similar series of questions can be used in either a depth first or breadth first manner to 
learn the interactive structure of most games. 

 
Fig. 3. An example of a question and answer session for learning the first stage of the interac-
tive game from figure 2. 

The proceeding techniques can be combined resulting in a system in which the ro-
bot builds the game representation from the instructions and then asks questions about 
any unknown or unclear parts of the representation. In this case the robot must deter-
mine which portions of the representation are unclear or unknown. In some cases the 
presentation of the instructions may afford measures of confidence with respect to the 
instructions. For instance, many natural-language-processing (NLP) algorithms pro-
vide confidence measures reflecting the system’s estimation of accuracy. We conjec-
ture that such a system could potential be used to assist the robot in determine if and 
what portions of the representation require follow up questions. 

In some cases, the representation itself may suggest information that is missing. 
For example, the absence of reward or cost values in a matrix (e.g. the numbers 2; 5 
from figure 2) is easily tested. In this case, the absence of expected reward values can 
prompt the robot to inquire about the value or cost of selecting particular actions dur-
ing a stage of the game. 

5 Experiments 
Most applications of game theory evaluate the system’s performance in terms of win-
ning (e.g. [15]) or win related tasks such as scoring goals (e.g. [8]). In contrast, we 
argue that the best evaluation of game learning is to measure the system’s ability to 



play a game after being taught, regardless of whether it wins. Metrics such as illegal 
moves attempted, measure the accuracy of the robot’s model of the game structure.  

We evaluated the number of illegal moves attempted by the robot in three different 
games (figure 1): the Ultimatum game, Rock-paper-scissors-lizard-Spock, and Kuhn’s 
poker. The Ultimatum game is a single stage sequential game in which one player 
chooses either a fair or unfair division of a resource and a second player either accepts 
or rejects the division. If the division is accepted then both players receive reward 
proportional to the division. Alternatively, if the division is rejected then both players 
receive nothing. Rock-paper-scissors-lizard-Spock is similar to the classic game rock-
paper-scissors except with two additional actions. The lizard action defeats Spock and 
paper and is defeated by scissors and rock. The Spock action defeats scissors and rock 
and is defeated by paper and lizard. Fig. 1 delineates which actions dominate other 
actions. In this game all players simultaneously make a hand sign representing one of 
the five namesakes. Finally, Kuhn’s poker is a simplified version of Texas Hold’em 
poker. This game is played with only a jack, a queen, and a king. The game begins 
when each player bets 1 as an ante. Next each player receives a single card. Player 1 
may check or bet. As depicted in Fig 1 the actions available to player 2 depend on 
player 1’s action. Each round of the game ends when a player either folds (resigns and 
forfeits their bets) or during a showdown stage each player’s cards are revealed and 
the player with the higher card wins.  

The robot learned each of the three games by direct instruction and mixed-direct 
instruction and question and answer. In the direct instruction condition, the robot was 
given a set of instructions (e.g. fig. 3) describing how to play the game. The instruc-
tions were not in a natural-language format. Although, the challenge of translating 
from natural language to a game theory format is beyond the scope on this article, 
random errors were added to the instructions in an effort to roughly simulate the er-
rors that would occur during translation. Each game instruction had a 15% chance of 
being incorrect (translation error rate). This level of error was arbitrarily selected. 
Three different types of error occurred. Incorrect stage transitions occurred when the 
robot’s representation erroneously indicated the stage that would result when a pair of 
actions was selected. Incorrect reward values inaccurately specified the amount of 
reward to be received at a stage of the when a pair of actions is selected. Finally, in-
correct actions erroneously indicated which actions were available to the robot at a 
particular stage of the game.     

The experimenter served as the robot’s opponent. All of the experimenter’s instruc-
tion and responses were predetermined to avoid bias. When the robot asked the hu-
man for missing information, the correct information was provided. The quantitative 
results that follow were obtained from an experiment conducted in simulation.  

The data from the direct learning from instructions condition (fig. 4) demonstrates 
that the robot selected illegal moves at a rate of 16, 11, and 17 percent for the Ultima-
tum game, Rock-paper-scissors-lizard-Spock game, and Kuhn’s poker respectively. 
These results indicate a rate of illegal moves which is approximately equal to the 
translation error rate. This rate is higher than expected. We hypothesized that transla-
tion errors related to the amount of reward would only impact strategy and not wheth-
er or not a move was illegal. We therefore believed that, in the first condition, the 



number of illegal moves would be significantly less than the translation error rate. We 
found, however, that incorrect reward values can impact game structure by consistent-
ly guiding the robot towards illegal moves. In other words, translation errors can 
cause the robot to believe that it will obtain a large reward by performing an illegal 
move. This results in a strategy of using illegal moves which predominates. The data 
also shows that certain game structures appear to be more impacted by translation 
errors than other games. The Rock-paper-scissors-lizard-Spock game, for instance, 
was consistently found to result in fewer illegal moves when compared to the other 
games. Because this game consists of a single simultaneous stage, most errors do not 
result in illegal moves. Sequential games, on the other hand, afford multiple opportu-
nities for selecting illegal moves.       

 
Fig. 4. Results from an experiment examining the possibility of a robot learning a game-

theoretic representation of a game. The blue (left) columns depict a condition in which the 
robot learns the game from a set of imperfectly translated instructions. The red (right) columns 
depict a condition in which the robot is provided with instructions describing how to play the 
game which are missing information. The robot infers which information is missing and then 

asks the person to questions which allows it to complete the representation. 
In the second condition, the robot received instructions that had missing infor-

mation in the form of reward values, potential moves, and game stage transitions. The 
robot then had the opportunity to ask the person questions about any information that 
it could identify as missing. Missing stage transitions could typically be inferred from 
the presence of stages not connected to the start state or some later stage of the game. 
Similarly, missing actions were often indicated by stage transitions without a requisite 
action pair. Missing reward values were easily inferred from the game-theoretic rep-
resentation. The robot then asked the human to provide the missing information.  The 
robot used question and answer to generate error-free representations of the game 



Ultimatum game and Rock-paper-scissors-lizard-Spock game. Because these games 
consisted of a single sequential or simultaneous stage, the robot could accurately infer 
which information was missing. Kuhn’s poker, however, presented unique challenges 
in terms of inferring missing information. Although missing reward values and transi-
tions were identified, missing actions were seldom noticed. If a stage transition and an 
action during the stage were both missing, then inference that an action was missing 
was not possible. Actions that did not result in transitions were similarly not identified 
as missing. Overall, the results demonstrate that the game theoretic information does 
assist with inferring which information is missing from the game structure. Asking a 
person to provide missing information improves the robot’s ability to play the game.    

We tested the ability to learn and play these games on the NAO robot from Aldeb-
aran. During this testing, the robot learned each of the games from written instructions 
and question and answer sessions with the experimenter. Question and answer ses-
sions were conducted by typing answers to the robot’s questions. The games were 
then played with the robot. The robot verbalized its actions instead of making physi-
cal actions. Each game was played 10 times with the robot. The NAO selected actions 
that were believed to be reward maximizing. We recorded each of the NAO’s action 
selections. The robot was able to learn each of the games using both written instruc-
tions and question and answer session. However, because no error was introduced, 
game play was structurally perfect. Hence the robot’s ability to play the learned 
games was confirmed although no quantitative results from these robot experiments 
are reported. 

6 Conclusion 
This article has examined the use of game-theoretic representations as a means of 
representing and learning interactive games involving a human and a robot. Our ex-
periments demonstrate that written instructions and mixed instruction and question 
and answer can be used to learn different types of interactive games. We have shown 
that the use of game-theoretic representations of interaction offer several important 
features. First, and perhaps most importantly, the game representation affords a means 
for organizing the information needed by the robot to learn an interactive game. The 
computational representation of a game can be used to structure the information being 
received by a person and guide the robot when asking questions.     

The research presented here could be an important step towards the development of 
a system for human-robot guided learning. Such a system might one day allow people 
to teach a robot the games that the person would like to play with the robot Before a 
fielded application could be realized, some assumptions would need to be addressed. 
For instance, we assumed that the robot already possessed the knowledge of how to 
perform all game related actions. We believe that learning these actions is related to 
game learning but best achieved by using learning from demonstration.  

This work represents an initial investigation into the possibility of using game-
theoretic representations to structure an interactive game. An important next step is to 
develop a system that learns a game from a naïve human subject. Such a system 



would require some competence in natural language understanding. Spoken or read 
instructions [16] would be used to broadly develop the interactive structure of the 
game, socially guided questions would then be used to rectify unclear or unknown 
portions of the game, learning by demonstration would be used to learn how to per-
form the actions, and practice would result in the refinement of strategy. Although 
this paper has focused on learning how to represent these games, we believe that these 
representations could be used in many different interactive situations. 
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