
Show Me How to Win: A Robot that Uses Dialog Management to
Learn from Demonstrations

Maryam Zare∗
muz50@psu.edu

Dept. Computer Science and Engineering
The Pennsylvania State University

Ali Ayub∗
aja5755@psu.edu

Dept. of Electrical Engineering
The Pennsylvania State University

Alan R. Wagner∗
azw78@psu.edu

Dept. of Aerospace Engineering
The Pennsylvania State University

Rebecca J. Passonneau∗
rjp49@psu.edu

Dept. Computer Science and Engineering
The Pennsylvania State University

ABSTRACT
We present an approach for robot learning from demonstration and
communication applied to simple board games like Connect Four. In
such games, a visual representation of a winning condition on the
board can be converted to an extensive form representation that can
then support computation of a winning strategy. We present a robot
that can learn simple games from responses to visual questions
based on synthesized images, or to verbal questions. We illustrate
how reliance on both modalities leads to more efficient learning.

CCS CONCEPTS
•Computingmethodologies→Discourse, dialogue andprag-
matics; Reinforcement learning; Learning from demonstra-
tions.

1 INTRODUCTION
We present a novel method of interactive learning from demon-
stration applied to the problem of teaching a robot to play games.
Researchers have begun to rely on interaction and demonstration
to teach robots new activities [5, 12]. Learning from demonstra-
tion (LfD) can offer a fast, intuitive method for robots to learn new
things, where the research effort occurs prior to the actual learning.
Some benefits of robots learning from demonstration are to avoid
dependence on offline machine learning approaches with very large
datasets, and on time intensive learning that requires exploration
of factors whose effect on decision making in particular states is un-
known, and possibly irrelevant. Our work is inspired by the belief
that robots can learn from demonstration more effectively if they
can communicate more freely while learning. Robots that can learn
about games through multi-modal interaction could foster more
widespread use of agents that can play games with humans, and
support research into learning other interactive strategic behavior.

Our work develops a robot agent with the ability to interact
in a more fundamental way than in previous work. In contrast to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7217-6/19/08. . . $15.00
https://doi.org/10.1145/3337722.3341866

prior work, we focus on game-learning, which is a strategic activity.
Prior work on robots learning through interaction often focuses
on a single task, and selects queries from a repository of query
types, as in [11]. Our robot can generate novel queries from general
knowledge about a family of games (e.g., Connect Four, Quarto),
and from the specific knowledge it acquires about a game during an
interaction. Further, it can formulate visual or symbolic questions
and compare the knowledge gained from different questions.

We first present related work on learning from demonstration
and through communicative interaction. We then present our base-
line robot that learns from visual demonstrations, through reliance
on game theory. The following section presents a novel use of
dialog management combined with general knowledge about a
family of games to support the generation of verbal or visual ques-
tions. Finally, we present an extended example of an interaction
with a perfectly cooperative and knowledgeable simulated user to
illustrate how questions are generated and beliefs are updated.

2 RELATEDWORK
The field of artificial intelligence has made significant progress
in developing systems capable of mastering games such as Chess,
poker, and even Go [15, 16]. Deep reinforcement learning has re-
cently been used to train autonomous agents to play a variety of
Atari and other games [6]. Although the agent does learn how to
play the game with considerable accuracy, the process requires
large amounts of data, time, and accurate perception. In contrast to
this prior work, our approach seeks to develop a computational ar-
chitecture and algorithms that allow a robot to learn from a limited
number of verbal or visual questions.

Learning from demonstration (LfD) offers a way to reduce the
time and effort to teach robots new skills. LfD has been used to
learn a variety of tasks like table tennis [10] and drawer opening
[12], but there has been less work focused on using LfD to teach
interactive games. Some researchers have employed active learning
in which a robot uses a question-answer session with a human to
learn a new goal-oriented activity [4, 7, 11, 18]. Although using
just question-answer sessions reduces the time and data required
to learn a skill, it nevertheless is highly context dependent and may
not generalize across different tasks.

Another emerging area of research is communication task learn-
ing [5]. Learning tasks through communication presupposes an
ability to communicate, which in turn presupposes the ability to
ground language in a particular world (semantic grounding), and

https://doi.org/10.1145/3337722.3341866

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Maryam Zare, Ali Ayub, Alan R. Wagner, and Rebecca J. Passonneau

to ground the communicative interaction in an evolving represen-
tation of the common ground of the discourse (interaction ground-
ing) [5]. Previous work extracts procedural knowledge about new
tasks from dialogue for small action sequences focusing on seman-
tic grounding [13][9], without investing the agent with knowledge
about communication management. Mohan and Laird [9] rely on
the SOAR cognitive architecture to construct an agent that learns to
achieve simple action sequences, e.g., to transfer an object from one
location to another, from verbal interaction with a human. Scheutz
et al. [13] use one-shot learning to extend this type of approach to
allow for a novel vocabulary of objects, but still restricts learning
to short sequences of actions. Our work addresses the problem of a
robot learning to play a game from visual and verbal communica-
tion, which goes beyond procedural knowledge to include strategic
knowledge. We assume that complete knowledge of the game is
achieved from multiple interactions, thus learning can be resumed
later, including during actual game play. After an initial instruction
session, however, the robot must be able to interact strategically
with an unpredictable human partner, rather than execute a pre-
dictable action sequence (procedure). Another thread of work on
interactive learning between a human and an agent addresses how
to decide what communicative action to take based on the agent’s
estimation of its own learning progress given a human teacher [11]
or, its estimation of a human student’s current state [8]. In [8], the
agent presents a human student with examples and observes the
student’s response. The goal is to get the student to guess the mean
of a given distribution. The agent expects the other party’s response
to a query to be a real number and compares this to the underlying
distribution to choose the next action. The agent’s communication
at time ti+1 is dependent on what it learns from the other party at
ti . The long term goal is for the student to respond with the correct
mean. In contrast, in [11], the agent is learning from a human both
by observation and by queries. Here the agent uses active learning
to capture the sequence of actions necessary to complete a task. The
agent’s developing model is used to decide which verbal queries
to ask the human. The agent expects the human’s response to be a
boolean, and uses the response to update its posterior distribution
over actions in the sequence it is trying to learn. The goal is for the
agent to reduce the entropy of its beliefs about an action sequence,
and what the agent communicates at ti+1 depends on how confident
it is that it has learned an action sequence by time ti .

In both approaches discussed above, there is a fixed range of
queries, and the selected query is based on an estimate of how far
the agent is from some relatively simple goal such as a specific value

Figure 1: Extensive-form game representation for one stage of the
Connect Four game is depicted above. The lower nodes represent
the game state after one of the seven actions (0-6) is chosen by player
2, the upper node depicts the current game state when player 1
chooses an action.

(atomic) or a specific sequence (composition of atoms). The queries
are also simple, being a request for a real number or a request for
the rate of an action. In our work, the range of possible queries is
a function of general communication act types (e.g., requests for
information) and the agent’s current knowledge state (e.g., that the
observed game board is a certain size). The agent’s goal is to learn
general knowledge to carry out strategic game actions for a specific
type of game. The learning interaction endpoint is not defined
in terms of a specific sequence of actions to be learned. Instead,
communication will terminate based on a trade-off between how
close the agent is to the goal of learning the game and how much
time has been spent asking questions, where the interaction itself
has a cost.

3 USING GAME THEORY TO MANAGE
ROBOT GAME PLAY

Game theory offers computational representations that have been
used to formally represent and reason about a number of interac-
tive games [3, 15, 16]. The normal-form game and the extensive-
form game are computational representations from game theory
that serve as building blocks to represent a complete interactive
game. Sequential stages of an interactive game are represented in
extensive-form as a tree. A player’s potential actions are denoted by
the branches of the tree and nodes of the tree indicate which player
makes a decision at each particular stage of the game. Payoffs for
selecting particular series of actions are depicted at the stage in
which the payoffs are received. Represented in this manner, the
challenge of learning a new interactive game is reduced to learning
the structure and underlying components of the game theoretic
representation.

In our previous work [2], we developed a game-theoretic LfD
approach in which a Baxter robot learnt the win conditions of
Connect Four by asking questions about demonstrations of win
conditions. The game Connect Four can be represented computa-
tionally as a perfect information extensive-form game (Figure 1).
At each stage of the game both players have complete information
about the state of the game, the actions taken by the other player
and the actions available to the other player in the next stage. At
each turn, a player selects a column to place their colored chip. Fig-
ure 1 shows an extensive-form game representation for a portion of
the Connect Four game. The nodes represent the game state after
a player selects an action from seven actions denoted 0-6 for the
column in which the chip is placed. Images of the Connect Four
game (Figure 2 left) can be directly translated into an intermedi-
ate matrix format (Figure 2 middle) indicating which player has
pieces occupying specific positions in the matrix. This matrix can
then be used to generate possible extensive-form games (Figure 2
right) that can be checked against the game’s win conditions. More
importantly, the extensive-form game can be translated back into
matrices and used to predict what different game states should look
like or, as described later, presented to a person as potential win
conditions for verification. This translation process allows the robot
to generate and communicate visual examples of game states to a
person and ask questions to the person about the game state (e.g.
"Is this a win for yellow?").

Learning by demonstration from a human can be considered an
inference problem in which the goal is to watch the actions taken

Show Me How to Win FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

by the human to accomplish the task. In the context of playing the
game Connect Four, the person demonstrates a win condition for
the game to the robot. Using the approach described above, the win
condition is represented as an extensive-form game and the robot
attempts to surmise a general rule underlying the win condition
by presenting the person with internally generated example board
states and asking them whether the board depicts a winning game.
Intuitively, the robot’s behavior resembles the action of a person
trying to learn a new game by generating fictional situations and
asking whether these situations would result in a win. To create the
extended-form game structure, the robot asks a series of questions,
beginning with basic questions. The robot first asks two questions:
“Howmany players can play this game?” And “Is this a type of game
in which players take alternative turns?” Once these questions are
answered by the person, the robot knows how the player’s actions
will iterate and a largely empty extended-form game structure can
be created. The robot uses pre-programmed information about the
basic components of the game, such as what the board looks like,
the game pieces and their associated colors, and how to physically
perform the actions of placing a game piece (a chip) in a column
of the game board. We used open source software for the Connect
Four game which includes tools for creating the requisite robot
behavior and identifying the Connect Four game pieces [1]. In the
future we hope to have the robot learn these items as well.

After the first set-up questions, the robot learns the game’s win
conditions. First, the robot asks the human for a demonstration of a
win condition (e.g. Figure 2 left). The robot waits for the person to
state, “I am done” to know that the person has demonstrated the win
condition on the board. The robot converts the visual information
obtained (image of the static board) into an extended-form game
(Figure 2 right). Figure 2 depicts the process of a columnwin. Clearly
there are many other arrangements of the game pieces that will
lead to other columns wins. Even though the robot does not have
access to all of the game situations it can leverage the human to

Figure 2: A column win condition for the Connect Four game seen
from the robot’s perspective is shown above (left). The associated
extensive-form representation is shown on the right. Only the ac-
tions taken by the robot are depicted without representing all ac-
tions available at each stage. The numbers along with the arrows
show the action number chosen by the robot (4, 11, 18, 25) and the
human (?). (Best viewed in color.)

generate rules for winning. The image of the board obtained from
the camera on the robot is altered to reflect possible extended-form
games representing example game situations. Along with the image
of the game situation a simple yes/no question is asked to confirm
if that game situation will be a win condition or not. Through a
series of these yes/no (visual) questions the robot learns the rules
or constraints related to the demonstrated win condition. In this
paper, we show how a dialogue manager can be combined with this
game-theoretic learning approach to ask verbal or visual questions
about demonstrated win conditions of Connect Four and other
similar board games like Quarto.

4 DIALOG MANAGEMENT
Our agent relies on a dialog management module whose purpose is
to choose communicative actions strategically. This contrasts with
the systems in [9][13][8][11]. This paper illustrate how the dialog
manager decides what communicative action to take through a semi-
random dialog policy, constrained by the simple strategy of selecting
communicative actions that will improve the agent’s knowledge
of the game. In separate work, we show policy learning for three
board games: Connect 4, Gobblet and Quarto ([20], under review).
At the end of each dialog, the agent has learned how to interact in
a game, which is strategic rather than procedural knowledge. In
separate work, we build on this framework to learn dialog policies
acquired through reinforcement learning. Our approach is inspired
by previous work on task-oriented dialog management [14] [19],
where the agent has a limited set of a priori actions and is trying to
achieve a fixed goal, such as booking a hotel, getting directions to
a destination, and so on. The main differences between our design
and previous work [14] [19] are: 1) the dialog goal is not based on a
pre-defined template, 2) communicative actions are generated from
a general representation of game knowledge rather than specified
a priori, and 3) dialog length is a tradeoff between how close the
agent is to the knowledge goal and how much time has been spent
in the interaction.

In the rest of this section we first define the action space for the
agent to construct communicative actions. Then we present how
the belief space is updated at the end of each turn exchange. Finally,
we provide a sample interaction.

4.1 Communicative Action Space
The communication action space allows the agent to question a
human partner about how to win prior to actual play, building on
the visual questions presented in section 3. It assumes the game is in
the family of board games like Connect Four or Quarto. Following
the framework presented in section 3, all communicative actions
are questions about win conditions. Tables 1-4 present the building
blocks for a formal representation of game knowledge, based on a
modified first order logic.We first define in Table 1 the variables that
are used to specify a representation of a board. Tables 2 - 4 define
functions from the known input board representation to an output
board representation to be asked about. The values returned by the
function in Table 2 are properties of a set of one or more game pieces
on a board representation. The functions in Table 3 return new
board representations that apply a transformation on coordinates
of disks in the input representation. The functions in Table 4 change
the number of pieces in the input board representation. Table 5

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Maryam Zare, Ali Ayub, Alan R. Wagner, and Rebecca J. Passonneau

shows how the agent can construct communicative actions from
the building blocks given in Tables 2 - 4. The communicative actions
are general, and can apply to other kinds of games. The feature set

Function Name Range
Feature pattern, quantity, shape, height, color
Angle 0, 45, 90, 125, 180
Coordinate {(x, y) |x ∈ #BoardRows, y ∈ #BoardColumns}
Table 1: Variables used by functions defined in Tables 2 - 4.

Function Name Meaning
WinProperty(feature = fi) A question about fi

Table 2: Feature function: Enables the robot to ask about the fea-
tures of disks.

is defined in Table 1, but only "pattern" and "quantity" are applicable
for Connect Four. The remaining features are applicable to more
complicated games like Quarto, where game pieces come in different
shapes, heights, etc. The function shown in Table 2 enables the robot
to confirm which features of the disks on a board representation
contribute to making it a win condition. That is, the agent can ask
whether it is the quantity or pattern of disks that make a given
configuration a win condition.

Table 3 shows functions that allow the robot to ask questions
about different ways to reconfigure a given board representation.
We have an action named Permute, so the robot can ask about the
sequence of the actions. Translate checks whether the position of
the disks on the board are important. For example, the robot can
check if four disks on any row is a win. The range of offset is defined
in Table 1.Rotate applies a valid rotation to a configuration of disks
by θ degree defined in Table 1, where a valid rotation is one that is
possible from a given location. For example, a vertical win condition
in the rightmost column can be rotated to the anti-diagonal, but
not the diagonal.

Function Name Meaning
Permute(feature = fi) Permute the disks in a board representation
Translate(offset = (x, y)) Translate all of the disks by the offset
Rotate(angle = θ) Rotate all of the disks by the angle

Table 3: Shift Board Functions: Generate a board representation
that re-arranges the disks

The third set of actions shown in Table 4 are for questions where
the current board representation is modified by changing the num-
ber of disks. For example the robot can ask if the result of adding a
disk in a given cell is a win condition.

Function Name Meaning
AddPiece(position = (x, y), feature
= fi)

Add a disk with feature fi at posi-
tion (x, y)

RemovePiece(position = (x, y), fea-
ture = fi)

Remove a disk with feature fi from
position (x, y)

Table 4: ChangeDisk Functions that alter the disks in the board
representation.

The first part of Table 5 shows the communicative action types,
five of which apply to Connect Four. Parameter ID specifies which
player the robot is talking about. IfWinValue=True, the question
is a yes/no question. If it is None the question asks whether the
new board configuration results in winning or losing the game. A
complete question is generated by selecting a communicative action
type and instantiating it with relevant game state functions from
Tables 2 - 4. Note that this includes complex questions that use both
a ChangeDisk function and a ShiftBoard function. The robot can
also ask the open-ended question, RequestNewWinCondition().

The sixth communicative action shown in Table 5,RequestOther-
Player() is to question whether the other player can undo a possible
win condition after it has been reached, which is relevant for games
like chess. If the answer is yes, then the agent can ask for specifics
about how the other player can undo a win condition.

The second part of Table 5 shows the communicative responses
the simulated user can make. For the purpose of this paper, we as-
sume the simulated user is completely knowledgeable, understands
all the questions, and always responds cooperatively, e.g., with the
correct answer to a yes/no question.

4.2 Belief State
An interaction consists of a sequence of turn exchanges in which the
agent asks a question and the simulated user responds. The belief
state at each turn exchange of the dialog shows the knowledge the
robot has acquired up to that point in time. We define the belief
state to be a concatenation of vectors that represent beliefs about
each function defined in Tables 2 and 3, plus a vector representing
the coordinates of game positions, plus a vector for the other player.
At the beginning of the dialog all the probabilities are accumulated
over "None" which means the robot has no information. Formally,

Communicative Actions of Robot
Function Name Meaning
RequestInfo(ID, ChangeDisks,
ShiftBoard, WinValue)

Add/remove a disk to/from the board,
then reconfigure the board and ask a
question

RequestInfo(ID, ChangeDisks,
WinValue)

Add/remove a disk to/from the board and
ask a question

RequestInfo(ID, ShiftBoard,
WinValue)

Reconfigure the board and ask a question

RequestInfo(ID, WinProperty,
WinValue)

Ask a question about one of the features

RequestNewWinCondition () Ask for a new win rule
RequestOtherPlayers() Ask about the effect of other players ac-

tions
Start() Start the interaction
Finish() End the interaction

Communicative Actions of Interlocutor
Inform() Indicate if the configuration is a win/loss
Affirm() Positive answer to a yes/no question
Negate() Negative answer to a yes/no question
Start() Start the interaction
Finish() End the interaction

Table 5: This table shows the communicative actions of robot(top)
and interlocutor (bottom).

Show Me How to Win FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

the belief vector Bt is defined as:
Bt = PProper tyt ⊕ PPermutet ⊕ PT ranslatet

⊕ PRotatet ⊕ POtherPlayert ⊕ PCoordinatet
(1)

The belief vector gets updated through two generic formulas pro-
posed in [17]. When an agent takes a turn and gets a response at
time t , the component belief vector vectti gets updated if the turn
exchange is a question and answer about a function or a property.
When the robot asks for a new win condition in the middle of an
interaction, a new belief vector to represent a new configuration of
disks is initialized, and subsequent turn exchanges are assumed to
be about this belief vector. (Designing a more sophisticated belief
and dialog state tracking to check for consistency between new
and old information is part of our future work.) When the response
from the user is positive or contains a new win condition, the cor-
responding belief vectors get updated according to equation (2),
where Put represents the confidence over the user utterance. We
set this variable to be always 1.0.

Pvectt = 1 −
(
1 − Pvectt−1

) (
1 − Put

)
(2)

When the user response is negative the relevant sub-belief vectors
are updated according to equation (3).

Pvectt =
(
1 − Pvectt−1

) (
1 − Put

)
(3)

Due to the simplicity of Connect Four, it is possible to represent
complete knowledge of all ways to win, the ultimate learning goal.

4.3 Example
We show a sample dialog in which the robot can learn the con-
straints of Connect Four from a simulated user, using a semi-random
dialog policy (i.e., the next dialog act type is randomly selected). The
simulated user is deterministic, and answers every question com-
pletely. For purposes of illustration, we forced a semi-random series
of questions that would show a belief update to every component
of the belief state. The example shows each turn exchange, with a
formal representation of the utterances. We also produce a natural
language response using a template. Due to space limitations, we
show the belief state only at the beginning of the interaction (Figure
3a), and at the end (Figures 3b-3c). This example shows the gains in
both dialog efficiency and effectiveness provided by the dialog man-
ager. Before, the robot could ask a maximum of 11 visual questions
("is this a win for yellow?"), to learn a single win rule out of four
possible win rules: a four-disc sequence on the horizontal, vertical,
diagonal, or anti-diagonal. With the dialog manager, the robot can
acquire more diverse knowledge from a shorter interaction: here it
learns two specific ways and one general way to win from only 7
questions.

At the beginning of the interaction, the robot has no beliefs about
how to play the game, thus in Figure 3a, the disc coordinates vector
is empty, and all the other vectors have all the probability mass as-
sociated with the "None" position of the vector. From turn exchange
1, it acquires the knowledge that four in a row horizontally starting
in the second column is a win condition.1 The updated belief vector
for disc coordinates appears in Figure 3b. From 2, it learns that the
discs can be placed in any order (see permute). From 3, it general-
izes this to any row and offset (see translate). From 4, it learns that

1The win condition given by the user is reflected in the belief state update.

the other player cannot undo any of its learned win conditions (see
other player). From 5 it learns that four in a vertical row in the last
column is a win, as shown in the final disc-coordinates vector in
Figure 3c. From 6, it learns the previous pattern can be rotated to
the anti-diagonal, the only feasible rotation for this column position
(see rotate in Figure 3c). From 7 it learns that exactly four discs in
these patterns are required (quantity property).
■ Turn Exchange 0.

– Agent (Formal Rep): Start()
NL: Hello! Can you teach me how to play Connect Four?

– Sim User (Formal Rep): Start()
NL: Hi! Yes!

(Initial belief shown in Figure 3a).

■ Turn Exchange 1.
– Agent (Formal Rep): RequestNewWinCondition()

NL: Can you show me a win condition?
– Sim User (Formal Rep): Inform().

NL: Sim user demonstrates a win condition by placing pieces on
the board (cf. Figure 2 for a similar exchange.))

(Belief over disk coordinates gets updated at the end of this turn
exchange.)

■ Turn Exchange 2.
– Agent (Formal Rep): RequestInfo(1, Permute(), WinRule= None)

NL: Does it matter in which sequence I put my disks on the board?
– Sim User (Formal Rep): Inform()

NL: No, any sequence ends up in a win.
(Belief over permute gets updated at the end of this turn exchange.)

■ Turn Exchange 3.
– Agent (Formal Rep): RequestInfo(1, translate(All),WinRule=None)

NL: Is it a win for any column and row?
– Sim User (Formal Rep): Inform()

NL: Yes!
(Belief over translate gets updated at the end of this turn exchange.)

■ Turn Exchange 4.
– Agent (Formal Rep): RequestOtherPlayer()

NL: How can the other player affect undo a win?
– Sim User (Formal Rep): Inform()

NL: No. They have no effect.
(Belief over other player gets updated.)

■ Turn Exchange 5.
– Agent (Formal Rep): RequestNewCondition()

NL: Can you show me a new win condition?
– Sim User (Formal Rep): Inform()

NL: Sim user demonstrates a win condition by placing pieces on
the board. cf. Figure 2 for a similar exchange.))

(A new belief vector is initialized and belief over coordinates gets
updated at the end of this turn exchange.)

■ Turn Exchange 6.
– Agent (Formal Rep): RequestInfo(1, Rotate(All), WinRule= True)

NL: If I rotate my disk by all valid degrees, I still win, right?
– Sim User (Formal Rep): Affirm()

NL: Yes!
(Belief over rotate gets updated at the end of this turn exchange.)

■ Turn Exchange 7.
– Agent (Formal Form): RequestInfo(1, Property(quantity), Win-

Rule= None)
NL: Is it a win because of the number of disks on the board?

– Sim User (Formal Rep): Affirm()
NL: yes.

(Belief over quantity gets updated at the end of this turn exchange.)

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Maryam Zare, Ali Ayub, Alan R. Wagner, and Rebecca J. Passonneau

(a) Initial belief state before asking any question (b) First learned win condition at the end of dialog (c) Second learned win condition at the end of dialog

Figure 3: Agent beliefs at the beginning and end of the example interaction with the simulated user.

■ Turn Exchange 8.
– Agent (Formal Rep): Finish()

NL: I think I know enough to play. Thanks! GoodBye!
– Sim User (Formal Rep): Finish()

NL: Bye!
(Final belief is shown in Figure 3b-3c).

The final belief state shown in Figures 3b-3c is converted to
a generalization over the type of extensive form tree shown in
Figure 2. Instead of an enumeration of the winning paths learned
from the interaction, the generalized extensive form tree shows
any specific winning paths that have not been generalized over,
and any abstract path sets in which some of the nodes and arcs are
generalizations over specific actions. Figure 4 shows the learned
abstracted extensive form tree, along with colored ellipses for ease
of reference. A specific win path in the pink ellipse shows actions
that place disks in the bottom four cells of the rightmost column,
corresponding to the disc coordinates belief vector in Figure 3c. A
specific win path is shown in the green ellipse for the anti-diagonal
pattern, that combines the disc coordinates and rotate belief vectors

Figure 4: Robot knowledge at the end of the example dialog, as
a generalization of the extensive form representation. From left
to right the branches show the knowledge about a specific anti-
diagonal win pattern (green ellipse), a specific vertical win (pink
ellipse), and the set of all horizontal win patterns (blue ellipse).

from Figure 3c. The blue ellipse encloses an abstracted path, shown
here as a set of all paths that constitute a horizontal pattern of four
discs in a row, which corresponds to the belief state in Figure 3b.

5 CONCLUSION
Our robot that can ask symbolic questions about game demon-
strations can now learn more about the game of Connect Four
in a shorter interaction than in its previous incarnation, where it
could only ask visual questions. Our robot can also now learn about
similar games, such as Quarto and Gobblet, using much the same
machinery. The specific contributions that make this possible are a
framework for generating novel symbolic questions about how to
play a board game, a division of labor in the game state representa-
tion between general communicative knowledge and knowledge
to represent states in specific kinds of games, and a belief update
process for the robot to update its beliefs about how much of the
game it knows so far. After one interaction, the robot’s belief state
is saved into a file that can be reloaded into the robot so that it
can continue to learn more about the same game in a subsequent
interaction.

Our immediate next steps are for the robot to learn a dialog
management policy for Connect Four or Quarto through simulated
interaction, to compare the policies for the two games, and to apply
the learned policies in interaction with humans. In each interaction,
a counter will track how much time the robot has already spent
interacting with a given partner, and balance the cost of continuing
the session against the benefit of additional knowledge that might
be gained. In the longer term, we plan to add natural language
generation so the robot can generate alternative verbalizations of its
symbolic questions. We also plan to extend the work to cover richer
games where it is either inconvenient or impossible to enumerate
all the win conditions.

6 ACKNOWLEDGEMENTS
This workwas funded in part by Penn State’s Teaching and Learning
with Technology (TLT) Fellowship, and an award from Penn State’s
Institute for CyberScience.

Show Me How to Win FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

REFERENCES
[1] 2013. Connect Four Demo: Rethink Robotics. (2013). http://sdk.rethinkrobotics.

com/wiki/Connect_Four_Demo.
[2] Ali Ayub and Alan R Wagner. 2018. Learning to Win Games in a Few Examples:

Using Game-Theory and Demonstrations to Learn the Win Conditions of a
Connect Four Game. In International Conference on Social Robotics. Springer,
349–358.

[3] Conway H. J. Berlekamp, E. and R. Guy. 1982. Winning Ways for your Mathe-
matical Plays: Games in general. Academic Press (1982).

[4] M. Cakmak and A. L. Thomaz. 2012. Designing robot learners that ask good
questions. Proceedings of the seventh annual ACM/IEEE International conference
on Human-Robot Interaction.

[5] Joyce Y. Chai, Qiaozi Gao, Lanbo She, Shaohua Yang, Sari Saba-Sadiya, and
Guangyue Xu. 2018. Language to Action: Towards Interactive Task Learning
with Physical Agents. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on
Artificial Intelligence Organization, 2–9. https://doi.org/10.24963/ijcai.2018/1

[6] Borghoff U. M. Dobrovsky, A. and M. Hofmann. 2016. An approach to interactive
deep reinforcement learning for serious games. 7th IEEE International Conference
on Cognitive Infocommunications (CogInfoCom).

[7] T. R. Hinrichs and K. D. Forbus. 2014. X Goes First : Teaching Simple Games
through Multimodal Interaction. Advances in Cognitive Systems 3 (2014), 31–46.

[8] Francisco S. Melo, Carla Guerra, and Manuel Lopes. 2018. Interactive Opti-
mal Teaching with Unknown Learners. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18. International
Joint Conferences on Artificial Intelligence Organization, 2567–2573. https:
//doi.org/10.24963/ijcai.2018/356

[9] Shiwali Mohan and John E. Laird. 2014. Learning Goal-oriented Hierarchical
Tasks from Situated Interactive Instruction. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI’14). AAAI Press, 387–394. http:
//dl.acm.org/citation.cfm?id=2893873.2893934

[10] Kober J. Kroemer O. Mulling, K. and J. Peters. 2013. Learning to select and
generalize striking movements in robot table tennis. The International Journal of

Robotics Research (IJRR) (2013).
[11] Mattia Racca and Ville Kyrki. 2018. Active robot learning for temporal taskmodels.

In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 123–131.

[12] Mukadam M. Ahmadzadeh S. R. Chernova S. Rana, M. A. and B. Boots. 2017.
Towards robust skill generalization: Unifying learning from demonstration and
motion planning. Conference on Robot Learning(CoRL).

[13] Matthias Scheutz, Evan Krause, Brad Oosterveld, Tyler Frasca, and Robert Platt.
2017. Spoken Instruction-Based One-Shot Object and Action Learning in a
Cognitive Robotic Architecture. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS ’17). International Founda-
tion for Autonomous Agents and Multiagent Systems, Richland, SC, 1378–1386.
http://dl.acm.org/citation.cfm?id=3091282.3091315

[14] Pararth Shah, Dilek Hakkani-Tur, and Larry Heck. 2016. Interactive reinforcement
learning for task-oriented dialogue management. (2016).

[15] Huang A. Maddison C. J. Guez A. Sifre L. Driessche G. v. d. Schrittwieser J.
Antonoglou I. Panneershelvam V. Lanctot M. Dieleman S. Grewe D. Nham J.
Kalchbrenner N. Silver, D. and I. Sutskever. 2016. Mastering the game of Go with
deep neural networks and tree search. Nature 529 (2016), 484–489.

[16] Hubert T. Schrittwieser J. Antonoglou I. Lai M. Guez A. Lanctot M. L. Sifre
Kumaran D. Graepel T. Lillicrap T. Simonyan K. Silver, D. and D. Hassabis. 2017.
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm. arXiv Reprint arXiv:1712.01815 (2017).

[17] Zhuoran Wang and Oliver Lemon. 2013. A simple and generic belief track-
ing mechanism for the dialog state tracking challenge: On the believability of
observed information. In Proceedings of the SIGDIAL 2013 Conference. 423–432.

[18] Rosen E. MacGlashan J. Wong L. L. Whitney, D. and S. Tellex. 2017. Reducing Er-
rors in Object-Fetching Interactions through Social Feedback. IEEE International
Conference on Robotics and Automation (ICRA).

[19] Steve Young, Milica Gašić, Blaise Thomson, and Jason D Williams. 2013. Pomdp-
based statistical spoken dialog systems: A review. Proc. IEEE 101, 5 (2013), 1160–
1179.

[20] Maryam Zare, Ali Ayub, Alan Wagner, and Rebecca Passonneau. 2019. In Review,
Learning Board Games. (2019).

http://sdk.rethinkrobotics.com/wiki/Connect_Four_Demo
http://sdk.rethinkrobotics.com/wiki/Connect_Four_Demo
https://doi.org/10.24963/ijcai.2018/1
https://doi.org/10.24963/ijcai.2018/356
https://doi.org/10.24963/ijcai.2018/356
http://dl.acm.org/citation.cfm?id=2893873.2893934
http://dl.acm.org/citation.cfm?id=2893873.2893934
http://dl.acm.org/citation.cfm?id=3091282.3091315

	Abstract
	1 Introduction
	2 Related Work
	3 Using Game Theory to Manage Robot Game Play
	4 Dialog Management
	4.1 Communicative Action Space
	4.2 Belief State
	4.3 Example

	5 Conclusion
	6 Acknowledgements
	References

