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Abstract— A number of important human-robot applications
demand trust. Although a great deal of research has examined
how and why people trust robots, less work has explored how
robots might decide whether to trust humans. Surface cues are
perceptual clues that provide hints as to a person's intent and
are predictive of behavior. This paper proposes and evaluates
a model for recognizing trust surface cues by a robot and
predicting if a person's behavior is deceitful in the context
of a trust game. The model was tested in simulation and on a
physical robot that plays an interactive card game. A human
study was conducted where subjects played the game against
a simulation, the robot, and a human opponent. Video data
was hand coded by two coders with an inter-rater reliability
of 0.41 based on Levenshtein distance. It was found that the
model outperformed/matched the human coders on 50% of the
subjects. Overall, this paper contributes a method that may
begin to allow robots to evaluate the surface cues generated by
a person to determine whether or not it should trust them.

I. INTRODUCTION

A number of important human-robot applications, such as
autonomous driving, demand trust. A great deal of research
has examined how and why people trust robots [1]. Some
work has also explored how robots might decide whether
to trust humans [2]. For humans deciding whether or not
to trust another human, surface cues are important [3].
Surface cues are perceptual clues that reflect intent. The
interaction between surface cues and human-robot trust is
generally understudied, especially when one considers the
broad variety of different cues that exist. Nevertheless, for
applications ranging from autonomous driving to search and
rescue, it would be valuable if a robot could recognize the
surface cues that signal a person's intention to trust the robot.

Yet, recognizing the surface cues that signal one's intention
to trust is a difficult problem. Related research has shown
that culture, appearance, and the task all play an important
role in the decision to trust a robot and in the cues a person
provides [4], [5], [6], [7]. Individual differences, one's prior
history, and even cultural similarity can impact the decision
to trust [8], [9], [10]. Although some of the factors that
influence trust have been identified, significant gaps in our
knowledge of how surface cues foster trust remain [11].
Primary among these are questions related to how machines
trigger trustworthiness perceptions, how characteristics of

*This work was supported by Air Force Office of Sponsored Research
contract FA9550-17-1-0017

1Prof. Alan R. Wagner is with Faculty of Aerospace
Engineering, Pennsylvania State University, PA, USA, 16802
alan.r.wagner@psu.edu

2Vidullan Surendran is a PhD candidate in the Department of
Aerospace Engineering, Pennsylvania State University, PA, USA, 16802
vus133@psu.edu

communication such as voice and embodiment impact trust,
and what cues are most influential over time. This paper
presents a model capable of making predictions about the
trustworthiness of an action based on perceived cues.

Trust researchers generally agree that risk is a prerequisite
for trust (for example see [12], [13]). Yet the type of risk
faced by the trustor may influence the use of trust surface
cues and the decision to trust [14], [15]. The purpose of this
paper is to create a model that allows a robot to capture and
translate these surface cues into actionable information, in
particular, recognition that a person's actions are trustworthy.

Games have long been used to evaluate trust in the
cognitive science and behavioral economics literature [16],
[17]. We propose an interactive card game that allows the
robot to iteratively build a model of the person through
successive interactions that are structured within the rules of
the game. Our long-term goal is to create the underpinnings
that will allow a robot to use percievable overt cues to
estimate the trustworthiness of an action. We postulate that
this information could be used to detect or signal trust.

The remainder of this paper begins by discussing related
work. We then describe the game used to evaluate our method
and the architecture used. Next the computational model that
we have developed to estimate trustworthiness is presented
followed by experiments demonstrating the model's perfor-
mance. We then detail a within person experiment conducted
to ascertain if overt cues are observable, and to study if
there is a discernible pattern to them. We conclude with
a discussion of the impact, assumptions, and directions for
future work.

II. RELATED WORK

This research touches on a number of broad robotics,
artificial intelligence, and human-robotic interaction topics.
With respect to human-robot trust, one avenue of research
attempts to model trust as a probabilistic variable indicat-
ing system performance [18], [19], [20]. These approaches
tends to ignore well established cognitive science research
which suggests that trust is also contextual and relates to
one's emotional state, personality, and experiences [21], [22].
Recent human-robot interaction experiments in ecologically
valid environments also suggest that trust is not a simple
function of robot reliability [23], [24].

A large body of literature has demonstrated that ap-
pearance cues play a vital role in person perception [25],
prediction [26], and trust [27], [28]. Appearance cues are
commonly defined as appearance-related perceptual features,
which signal underlying behavior, emotions, or motives
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[29]. Behavior cues, which are the focus of this paper,
are action-related perceptual features [30]. As such, they
signal an individual's goals, purpose, and abilities. Behavior
cues provide evidence allowing the trustor to predict the
trustee's behavior in a situation in which the trustor's utility
or reward depends on the trustee. Behavior cues provide
insight about the actions that the other individual will select.
A variety of surface cues influence a person's decision to
trust a robot [31], [32], [33]. This paper presents a model
that allows a robot to learn whether the presence or absence
of surface cues indicates that a person's behavior in the game
is trustworthy.

III. CARD GAME

Verish Ne Verish is a 2-6 player card game where players
take turns selecting some number of cards to play face down
onto a discard pile and then name the rank and number of
the cards they discarded. The player may be truthful or not
about the rank of the cards they have just discarded. For
example, stating that they have discarded three Ace's when,
in fact, they have discarded one Ace and two Kings. The
other players then have opportunity to state “I don't trust
you” and expose the cards that the player has just discarded.
If the discarded cards are not all of the rank that the player
claimed, then they must pick up the entire discard pile and
add it to their hand. If, on the other hand, all of the cards are
of the claimed rank (the player was honest) then the player
stating “I don't trust you” must add the discard pile to their
hand. The first player to get rid of all of their cards wins.

The crux of this game involves judging the trustworthiness
of a person's statement about their discarded cards. For the
model discussed in this paper we focus on the evaluation
of the trustworthiness of the discarding play. This reduced
form of the game consisted of the subject discarding a card
face down and stating the suit. The opponents goal was to
determine if the subject was to be trusted and relaying this
information by stating either, “I think you are telling the
truth”, or “I think you are lying”.

IV. COMPUTATIONAL MODEL

Research from cognitive science indicates that humans
tend to form behavioral habits that are associated with an
environment and that are linked to the person's goals [34].
In games like poker individuals may display surface cues
indicating that they are bluffing mixed with surface cues
indicating that they are not [35], [36]. For a robot interacting
with a person, detecting and understanding what these cues
mean in terms of trust may allow the robot to better collab-
orate and assist a person [37]. In our application, we assume
that the game, not unlike poker, will foster the development
of observable and stable surface cues depicting whether or
not the person's statement should be trusted. By stable we
mean that the sequence of surface cues accompanying a
bluff would be constant for many rounds or even games.
Further, we hope that this model will be used in more
general settings as means for recognizing and evaluating
a person's underlying needs. In a healthcare setting, for

example, patients may make overt statements that contradict
their surface cues.

Our goal is to develop a model that is able to predict
whether to trust based on the observation of a sequence
of cues. We do not assume any prior knowledge about the
players, nor the likelihood that a particular sequence of cues
reflects a signal to trust or distrust the player. We also do not
assume any prior information about the sequence of the cues
themselves. Because the application domain is a game, the
model should adapt to the play of the human player, without
a lengthy training period or long history of data.

The developed model classifies the observation of a se-
quence of cues witnessed by the the robot during a round
of the game into a binary variable, X = {lie, truth}. The
set of all cues that can be detected by the system is denoted
as G, which in this game was G = {1, 2, 3, 4, 5} where
the number refers to the description in Section V. During
each round of play, a sequence of cues, Sg , is generated by
the player. Sl represents a sequence of cues that indicates an
untrustworthy statement called the ‘lie sequence’. The length
of the cue sequence was limited to between 1 and 10 cues
in order for the pace of the game to be reasonable. We note
however that in reality, cue sequences can be arbitrarily long
and that the model can still be used with arbitrarily long
sequences.

Our goal is to determine the probability P (X = lie | Sg).
To do this we use Bayes theorem to estimate the posterior
probability that the statement is a lie given the observed
sequence of cues. In other words,

P (X = lie | Sg) =
P (Sg | X = lie) P (X)

P (Sg)
(1)

Given a maximum sequence length of 10, the probability
of observing any particular sequence is on the order of
10−8 if all possibilities are considered. Since, in practice,
the whole search space is unlikely to be seen, we restrict the
search space to the cues observed during game-play. Using
data collected during the game, the priors are defined as
follows:

P (X) =
number of times class was observed

total number of observations
(2)

P (Sg) =
number of times Sg was observed

total number of observations
(3)

The conditional probability of observing a sequence when
it belongs to a class is empirically calculated by counting
the number of times it has been observed when the round
resulted in an outcome of that class. The posterior probability
allows us to predict if the encountered sequence Sg belongs
to the outcome class lie or truth. Yet, we also need to detect
when a player masks the lie sequence by performing other,
unrelated cues. In other words, Sl may be a sub-sequence
of Sg . To overcome this, the model needs to predict the
sequence Sl correctly to aid in identifying any sequence
that contains a lie regardless of such masking. To address
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(a) Left hand on head (b) Right hand on head (c) Both hands on head (d) Looking left (e) Looking right

Fig. 1: List of recognized cues overlaid with pose estimates

this problem we calculate not just the probability of the
observed sequence Sg being the lie sequence, but also the
probability of each subsequence of Sg being the lie sequence.
Intuitively this corresponds to hypothesizing that all possible
subsequences observed are equally probable to be a lie and
then discounting based on future observations. A drawback
of using observations of sequences to inform the probability
of the subsequences is that many of the subsequences are
unlikely to have been observed earlier in the game resulting
in a probability of zero, but may nevertheless be probable.

We can smooth the model by preventing an element
from being assigned a zero probability by assuming it has
been observed non-zero times. The sequence of cues, Sg ,
is similar in many ways to N-grams from language mod-
elling problems. An N-gram being a contiguous sequence
of n items from a given sample. Empirical studies have
shown that the Kneser-Ney smoothing algorithm, and its
variants consistently outperform most algorithms evaluated
for language modelling [38]. However, for our problem the
length of the N-gram is unknown as the number of cues
exhibited by the human player varies from round to round.
Moreover, absolute discounting such as Kneser-Ney might
not be appropriate in our situation because we have no
evidence to show that N-grams of a particular length are
more likely in our game unlike in language processing. Add-
one smoothing [39], however, performs well in our situation
because this approach assumes N-grams of different lengths
are equally likely. Using Add-one smoothing, we assume that
all sequences have been observed at least once resulting in
non-zero probabilities.

Let U be a set of ordered pairs where each pair represents
a subsequence and its posterior probability respectively. This
set contains pairs that represent all subsequences generated
during the game and the posterior probabilities are updated
every round. This information is used to determine the most
probable sequence denoted by Sp which is the element with
the highest probability.

Sp = {(g, p) ∈ U : p = max(X)

where X = {p : (g, p) ∈ U}} (4)

It is possible that multiple sequences have equal probabil-
ities of being the lie sequence especially when minimal data
is available at the start of the game. In cases where |Sp| > 1,
a random element x ∈ Sp is chosen to be the lie sequence.
The model then infers that if x 6⊆ Sg the player is being
trustworthy. With additional data we expect the cardinality of

the set Sp to approach 1 representing that a single sequence
has been identified. In Section VI we demonstrate the use of
this model to learn and evaluate patterns of cues.

V. CUE RECOGNITION

We require a sequence of cues to be identified during each
player's turn. To recognize these cues we used OpenPose to
determine the upper body pose of the player from camera
images [40], [41], [42]. OpenPose is a real time pose de-
tection library that creates 2D pose estimates using keypoint
detection. OpenPose generates a feature vector identifying
the pixel position of the person's joints. In order to reduce
the space of all possible cues and the perceptual demands, the
location of the upper body joints (wrists, elbows, shoulders,
neck, nose, and eyes) were extracted and used to classify the
following five nominal cues: (1) left hand touching the head,
(2) right hand touching the head, (3) both hands on the head,
(4) turning to the left, and (5) turning to the right. These cues
were chosen due to the ease of their detection, being fully
described by the location of the joints, and not depending
on the path taken or velocities of the joints. Figure 1 depicts
the cues. For the remainder of this paper these cues will be
referred to by their numbers.

Pose estimation was first performed on videos of the
participant and the location of the joints was then used to
classify the gesture. A low pass filter was used to reduce
noise and the variance between different cues. The output
was coded as 1 to 5 representing each of the nominal cues
to generate a sequence of cues. As mentioned earlier, this
sequence is denoted the ‘lie sequence’.

As these cues occurred within the context of the game, we
could exploit changes in the game state to inform the system
that a sequence begins and ends. Conceptually, the change
in game state offers contextual clues signifying situations
that may demand trust [43]. Not all situations in a game
demand trust. The primary factor for evaluating whether
or not a situation demands trust is the risk entailed by
relying on the interactive partner's predicted behavior. For
this game, the act of playing a card effectively ends the
player's turn. We assume that this act also signifies the end
of cues signalling the person's underlying behavior. This
sequence has the potential to be infinitely long. We required
that the sequence be performed within 30 seconds to reduce
computational time required to post process the camera data.
Empirically it was observed that it took approximately 2-3
seconds to perform each cue at a gentle pace. This resulted
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TABLE I: Accuracy with respect to lie sequence length

Game Number
1 2 3 4 5

Sequence
Length

2 0.98 0.98 0.90 0.96 0.96
4 0.94 0.94 0.96 0.90 1.00
8 0.96 0.88 0.96 1.00 0.98

in a constraint that the maximum number of cues performed
before each player's move of playing a face down card is
limited to a maximum of 10. Consequently, the lie sequence
was also constrained to the same limit.

VI. EXPERIMENT ONE: QUANTIFYING THE MODEL'S
BEHAVIOR IN SIMULATION

The purpose of this initial experiment was to study how
the model behaved with respect to the length of the input cue
sequence, the change in prediction accuracy with the number
of rounds played, and accuracy when a lie sequence changed
midway through a game.

The changing length of lie sequence was studied by
playing a simulated game consisting of 50 rounds. We tested
the model on lie sequences consisting of 2, 4, and 8 cues.
The cues making up the lie sequence were chosen at random
and the sequence was kept constant throughout each game.
Five games of each condition were played and the results are
shown in Table I. For a lie sequence length of 2 the accuracy
ranged from 0.90 to 0.98 with a mean accuracy of 0.96, a
length of 4 yielded a mean accuracy of 0.94 with a range
of 0.90 to 0.98, and a length of 8 had a range of 0.88 to
1 with a mean accuracy of 0.96. The variation in accuracy
occurs because in the very first round the model must guess
whether or not a sequence is a lie due to a lack of prior
data. Once sufficient data is obtained, the predictions have a
higher confidence score associated with them. The model's
accuracy is due, in part, to the fact that the lie sequence
remains constant throughout a game. Hence, once the lie
sequence is discovered by the model, all further rounds are
correctly classified.

If we aggregate all 15 trials (five games times 3 different
lie lengths), for an arbitrary lie sequence length and a total
sequence length of 10, we can estimate the overall mean
accuracy of the model to be 0.95 with a sample standard
deviation of 0.03. A model randomly guessing lie or no lie
would have an accuracy of 0.5. Data was collected for a
model that randomly guessed the outcome class. The mean
accuracy for this model was 0.49 with a standard deviation of
0.04. A unpaired t test was conducted to obtain t = 38.01 and
p < 0.01 confirming that our model is statistically better than
chance at predicting the outcome class. Although comparison
to random guessing is a weak control, to the best of our
knowledge no other models exist to predict trustworthiness
from surface cues.

Next we examined how the model's accuracy changes as
the game goes on and the number of rounds increases. We
hypothesized that the accuracy would increase proportional
to the number of observations. For a gesture length of 10,

Fig. 2: Improvement in model's prediction of lie sequence.

the change in accuracy was difficult to observe because the
model obtained an accuracy of 0.9 within 10-15 rounds and
changed little (~10%) thereafter. We therefore increased the
maximum sequence length to 20 in order to increase the
search space and the number of rounds necessary to obtain
an accuracy of 0.9. The length of the arbitrarily chosen lie
sequence was 5. This experiment was repeated five times and
the mean accuracy of these 5 trials in shown in Fig. 2. After
10 rounds the mean of the system's accuracy was estimated
to be about 70% eventually increasing to about 95% at the
end of 50 rounds. Confidence intervals are shown at rounds
10, 20, 30, 40, and 50 to illustrate that on average there
is a strong trend of increasing confidence in the system's
identification of the unknown lie sequence. The dotted line
(green) represents the standard deviation of the trials further
confirming that the average spread of the mean reduced over
the trials. This confirms our hypothesis that the system's
accuracy increases proportional to the number of rounds.

It is possible that the accuracy rates of the model are
not indicative of its success in identifying the correct lie
sequence but rather a reflection of a player that doesn't
lie often. For example, if the lie sequence was {1, 2, 3}
and the system identified it as {2, 2}, then player moves
such as {{1, 2, 1}, {2, 4, 5}, {3, 4, 5}, . . .} would be deemed

Fig. 3: Effect of sequence length on number of rounds
required to correctly identify the lie sequence
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TABLE II: Detection of a changing lie sequence

Trial Number
1 2 3 4 5

Sequence
Length

2 6/-
(0.88)

5/-
(0.76)

5/33
(0.7)

13/41
(0.76)

7/-
(0.66)

4 7/-
(0.76)

5/-
(0.72)

45/-
(0.68)

10/-
(0.66)

6/-
(0.68)

correctly as truths improving the model accuracy but masking
the failure of the system. To investigate if this was an issue,
the average number of moves to correctly identify the player's
lie sequence was analyzed along with the accuracy at each
step. A gesture length of 10 was used along with a lie
sequence length of 2,4 and 8. Once again each trial consisted
of 50 rounds.

From the data shown in Figure 3, we observe that for a lie
sequence of length 2, the system took 7 rounds to identify
the correct sequence with a final certainty of 96%. Similarly,
we see that when the length of the sequence was 4, it took 9
rounds to identify the sequence with a final accuracy of 95%.
The case of a sequence length of 8 illustrates the problem
discussed. The data is split into lines 8a, 8b, 8c, and 8d
to denote where changes in the system's prediction of the
lie sequence occurred. In this case the lie sequence chosen
was {1, 4, 3, 2, 2, 4, 5, 1}. The system correctly guessed the
chosen lie sequence after 8 rounds with a probability of 0.85
(Line 8a). By round 18 the probability rose to 0.91. But then
the system erroneously switched its guess to the sequence
{1, 4, 3} at step 19 (Line 8b) and then sequence {1, 4, 3, 2, 2}
(Line 8c). At step 45, it then switched to sequence {2, 4, 5, 1}
achieving an overall accuracy of 0.97 at round 50. Strictly
speaking this could be considered a failure of the system, but
it should also be noted that all of the sequences considered
were non-trivial subsequences of the actual lie sequence. If
these erroneous sequences were encountered and reinforced
as being incorrect guesses, we would expect the system to
return to the originally correct guess. With more data this is
the likely outcome.

Finally we examined the ability of the model to respond
to a changing lie sequence. We hypothesized that it would
take longer to determine the second sequence as the model
would have to ’forget’ its initial guess. This would mean
that wrong predictions have to be made before the model's
most probable lie sequence is deemed to be erroneous and
another sequence can replace it. Five games of 50 rounds
each were run. In each of the 5 games, after the 25th round
the lie sequence was changed. Table II depicts the results.
Each entry indicates the round that the system identified the
lie sequences and the overall accuracy for that trial. A dash
(-) indicates that the sequence was never correctly identified.
The accuracy is shown in parentheses. For example, the entry
5/33 (0.7) indicates that the first lie sequence was identified
in the 5rd round, the second lie sequence was identified in
the 33th round, and that the overall accuracy for that trial
was 70%.

From the data we see that while the system can determine

the first sequence correctly in under 15 rounds in 9 out of 10
trials, when the lie sequence changes the model is rarely able
to deduce the new sequence within the 50 round limit. With
additional observations we believe that the new lie sequence
would be found because the model's accuracy increases with
data. It should also be noted that for some of the trials and
sequence lengths even though the system does not detect
the lie sequence its accuracy is nevertheless 0.75 percent or
greater. As alluded to previously, this result arises from either
the model correctly determining a subset of the lie sequence
or because of the random nature of the moves made by the
player.

VII. EXPERIMENT TWO: TESTING THE MODEL ON
HUMAN DATA

The previous experiment tested aspects of the model under
the simplifying assumption that overt, easily detectable cues
were available. This second experiment attempts to identify
whether or not such cues exist while the person is discarding
(as described in Section III) and if any identifiable cues can
be fed into the model described in Section IV to predict
truth-telling versus lying.

All subjects played against a computer, a human, and
a robot opponent. The order of the type of opponent was
counterbalanced. In all three cases, the amount of time
taken to play each round, the phrasing of the opponent's
questions, and the movement speeds were matched as closely
as possible in order to maximize the similarity in play styles
of the three types of opponents. Subjects were instructed
that they would be playing against an opponent that would
analyze visual data collected from a stereo camera to detect
the trustworthiness of their move, but in reality all three
opponents played randomly. This was necessary so that the
capability of the opponent did not affect the subject's game
play. Human subjects played as many rounds as possible
within 7 minutes against each type of opponent. The average
number of rounds played was found to be 14.5 against the
computer, 20.2 against the human, and 11.9 against the robot.
In total 466 rounds were played by the subjects which was
then used to quantify system performance.

For this experiment the subject and opponent sat across a
table from one another as shown in Fig. 4. An Intel D435
stereo camera was placed across from the subject in order
to capture most of the upper body of a person seated in
the chair. A sense of privacy was provided using black
cloth screens to isolate the subject. The screen behind the
participant was green to enhance contrast to aid in image
post processing. A microphone was placed on the table to
capture the subject's voice commands.

A Baxter robot was used for the robot portion of the
experiment. The Baxter robot (Fig. 4 (a)) is a torso with
two 7 DOF arms. A suction gripper end effector was used
to perform card manipulations such as picking up a card
and discarding. When playing against the robot, the subject's
were asked to discard their card in a specified area of the
table that was within reach of the robot's arm. The human
player's discard was detected using a camera in the robot's
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(a) Robot Opponent (b) Computer Opponent (c) Human Opponent

Fig. 4: The experiment was designed to maintain uniformity across all three conditions to reduce noise. In all cases an Intel
D435 stereo camera was used to capture subject video and was placed in the same location along with a common 3.5mm
computer microphone to capture subject suit declarations.

head. Next the robot would ask the player, “What suit
did you play?” The subject's reply was captured using the
microphone. Google cloud speech recognition was used to
detect the suit type verbally stated by the person. The robot
then picked up the card using its suction gripper and moved
it to a pre-specified drop location at the rear right corner of
the table. It would then either drop the card face down and
say “I think you are telling the truth” or flip the card over
and say “I think you are lying.” It would then return its arm
to the initial position and start the next round by saying, “It
is your turn to play.”

Play against the computer (Fig. 4 (b)) followed a similar
procedure and used the exact same voice messages. Against
the computer the subject was shown a virtual card on the
monitor. The participant then used a mouse to click on a
button titled ‘play’. Next the computer would then ask them
what suit was played. Speech recognition identified their
stated suit and the card would slowly spin on the screen
for a time period similar to the time taken for the robot to
move the card to its drop off location. Finally, the computer's
decision was revealed with the same statements (“I think you
are telling the truth” or “I think you are lying”).

Against the human opponent (Fig. 4 (c)), a similar pro-
cedure was followed with the researcher repeating the same
phrases. For this condition, however, the human opponent
stood in front of the Baxter robot so that the environment
remained as similar as possible.

Ten participants were recruited with an equal number of
male and female participants. Internal Review Board ap-
proval was obtained. This research was primarily exploratory
in nature in that our goal was to determine if people do
generate recognizable cues while playing this game. We
believed that the participants would exhibit a range of cues
related to the trustworthiness of their actions in the game.
We further believed that these cues would be individualistic
and that any patterns, if found, would remain consistent
throughout a particular experimental condition. We do not
have enough evidence to say for certain if the patterns
remain consistent across different opponents such as the
robot, another human, or an online version of the game.

Twelve types of cues were chosen based on a quick
analysis of the video. The classes were: no gesture, eyebrow

motion, motion of the lips, gaze to the left, gaze to the
right, gaze ahead/up/down, smiling, laughing, arbitrary facial
expression, arbitrary body motion, head to the left, and
head to the right. The cue detection system as presented
in Section V was limited to five cues and while able to
detect each cue when presented individually, was unable to
accurately demarcate multiple cues as would be observed in
any human video. The problem of autonomously identifying
cues/gestures from a video where the human might perform
sequential and simultaneous cues is out of the scope of this
paper. We validated our model by using two independent
coders to hand annotate all the videos.

Since two different coders were used and they could detect
an arbitrary number of cues, their codes could have unequal
lengths making it unsuitable to apply Cohen's kappa or
Krippendroff's alpha as an inter-rater reliability metric. If
coder 1 detected a cue sequence of length L1 and coder 2
detected a sequence of legnth L2, the inter-rater reliability,
R, was calculated as

R = max(L1, L2)−D/max(L1, L2)

where D = Levenshtein Distance (5)

The inter rater reliability was calculated to be 0.41 mean-
ing that on average at least 41% of the codes had an overlap.
We realize that even for human coders, recognizing cues is
challenging and subjective. If we employ a sliding window to
equalize the length of the codes, that is we only consider the
most similar code of length min(L1, L2) from both codes,
we calculate the inter-reliability to be 67%. This tells us that
on average even if one of the coders annotates more cues
than the other, at least 67% of the sequence is in agreement.

The coders were also asked to judge if the subject in the
video was bluffing or not to quantify how accurately they
were able to predict lying versus truthful play as a control for
comparision. Once again with two coders there is a variation
in performance. The coder accuracy reported in Table III is
the mean of both these values for each participant (columns)
and opponent type (rows). Over all the cases, the average
difference in prediction accuracy between the two coders
was 0.13 (std-dev = 0.07) with a minimum and maximum
difference of 0 and 0.33 respectively.
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[b]

TABLE III: Prediction accuracy w.r.t. computer (S), human (H), and robotic (B) opponent. The model accuracy is reported
first followed by the coder accuracy. The average represents performance for that particular subject over all opponent types.

Participant Number
1 2 3 4 5 6 7 8 9 10

S 0.57 | 0.56 0.56 | 0.44 0.46 | 0.40 0.36 | 0.58 0.35 | 0.71 0.59 | 0.50 0.55 | 0.62 0.30 | 0.67 0.61 | 0.39 0.80 | 0.54
H 0.59 | 0.72 0.36 | 0.45 0.64 | 0.38 0.55 | 0.55 0.45 | 0.55 0.57 | 0.49 0.43 | 0.62 0.43 | 0.60 0.55 | 0.50 0.50 | 0.53
B 0.54 | 0.54 0.84 | 0.59 0.66 | 0.53 0.53 | 0.60 0.63 | 0.38 0.77 | 0.46 0.59 | 0.50 0.41 | 0.60 0.65 | 0.65 0.24 | 0.46

Avg 0.57 | 0.61 0.59 | 0.49 0.59 | 0.43 0.48 | 0.58 0.48 | 0.54 0.64 | 0.48 0.52 | 0.58 0.38 | 0.62 0.60 | 0.51 0.51 | 0.51

In order to give the coders the same information as the
model, the coders were told the ground truth after each
video so that they could use this information to judge
future rounds. A qualitative analysis of the videos shows
that participant's are much more likely to be animated
and express themselves when playing against the physical
robot. When playing against a human, participants seemed
hesitant to make prolonged eye contact. On the other hand
when playing against a computer, participants are extremely
somber making it hard to judge their intentions.

Once coded, the sequence was fed into the computational
model described in Section IV. Table III depicts the model's
accuracy for each participant and each type of opponent.
Over all opponent types and subjects, the computational
model has an average prediction accuracy of 0.53 which is
equivalent to the human average of 0.53. For each opponent
type the accuracy of the model compared to the coders is
0.51 vs. 0.54 (computer), 0.51 vs. 0.54 (human), and 0.58
vs 0.53 (robot). Most importantly, the model outperforms or
matches coder accuracy on five of the ten participants.

We suspect that the number of cues the participant displays
may be the source of this difference. The more cues the
better the model performances when compared to the human
coders. This may reflect the model's ability to record and use
a large number of cues whereas human's memory is limited.
On the other hand, in participants that are less animated, the
human coder performs better as they are able to draw on
prior knowledge, stereotypes, and reasoning about patterns
of deception observed in the previous rounds whereas the
model purely relies on the observed surface cues.

VIII. CONCLUSIONS

A model for evaluating an individual's trustworthiness
based on surface cues is presented. This paper develops the
model and demonstrates the use of the model in a trust-
deception card game against a robot. We have shown that as
the model gains data its predictions improve. We have also
presented preliminary experiments comparing the model's
performance to a human's showing that the model is slightly
better.

Still, the model does make assumptions and has limitations
that will need to be addressed in future work. We have shown
that the model's performance drops if the sequence of cues
indicating a lie changes. Yet the ability of the model to
classify a player's move correctly suggests that the sequence

of cues displayed by the subjects during the bluffing play has
a high degree of repeatability and at the very least, is stable
over a short duration of time. The results from our second
experiment are based on a small population of subjects.
Future work will need to include more subjects. Finally,
our current system relies on human coders to generate the
sequence of cues from video data. Clearly a traditional
machine classifier could be used to automate this process
and, if accurate, result in a system pipeline in which cues
are automatically recognized used to influence the robot's
decision-making.

Our hope is that the model can one day be used to
make predictions about whether or not a robot should trust
the behavior of a human based on prior experiences and
recognized surface cues. Accurate cue/gesture recognition is
essential. Recognition of a greater variety of simultaneously
occurring cues could improve the value and performance of
our model. By linking cues to a person's underlying state
in the proposed manner, we seek to develop a method that
can determine one's motivation. The results of this work
may be broadly applicable to situations in which a person
intentionally or unintentionally disguises their motives. In
health care, for example, it may be critical for a robot to
recognize when a person’s cues indicate an internal state
that differs from what they are saying in order manage how
to best help them.
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