
Aiding Emergency Evacuations Using Obstacle-Aware Path Clearing

Mollik Nayyar1 and Alan R. Wagner2

Abstract— We seek to develop robots capable of helping
people evacuate. Some evacuation environments, however, may
have obstacles blocking the person’s path to the closest exit.
This paper therefore explores the possibility of creating robots
that detect and move obstacles in order to open evacuation
pathways. Experiments were conducted using a simulated
autonomous robot in photorealistic indoor environments. The
system uses computer vision algorithms to gather information
from the environment. We show that the gathered information
can be used to decide whether an obstacle can or needs to be
moved in order to open a new evacuation pathway. We then
use simple push manipulations to successfully remove obstacles
from a path. We show that the system decreases evacuation
time for evacuees in simulations of indoor environments.

I. INTRODUCTION

We envision autonomous robots employed as an active
emergency response system, acting instantaneously in the
event of an emergency to support guided evacuation, in-
formation gathering and giving valuable information to first
responders without direct human operator oversight. How-
ever, several challenges need to be met before a robot
can be effectively deployed for this purpose and many of
these are active areas of research such as localization and
navigation, manipulation, Human-Robot interaction (HRI)
etc. We believe that a robot first responder must have three
essential capabilities, it must be able to: 1) gather information
from the environment to inform future plans and actions;
2) interact with the evacuees to influence their evacuation
behavior and 3) interact with the environment to improve
evacuation speed.

Prior research in robot-assisted emergency evacuations
has focused on HRI related problems ranging from human
compliance [1] to trust repair [2]. However, the evacuation
environment may pose additional challenges to effective
evacuations even if the evacuee complies with the robot’s
instructions. Some situations may require the robot to ma-
nipulate the environment to open pathways for efficient
evacuation. As an example, consider a situation where the
robot encounters something blocking the path to an exit.
Evacuees in such a situation may be stuck behind an object

*This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1830390. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation

1Mollik Nayyar is a Ph.D student in the Aerospace Engineering,
The Pennsylvania State University, University Park, PA 16802, USA
mxn244@psu.edu

2Alan R. Wagner is an Assistant Professor with the Department
of Aerospace Engineering and a Rock Ethics Institute Researcher,
The Pennsylvania State University, University Park, PA 16802, USA
alan.r.wagner@psu.edu

that needs to be removed. A robot capable of autonomously
navigating and moving obstacles could allow for quicker
evacuations, shorter search operations and guide crowds from
a busy exit. We hypothesize that outfitting the robot with the
ability to move obstacles will save more lives and provide
invaluable information to emergency response professionals
saving time during relief operations.

To enable the robot to move obstacles, two skills are
essential. First, the robot must be able to identify a target
blockage and determine whether or not it is movable and
second, it must be capable of moving the blockage to a
more desirable location. Here the movability of an object is
defined as a true or false value indicating whether or not the
object can be displaced by the robot by force. In this study,
we limit our actions to non-prehensile push actions and we
assume that the robot is provided with some knowledge of
the movability properties of common indoor objects such as
tables, chairs etc. Non-prehensile push action is defined as
the act of applying force on an object, away from the robot,
without grasping the object.

This paper presents a preliminary study of how a robot can
aid evacuation efforts by using a basic manipulation strategy.
We introduce the concept of obstacle awareness where the
robot is able to use sensors to identify objects and determine
some of the key properties that influence movability. This
paper therefore investigates if and how much a robot capable
of moving evacuation blockages increases the number of
people evacuated. We examine this problem using high-
fidelity simulations of evacuations in different environments.

The following section II discusses some the related works
and in section III we present the experimental setup. The
methodology is then discussed in section IV and further
details of the environments used are provided in section V.
The experiments and results are discussed in the section VI.
Finally we conclude in section VII with a brief outlook of
the future directions of the work.

II. RELATED WORK

The related work focuses on three areas central to this
research: emergency robotics, non-prehensile manipulation
and navigation among movable objects.

A. Emergency Robotics

Research has shown that robots can play a significant
role during emergencies and help guide evacuees to exits
[3]. Shell and Matarić presented an audio beacon based
evacuation algorithm in a pedestrian simulation [4]. They
found that even a small number of audio beacons were
effective in decreasing the pedestrian egress time. Nayyar and



Wagner studied the impact of robot guidance strategies on
human compliance with a robot’s instructions [5]. Simulated
robot-assisted crowd evacuations have been used as a means
of validating crowd simulation models [6], reducing crowd
evacuation times [7] and providing the best exit option to
pedestrians [8]. The role of trust in HRI during emergencies
has also been extensively explored in [9], [10], [11]. Robi-
nette et. al. implemented an information propagation model
and found that if only 30% of the evacuees crowding an exit
followed the robot survival rates could improve significantly
[12]. Prior work has not, however, considered how a robot
might manipulate the environment to improve evacuation
times. We believe that a robot capable of pushing objects
away from blocked paths could help reduce evacuation times.
To the best of our knowledge, this is the first examination of
how an autonomous robot could manipulate the environment
to improve evacuation times during an emergency.

B. Non-Prehensile Manipulations

Object manipulation is challenging because the robot
must manage the uncertainty caused by the manipulation
and the dynamics of the environment [13]. Non-prehensile
manipulations aim to affect a change in an object’s world
state without grasping the object of interest. Pushing is an
essential action primitive in robotics [14] and even in the
absence of a dedicated manipulator, simple pushing actions
can support object delivery or path clearing operations [13].
Researchers have found that developing analytical models
of object behavior while the object is being manipulated
can be very cumbersome [15], [16]. As a result, researchers
have focused on data-driven models which have been shown
to outperform traditional analytical methods [17], [18]. The
lack of available data, however, is a significant limiting factor
for a variety of manipulation actions and their resultant
environmental interactions. Hence, researchers have recently
focused on online, goal-driven approaches that combine
control inputs and manipulation actions in a feedback loop
allowing future actions to be performed based on the real-
time effect of previous actions [13] (see [14] for more
information).

C. Navigation Among Movable Objects

Navigation among movable objects (NAMO) is defined
as the problem of navigating a cluttered environment by
manipulating and moving obstacles. Wilfong showed that
the problem is NP-hard when the manipulated objects do
not have a pre-defined final configuration (pose and orienta-
tion), as a part of the solution. However, multiple methods
have been proposed that reduce the complexity by utilizing
heuristics [19], artificial constraints [20] and probabilistic
approaches [21], [22]. Others have also solved simplified
versions of the NAMO problem with incomplete information
[23], [24], [25]. More recently, an offline, recursive approach
has been presented that significantly reduces the number
of object movements by using concepts from computational
geometry [26]. This paper considers a version of the NAMO
problem, but does not focus on optimality, completeness or

perception and control uncertainties. Our objective, rather, is
to develop a system capable of aiding evacuations via push
manipulations, therefore our proposed measure of success is
the decrease in evacuation time or increase in the number of
evacuees reaching safety.

III. EXPERIMENTAL SETUP

A. Robot

For this research, a 4-wheeled mobile platform equipped
with a forward facing camera, a forward facing Lidar and
a front bumper for push actions, was utilized. The path
planning, object detection and laser scanning were performed
in real time to update an occupancy grid based map as
a representation of the world. The ground truth poses of
objects were assumed to be known after detection. The
robot was also assumed to have a database of movable
objects where a ’movable object’ is defined as an object
that the robot can successfully displace by applying a force.
The robot was provided with a database that maps object
labels to their movability value. Each grid point on the map
was marked as occupied, free or occupied by a movable
object. The robot was provided with a floor plan of the
environment with information about the permanent elements
of the environment such as walls, rooms or corridors. The
combination of object detection and database of movable
objects gives the robot the capability to determine which
objects can or need to be moved. We do not consider the
issues associated with localization or low-level control in
this paper, the simulation environment provides localization
data to the robot.

B. Environment

To demonstrate the feasibility of the algorithm in indoor
environments, three different environments were designed
using the Unity game engine. We created an office, a hospital
and a classroom for empirical testing. Each environment
had different configurations and layouts. The environments
were populated with objects relevant to the environment. We
did not assume that the objects in the environment had a
particular shape or size. The experiments were designed to
study the impact of the robot’s ability to clear obstacles from
evacuation pathways on the evacuation time of simulated
human evacuees. Obstructions were placed at the entry or
corridor intersections and the environment was designed such
that unblocking the paths would result in a shorter path to
exit.

IV. METHODOLOGY

The robot-aided path clearing problem was setup as a
basic path planning problem with incomplete information.
The robot gathered information from the environment and
planned a path to the specified goal based on the updated
information. The robot was free to move around the envi-
ronment and could push an object as many times as the
algorithm deems necessary. A global planner was responsible
for keeping track of the main task (reaching the goal location)
and while local re-planning was used to identify sub-tasks



Fig. 1. The figure shows a high level description of the action states that
the global planner executes. This flow chart details the events in each of the
primitive states. The logic and transitions between the states is controlled
by the global planner. The states that idle is switches to are shown on the
left side. The Lidar scan runs concurrent to all other states and will allow a
state change to ’Detect’ in case of any event. We have omitted the ’Detect’
state for simplicity .

such as approaching an identified movable object, determin-
ing push direction, starting and stopping push etc. The task
planner delegated tasks to each of the modules based on the
current state of the system and information received from
the environment.

A. Path Planner

A grid search based path planning algorithm called A*
with a diagonal distance heuristic was used to generate
candidate paths for this paper [27]. Due to the map grid
being finite, A* has the property of being complete i.e. it
will return a solution if a solution exists [27], we exploit this
property to determine whether a path to the goal exists. A* is
solved on the initial map without any information about the
obstacles in the environment. As the robot moves through
the environment and more previously unseen obstacles are
detected, the map is updated and the planner automatically
takes into account the objects that need to avoided or moved
for a cost effective path. A* allows paths to be planned
‘through’ the movable objects, which allows our system to
calculate the displacement required to move an object to
unblock a path.

B. Obstacle Detection

At the time of running these experiments, Unity sup-
port of object detection models was limited. Hence, we
used a MobileNetSSD object detection model trained on
the VOC0712 dataset for obstacle detection due to its fast
inference speed at the cost of detection accuracy. The model
is capable of detecting 20 basic classes of items available in
the VOC0712 dataset. As the robot approaches an unknown
object, the Lidar sensor triggers the camera to run the
detection algorithm. The detection algorithm provides both
a detection label and a bounding box of the object in the

camera image. The robot is provided with a database that
maps object labels to their movability value. This label is
then used to determine movability and the object is updated
on the map accordingly. If the object detector fails, the Lidar
is used to mark that area on the map as immovable and the
robot will not try to manipulate it for the remainder of the
experiment.

C. Mapping

The robot generates an initial 2D representation of the
environment based on knowledge of the floor plan. The
robot’s internal map used for path planning and recording
the positions of obstacles is a discretized version of the floor
plan. Each wall or obstacle fills the grid location it occupies.
As the robot encounters obstacles in the world, its map is
updated and a new global path is generated.

D. State Machine

The state machine breaks down robot behaviors into low-
level action states. The global planner uses these states to de-
scribe high-level tasks for the robot. Here we define behavior
as the immediate action being performed by the robot where
as a task comprises of a set of actions combined together to
achieve a goal. The primitive action states implemented in
the state machine are planning, moving, pushing, detection
and idle.

Each ‘task’ can be regarded as a sequence of primitive
state operations performed in an order. As an example, ’mov-
ing’ is a behavior during which the robot moves along a path,
where as reaching a location is a task that requires planning
from a start location to a goal location and then successfully
navigating the environment while avoiding obstacles. The
task of navigating to the goal is detailed in the figure 2 for
clarity. As can be seen from the flow chart, the robot switches
between different states such as planning, moving, idle and
detection to perform a high-level task of ’navigate to goal’.

The global planner is responsible for keeping track of the
main task (final goal location), the subtasks (generated on
the fly) and controlling the transition between the states.
A detailed description of the processes in each state are as
follows:

1) Planning: The system starts the path planning routine
by requesting a path from the current location to either the
final goal or a subgoal. The planner performs a simple A*
search on the map generating a path if it exists. Once the
planner returns a path, the path is first checked for validity
to determine if it has any intersecting objects. If the path
is determined to be valid, it is added to a list of paths to
follow and the state is switched to ’idle’. If the returned
path is deemed invalid due to potential obstacle collisions,
then the obstacles in the path are identified and added to the
map and the state is switched to ’idle’.

2) Idle: The idle state defines the state between the transi-
tions and controls the main flow of events. It is responsible
for setting the next state based on the current information
about the world or the previous task. The next state to
be set is dependent on the availability of a path, subgoal,



Fig. 2. The figure shows a high level description of the tasks that the
global planner executes. As can be seen, the system switches between many
states to complete a task. This flow chart details the events of ‘navigate to
goal’ task. The logic and transitions between the states is controlled by the
global planner. Note that ‘navigate to goal’, ‘navigate to subgoal’ and ‘move
obstacle’ are tasks that comprise of their own flow of events.

obstacle to be pushed etc. The ‘idle’ state prioritizes available
information. If an object has already been identified to be
moved, the state is set to ‘pushing’, if a valid path is already
available, the state is switched to moving or if a subgoal has
been identified, the state is switched to planning to generate
a path, and if none of the previous cases exist, the state is
set to planning to find a path to the main goal.

3) Moving: The ’Moving’ state is triggered by the ’Idle’
transition state when a valid path is available to be traversed.
The robot starts to move along the found path until either the
final point on the path is achieved or an event is triggered
by the front facing Lidar sensor, in which case the the state
is set to ’Detect’.

4) Pushing: When the planner returns an invalid path, it
checks to determine if the path is blocked by a movable
object, in which case, the object is set as the object to
be moved. Once the state switches to ’Pushing’, first, a
subgoal point near the obstacle is calculated based on the
region around the obstacle on the map. The subgoal will
require a path to be planned. If the returned path is valid,
the robot will move to the location of the subgoal and initiate
the push action on the obstacle. The distance to be pushed
is tentatively calculated from the map. Once pushed, the
internal map is updated and the state is set to ‘idle’ which
will again request a path to the main target (assuming no
other valid paths or subgoals exist).

5) Detect: The robot constantly checks if there is an
‘unobserved’ (not on its map) obstacle within its Lidar range.
If an obstacle is in its path, a tentative ’unknown obstacle’
with undetermined movability parameter is instantiated on
the map, all other routines are stopped and the state is

Fig. 3. The figure shows a first person view from the robot’s camera
perspective and the object classifications. As can be seen, the robot miss
classifies a table as a sofa. The green box is the estimated bounding box of
the object in pixel values.

Fig. 4. The figure shows an overhead view of our office environment.
The yellow dot indicates the human evacuees spawn point. The white dot
indicates the robot start position. The red dot indicates the exit point. The
red line is a longer path taken by the evacuees to the exit and was always
unobstructed whereas the green line represents a shorter path taken by the
evacuees once the blocking obstacle was removed. The yellow line is an
intermediate path taken by the evacuees after the successful removal of the
obstacle. The yellow arrow shows the obstacles to be moved.

changed to ’Detect’. The system runs a object detection
routine to determine the obstacle’s movability. Figure 3
depicts an example of a successful detection. Note: not all
movable objects become a target to be pushed. The planning
state then checks if the a movable object is intersecting the
current path before marking an object to be moved. The map
is then updated according to the classification output from
the object detector. If the object is classified as immovable,
it is marked as immovable on the map and the next time the
planning routine is run, the object is automatically avoided.

V. ENVIRONMENTS

The following three environments were developed for this
research:

1) Office: An office environment was designed with two
rooms, a long corridor, and a variety of obstacles. The rooms
were obstructed which, when removed, could offer shorter
paths to the exit as compared to the longer path along



Fig. 5. The figure shows the overhead view of the hospital environment.
The yellow dot indicates the evacuee’s spawn point. The white dot indicates
the robot start position. The red dot indicates the exit point. The red line
is the longer path taken by the evacuees to the exit whereas the green line
represents the shorter path taken by the evacuees after the robot removes
the blocking obstacle. The yellow arrow shows the obstacles to be moved.

the corridor (see figure 4). The environment was designed
with only one exit, one unblocked path and two blocked
paths, the intermediate path (shown in yellow) and then the
shortest path (green line). The robot was tasked to remove
the obstructions from both the blocked paths. This was done
to observe the effect of each of the two paths on evacuation
time. The evacuees spawn at the yellow dot at a frequency
of one per second. They move towards the red dot taking
shortest available path. By default, only the longer path (red
line in figure 4) is open and the evacuees start moving
towards the exit. As a shorter paths become available, the
evacuees automatically change direction to move toward the
exit via the shorter path. The robot starts at the location as
shown by the white dot.

2) Hospital: The hospital environment contains four
rooms with a long corridor around the rooms. The evacuees
are spawned at the yellow dot as shown in figure 5 and move
along the unblocked red (longer) path. The robot (shown
as white dot) begins next to close to the exit point (shown
as red dot). The environment has narrower corridors and
unique obstacles and layout when compared to the office
environment. The robot is tasked to remove the obstacle,
marked by a yellow arrow in figure 5, from the the green
path.

3) School: As was the case with hospital environment,
the school environment also has narrow corridors and unique
obstacles that block the characters paths. The exit points and
spawn points are shown in figure 6. A table is used as the
obstacle for blocking the shorter path.

VI. EXPERIMENTS AND RESULTS

The experiments in this research were designed to study
the impact of robot path clearing operations on emergency
evacuations. The dependent variable for this work was

Fig. 6. The figure shows the overhead view of the school environment.
The yellow dot indicates the human evacuees spawn point. The white dot
indicates the robot start position. The red dot indicates the exit point. The
red line is the longer path taken by the human evacuees to the exit whereas
the green line represents the shorter path taken by the human evacuees after
successful robot manipulation. The yellow arrow shows the obstacles to be
moved.

evacuation time. We also wish to study the impact of grid
resolution on the success of the planner, where unblocking
the desired path such that it becomes available for evacuation
was considered a successful trial. The evacuees speed ranged
from 6 to 10 miles per hour. Evacuees move towards the
exit as soon as they are spawned. The evacuation time is
calculated from the moment the evacuees start to move
towards the exit. The robot does not start moving towards
the target immediately. The evacuees are allowed to take
the longer exit for the first ten seconds to establish an
initial baseline for the average evacuation time taken to exit
via the longest path. After 10 seconds, the robot started
to make its way to the target location. The target location
was setup such that at least one path required an obstacle
to be moved to reach the location. The results for each of
the environments are presented below. Multiple trials were
conducted per environment and at different resolutions of the
map. A trial is considered a success if the robot unblocks the
shorter path and evacuees manage to reduce their average
evacuation time.

A. Office Environment

For this environment, the robot was tasked to remove the
obstacles from two paths, the intermediate path first (yellow
line in figure 4) and then from the shortest path (green line in
figure 4). Five trials were run with the same environment and
the same configurations using fine and coarse grid resolutions
(figure 7 and 8). The upper dashed line, referred to as ‘ideal
longest time’, represents average time taken by the evacuees
along the longest path (red line in figure 4) and the lower
dashed line, referred to as the ‘ideal shortest time’ represents
the average time taken by the evacuees along the shortest
path (green line in figure 4). These lines represent the ideal



time taken by the evacuees if they start evacuating along the
corresponding path without any deviations or obstructions.

Fig. 7. The figure shows the results of the experiment conducted in the
office environment and fine resolution. The robot removed a blockage paths
from the intermediate path and shortest path respectively. The trend of
decreasing evacuation times can be seen clearly.

Fig. 8. The figure shows the results of the experiment conducted in the
office environment and coarse resolution. The robot removed a blockage
from the intermediate path and shortest path respectively. The trend of
decreasing evacuation times can be seen clearly.

The graphs depict the trend of decreasing evacuation times
(figure 8 and 7). This trend towards the lower boundary
suggest that the robot’s removal of the blockage leads to fast
evacuation times. The lines that approach the ‘ideal longest
time’ represent cases when the robot was either unable to
remove the obstacle in time or completely failed. Figure 7
demonstrates some of these failures with trial 1 and trial 3.
The initial peaks in the plots represent the evacuees wasting
time running towards the path that the robot is actively trying
to unblock. As the robot keeps trying to move the object
out of the path, partial movements cause the path to be
temporarily available to the evacuees. The evacuees then stop
moving on their current path and try to take the shorter
path. While the robot is continuing to perform the push
actions, it blocks the shorter path. This causes the evacuees
to stop moving towards the shorter path and reattempt the
longer path. We observed some variability of the success rate
of the robot on the map grid resolution. We hypothesized
that allowing for finer grid resolutions would allow more
successful runs at the cost of computational complexity as
the robot relies on grid points around the object to start the
push actions. However, in practice we observed that a finer
grid resolution caused the robot to take longer to complete

the task as seen in figure 7. Trial 1 and trial 3, while being
successes, take much longer to complete. We believe that the
additional time is due to the computational complexity of the
problem. We provide a more detailed discussion about grid
resolutions in section VI-D.

B. Hospital Environment

A similar experiment was conducted in the hospital envi-
ronment. This environment was designed to be more chal-
lenging with narrower corridors and little space robot for the
robot to maneuver. The robot removed one blockage from
the shorter path (green line in figure 5). The experiment was
conducted using fine and coarse grid resolutions (figure 10
and figure 9). The graphs depicts the results from the five
trials of the experiment. Once again, ‘ideal longest time’
represents the average evacuation time if the longest path
is taken (red line in figure 5) and the ‘ideal shortest time’
depicts the time if the shortest path is taken (green line in
figure 5).

Fig. 9. The figure shows the results of the experiment conducted in
the hospital environment and coarse grid resolution. The robot removed
a blockage from the shortest path. The trend of decreasing evacuation times
can be seen clearly.

Fig. 10. The figure shows the results of the experiment conducted in the
hospital environment and fine grid resolution. The robot removed a blockage
from the shortest path. We observe that all but Trial 3 approach the upper
bound due to robot’s failure in removing the blockage from the path.

Once again a general trend of decreasing average evac-
uation times is observed. Similar to the case of the office
environment, we observe initial peaks which are associated
with erroneous evacuee behavior of them switching to a
temporary shorter path before it is completely available.
The dashed lines represent the average evacuation times via



the longest and shortest path (red and green lines in figure
5) respectively. Lines approaching the ‘ideal shortest time’
suggest that robot unblocked the path successfully. As can be
seen in figure 9, trial 3 and trial 4 suggest robot failures as
average evacuation time approaches the upper dashed line.
Surprisingly, a higher number of failures was observed in
the experiment with fine resolution (figure 10). Decreasing
evacuation times can be seen for successful trials.

C. School Environment

The school environment contains wider corridors com-
pared to the hospital environment, but narrower compared
to the office environment. Five trials of the experiment was
conducted using fine and coarse grid resolutions (figure 12
and 11) with dashed lines suggesting the longest and shortest
ideal evacuation times via the longest and the shortest path
(red line and green line in figure 6) respectively.

Fig. 11. The figure shows the results of the experiment conducted in the
school environment. This experiment was performed with a resolution of
0.15. The robot was tasked to remove blocked paths from the shortest path.
The trend of decreasing evacuation times can be seen clearly.

Fig. 12. The figure shows the results of the experiment conducted in the
school environment. This experiment was performed with a resolution of
0.1. The robot was tasked to remove blocked paths from intermediate path
and shortest path respectively. The trend of decreasing evacuation times can
be seen clearly.

The average evacuation times decrease, suggesting that the
robot managed to remove the blockage from the paths in both
the graphs. Large peaks were observed in figure 12 but all of
the lines tend to the lower dashed line as more evacuations
are recorded. This implies that while the robot was able to
unblock the path, it was inefficient and took a long time to
unblock the paths. As before, the larger peaks suggest new

paths momentarily being open, causing the evacuees to turn
back from their current path. Lower resolution of the grid
resulted in less failed trials as evidenced by lines approaching
the lower boundary.

D. Grid Resolution

It was observed that the resolution of the grid map had an
impact on the ability of the algorithm to unblock the path.
The resolution units are in meters. To further investigate this,
the office environment was run multiple times with different
resolution settings to measure the number of successes of
the algorithm. A trial is considered a success if the robot
unblocks the shorter path and evacuees manage to reduce
their average evacuation time. It was noted that as we de-
crease the resolution of the grid, i.e. finer grid resolution, the
percentage of successes the algorithm increased (figure 13).
The graph shows the percentage of successful trials for office
environment per grid resolution. However, it was observed
that the a resolution of 0.15 outperformed a resolution of
0.10 suggesting that there might be a trade-off with higher
grid resolutions. Finer grid resolution, increases the number
of nodes in the graph used by the A* planner causing the
planner to take longer as the time complexity of the problem
scales with the number of nodes on the grid.

However this was not always true as in the cases pre-
viously presented in figure 10, we observed that the robot
found it self stuck in areas it could not move out as it kept
pushing against immovable objects. We believe that success
rates also depends on the design of the environment. For a
narrower corridor, some of grid points on coarse resolution
may be too close to an immovable object making them
invalid while a finer grid resolution ensures more points are
available on the map per unit distance on the map. However,
we observed that due to this there were more opportunities
for the robot to find itself stuck in spaces as it was unable
of move out of them.

Additionally, finer grid resolutions caused the algorithm
to run much slower as can be seen in figure 7 and 12 where
some of the trials take much longer to start decreasing even
though they are successful trials. Each operation on the map
data is computationally more taxing. Further investigation
will be necessary to understand these results.

Fig. 13. The figure shows the impact of grid resolution on the performance
of the algorithm. 20 trials were conducted per grid resolution.



VII. CONCLUSION

This paper presents a preliminary study exploring robot
initiated evacuation path clearing. We present a method
allowing the robot to use and create plans for obstacle
detection and path clearing. Our experiments demonstrate
that our approach is generalizable to multiple environments.
The results show that the robot’s efforts are able to remove
blockages and improve average evacuation time.

We observed a number of cases where the robot failed to
finish the task. The failures can be attributed to two main
issues. First is the lack of a fine tuned object detection
model and the second is the lack of additional ways to
move an obstacle which would allow the robot to tackle
a wider variety of tasks. It is possible that repeated push
manipulations cause the obstacle to attain an orientation
that cannot be resolved with just a push action. It was also
found that the object sometimes gets caught at the edge of
another object and hence gets stuck. A better method for
detecting if a path is open would allow the robot to perform
even partial manipulations which would be sufficient for
evacuation operations. Object detection based issues can be
mitigated by fine tuning a dedicated object detection model
trained on the data based on movability information. This
would yield significantly better results with detection tasks.
Another non-prehensile action such as ’pulling’ can improve
the system’s performance.

In the future, we propose to use a fine tuned model for
object detection and data driven model to generate movability
estimates of objects. Additional manipulation capability can
be incorporated into the system to compare the impact of
manipulations on task success. Different planning methods,
such as RRT may introduce some randomness in the path
generation algorithm. A well defined human behavior model
can be used to influence the evacuation behavior of the
humans. We believe that a capable system equipped with the
right tools can make a significant impact in saving human
lives during emergency operations.

REFERENCES

[1] M. Nayyar, Z. Zoloty, C. McFarland, and A. R. Wagner, “Exploring
the effect of explanations during robot-guided emergency evacuation,”
in Social Robotics. Springer International Publishing, 2020, pp. 13–
22.

[2] M. Nayyar and A. R. Wagner, “When should a robot apologize? under-
standing how timing affects human-robot trust repair,” in International
conference on social robotics. Springer, 2018, pp. 265–274.

[3] I. Sakour and H. Hu, “Robot-assisted crowd evacuation under emer-
gency situations: A survey,” Robotics, vol. 6, no. 2, p. 8, 2017.

[4] D. A. Shell and M. J. Matarić, “Insights toward robot-assisted evacu-
ation,” Advanced Robotics, vol. 19, no. 8, pp. 797–818, 2005.

[5] M. Nayyar and A. R. Wagner, “Effective robot evacuation strategies in
emergencies,” in 2019 28th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN). IEEE, 2019, pp.
1–6.

[6] E. Boukas, I. Kostavelis, A. Gasteratos, and G. C. Sirakoulis, “Robot
guided crowd evacuation,” IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, pp. 739–751, 2014.

[7] I. Sakour and H. Hu, “Robot assisted evacuation simulation,” in 2016
8th Computer Science and Electronic Engineering (CEEC), 2016, pp.
112–117.

[8] B. Tang, C. Jiang, H. He, and Y. Guo, “Human mobility modeling
for robot-assisted evacuation in complex indoor environments,” IEEE
Transactions on Human-Machine Systems, vol. 46, no. 5, pp. 694–707,
2016.

[9] P. Robinette, A. R. Wagner, and A. M. Howard, “Investigating human-
robot trust in emergency scenarios: methodological lessons learned,”
in Robust Intelligence and Trust in Autonomous Systems. Springer,
2016, pp. 143–166.

[10] D. J. Atkinson and M. H. Clark, “Methodology for study of human-
robot social interaction in dangerous situations,” in Proceedings of the
second international conference on Human-agent interaction, 2014,
pp. 371–376.

[11] J. D. Lee and K. A. See, “Trust in automation: Designing for
appropriate reliance,” Human factors, vol. 46, no. 1, pp. 50–80, 2004.

[12] P. Robinette, P. A. Vela, and A. M. Howard, “Information propagation
applied to robot-assisted evacuation,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 856–861.

[13] S. Krivic and J. Piater, “Pushing corridors for delivering unknown
objects with a mobile robot,” Autonomous Robots, vol. 43, no. 6, pp.
1435–1452, 2019.

[14] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things forward: A survey
on robot pushing,” Frontiers in Robotics and AI, vol. 7, p. 8, 2020.

[15] M. T. Mason, “Mechanics and planning of manipulator pushing
operations,” The International Journal of Robotics Research, vol. 5,
no. 3, pp. 53–71, 1986.

[16] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million
ways to be pushed. a high-fidelity experimental dataset of planar
pushing,” in 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 2016, pp. 30–37.

[17] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for
planar pushing,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 3008–3015.

[18] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” arXiv
preprint arXiv:1606.07419, 2016.

[19] P. C. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,” Sandia National Labs., Albuquerque, NM (USA), Tech.
Rep., 1990.

[20] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” The International Journal of Robotics Research,
vol. 27, no. 11-12, pp. 1295–1307, 2008.

[21] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII. Springer, 2008, pp. 87–102.

[22] J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: a probabilistically complete
approach,” in Algorithmic Foundation of Robotics VIII. Springer,
2009, pp. 599–614.

[23] H.-n. Wu, M. Levihn, and M. Stilman, “Navigation among movable
obstacles in unknown environments,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 1433–
1438.

[24] M. Levihn, “Navigation among movable obstacles in unknown envi-
ronments,” Ph.D. dissertation, Georgia Institute of Technology, 2011.

[25] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba, “Work-
ing with movable obstacles using on-line environment perception
reconstruction using active sensing and color range sensor,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2010, pp. 1696–1701.

[26] S. K. Moghaddam and E. Masehian, “Planning robot navigation among
movable obstacles (namo) through a recursive approach,” Journal of
Intelligent & Robotic Systems, vol. 83, no. 3-4, pp. 603–634, 2016.

[27] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.


