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We study the emergence of precessing vortex core (PVC) oscillations in a swirling jet (Re ∼
59000) experiment. We vary the swirl intensity while keeping the net mass flow rate fixed
using a radial-entry swirler with movable blades upstream of the jet exit. The swirl intensity
is quantified in terms of a swirl number S. Time-resolved velocity measurements in a radial-
axial plane anchored at the jet exit for various S values are obtained using stereoscopic particle
image velocimetry (sPIV). Spectral proper orthogonal decomposition (SPOD) and spatial cross-
spectral analysis reveal the simultaneous emergence of a bubble-type vortex breakdown and a
strong helical limit-cycle oscillation in the flow for S > Sc where, Sc = 0.61. The oscillation
frequency, fPV C , and the square of the flow oscillation amplitudes vary linearly with S − Sc. A
solution for the coherent unsteady field accurate up toO(ε3) (ε ∼ O((S−Sc)1/2)) is determined
from the non-linear Navier-Stokes equations, using the method of multiple scales. We show that
onset of bubble type vortex breakdown at Sc, results in a marginally stable, helical linear global
hydrodynamic mode. This results in the stable limit-cycle precession of the breakdown bubble.
The variation of fLC with S−Sc is determined from the Stuart-Landau equation associated with
the PVC. Reasonable agreement with the corresponding experimental result is observed, despite
the highly turbulent nature of the flow in the present experiment. Further, amplitude saturation
results from the time-averaged distortion imposed on the flow by the PVC, suggesting that linear
stability analysis may predict PVC characteristics for S > Sc.

Key words: Weakly nonlinear analysis, Swirling jets, Hydrodynamic stability analysis, Precess-
ing vortex core

1. Introduction
Swirling flows are technologically significant flows that are generated by imparting an az-

imuthal velocity component to a nominally streamwise flow. For a sufficiently high ratio of
axial fluxes of azimuthal and axial momentum, referred to as the swirl number, various types of
structures can appear within the flow due to the breakdown of the axial vortex generated by the
swirl. Several types of vortex breakdown have been observed and consequently multiple theories
were proposed to explain the phenomenon - see the reviews of Hall (1972), Leibovich (1978), Es-
cudier (1988), and Lucca-Negro & O’doherty (2001). Vortex breakdown is characterized by the
appearance of a central recirculation zone in the flow, in addition to the appearance of coherent
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unsteady flow oscillations in some cases Escudier & Keller (1985); Billant et al. (1998); Liang
& Maxworthy (2005, 2004). Several prior experimental studies of jets with variable levels of
swirl show the appearance of a self-excited helical vortical structure in the flow accompanied by
precession of the recirculation bubble. For this reason, this structure is referred to as precessing
vortex core (PVC) Syred (2006) and is distinct from other types of unsteady vortex breakdown
modes such as the spiral or the bubble-spiral breakdown mode.

In the context of gas turbine combustors, where swirl is often used to stabilize flames, PVCs
can induce changes in the overall shape of the flame sheet (Moeck et al. (2012); Taamallah et al.
(2016)). This is because the PVC can potentially cause the formation of low velocity regions that,
in turn, provide a pathway for flame propagation and therefore flame shape change. These events
can potentially then result in the onset of themoacoustic pressure oscillations (Shanbhogue et al.
(2016); Taamallah et al. (2016)). In liquid-fueled combustors, the PVC can influence the spatio-
temporal distribution of fuel droplets resulting from fuel jet atomization, potentially resulting in
spatio-temporal inhomogeneities in unburnt mixture composition (see eg. Renaud et al. (2019)).
These inhomogeneities, after combustion, can create pockets of relatively high temperature in
the combustor flow field and result in an increase in combustor nitrogen oxide (NOX) emissions.
Interaction between high-temperature pockets and the combustor exit can also generate ther-
moacoustic pressure oscillations in the combustor. These pressure oscillations can potentially
result in damage to engine hardware and result in poor combustion efficiency (Lieuwen (2012)).
On the other hand, at other conditions, PVCs can also promote liquid jet atomization and
consequently rapid fuel air mixing, thereby serving a beneficial role (Anacleto et al. (2003)).
For all the above reasons, understanding the mechanism governing the onset and sustenance of
the PVC oscillation and more generally other hydrodynamic instabilities in swirling flows is
necessary. This insight can potentially enable the design of gas turbine combustor fuel nozzles
and fuel injection strategies that can appropriately harness flow instabilities to meet low pollutant
emission level targets across a range of operating conditions while simultaneously circumventing
operability constraints imposed by thermoacoustic oscillations.

The dynamics of swirling jets can, to a large extent, be characterized by the swirl number and
the Reynolds number (Re). In this paper, the time-averaged flow field of an unconfined swirling
round jet transitions from a weakly swirled round jet state to a fully developed bubble type vortex
breakdown state with increasing swirl. The latter state shows the formation of a recirculation
zone on the centerline of the flow, located within a couple of nozzle diameters downstream of
the nozzle exit. Previous experiments have reported various kinds of vortex breakdown modes
in swirling flows, such as bubble-type vortex breakdown, conical vortex breakdown, and spiral
vortex breakdown Escudier & Keller (1985); Billant et al. (1998); Sarpkaya (1971a,b). In the
present study, a bubble-type vortex breakdown featuring a central recirculation zone (CRZ) is
observed (Liang & Maxworthy (2005); Billant et al. (1998); Liang & Maxworthy (2004)). Due
to the presence of the CRZ, a strong inner shear layer (ISL) is formed between the CRZ and
the annular jet. Likewise, an outer shear layer (OSL) is formed between the annular jet and the
ambient fluid. Apart from these two shear layers, strong radial variations of azimuthal velocity
develop between the central vortex core region and the ambient fluid outside the core. The
presence of multiple shear layers, swirl, and the central recirculation zone makes the flow field
highly susceptible to various hydrodynamic instability driven flow field oscillations Olendraru
& Sellier (2002); Olendraru et al. (1999); Loiseleux et al. (2000); Oberleithner et al. (2011);
Manoharan et al. (2015); Gallaire & Chomaz (2003b); Juniper (2012); Smith et al. (2018);
Douglas et al. (2018); Muthiah & Samanta (2018).

Several studies have focused on understanding coherent oscillations in swirl flows using linear
stability analysis. Asymptotic methods, based on Wentzel-Kramers-Brillouin-Jeffreys (WKBJ)
expansions, allow the use of results from local hydrodynamic stability analysis to characterize
these oscillations for base states slowly evolving in one direction, i.e. a weakly-non parallel base
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flow (Chomaz et al. (1991); Monkewitz et al. (1993)). Gallaire et al. (2006) used this approach
to study the appearance of vortex breakdown-induced flow oscillations seen in the wake of the
recirculation zone seen in the simulations of Ruith et al. (2003). However, WKBJ theory-based
methods are limited in their quantitative accuracy when used to analyze the stability of base
flows that vary very rapidly in the streamwise direction, as in the case of swirl flows. For this
reason, several recent studies have used fully global stability analysis methods that do not rely
on the weakly non-parallel assumption. Meliga et al. (2012) and Qadri et al. (2013) show that
unsteady helical oscillations downstream of an axisymmetric breakdown bubble are associated
with a globally unstable hydrodynamic mode. Qadri et al. (2013) show, from a linear structural
sensitivity analysis, that the wavemaker driving these oscillations is located at the upstream end
of the breakdown bubble. All the above studies have focused primarily on laminar flows.

Turbulent swirled jets at high swirl intensities feature coherent flow oscillations in the flow
field that induce helical precession of the central vortex core about the flow axis and a helical
rollup of the shear layers surrounding the breakdown bubble (see for eg. Escudier & Keller
(1985); Huang & Yang (2009)). Turbulent flows can be analyzed using the triple decomposi-
tion (Reynolds & Hussain (1972)) wherein the instantaneous quantities describing the turbulent
flow field are decomposed into a time-averaged, coherently oscillating, and incoherent turbulence
fluctuations. Tammisola & Juniper (2016) used this approach to predict the characteristics of
PVC oscillations in a turbulent swirling jet produced by a gas turbine injector. Their analysis
suggests that global linear stability analysis performed on the time-averaged flow field, with
Reynolds stress components modeled using the eddy viscosity hypothesis, predicts the PVC os-
cillation as a marginally stable helical mode. Further, they demonstrated, from a linear structural
sensitivity analysis, that the instability of this mode is driven by the unsteady flow in a region
located inside the injector and upstream of the vortex breakdown bubble. Oberleithner et al.
(2011) studied the onset of PVC oscillations in a variable swirl round jet at fixed mass flow
rate. Their study showed that with increasing levels of swirl, the variation of the amplitude and
frequency characteristics of the PVC with swirl intensity suggests the emergence of a stable
helical limit cycle in the jet beyond a critical value of swirl number. They also present evidence
from local spatial analysis that suggests that the helical shear layer rollup is due to forcing of
the shear layers imposed by the PVC oscillations. These studies have provided valuable insight
into various aspects of how PVCs may arise in flows with swirl from a linear stability standpoint.
However, key questions, still remain as follows,

(i) Causality - does the formation of a breakdown bubble (vortex breakdown) cause a PVC
or does the PVC cause the former?

(ii) Is the PVC due to the emergence of a stable limit cycle as prior experimental studies
suggest Anacleto et al. (2003); Oberleithner et al. (2011)?

(iii) When can linear hydrodynamic stability predictions based on time-averaged flows predict
PVC frequencies and spatial oscillation amplitude distribution fields with good quantitative
accuracy Tammisola & Juniper (2016)?

Prior studies have presented a variety of experimental observations in variable swirl jets (Es-
cudier & Keller (1985); Oberleithner et al. (2011)) and in swirl nozzles with more complicated
geometry (Anacleto et al. (2003); Tammisola & Juniper (2016)) that suggest that all of the
above points are indeed true. However, theoretical understanding that directly addresses these
questions, to the best of the authors’ knowledge, has still not been presented hitherto.

The present paper makes progress towards improving the theoretical understanding of the three
points stated above as follows. We use the method of multiple scales to derive an asymptotic solu-
tion for the onset of coherent flow oscillations from the fully nonlinear Navier-stokes equations.
The analysis uses a small parameter, ε ∼ (S−Sc)1/2. The parameter S is an appropriately defined
swirl number that captures the intensity of swirl. The value Sc is the swirl number at which
coherent flow oscillations arise. These types of weakly-nonlinear analysis have been performed



4 K. Manoharan, M. Frederick, S. Clees, OConnor, J. and S. Hemchandra

several times in the past in the context of low Reynolds number (Re) laminar flows. Sipp &
Lebedev (2007) apply the method of multiple scales to the case of two-dimensional laminar flows
that show onset of coherent oscillations with increasing Re. They directly address the question
of usefulness of linear hydrodynamic stability analysis using time-averaged flows as base flows
to predict limit cycle frequency and spatial amplitude distribution characteristics. Meliga et al.
(2012) perform weakly nonlinear analysis with two parameters, S and Re, in order to explain
instability mode selection in lowRe swirling flows. Recently, Rigas et al. (2017) applied weakly-
nonlinear analysis to understand the response of a turbulent wake behind an axisymmetric bluff
body to imposed forcing. They show that the mathematical structure of equations governing flow
oscillation amplitudes in laminar studies carries over to the turbulent regime when appropriate
turbulence modelling assumptions are introduced.

We apply the weakly-nonlinear theory derived in this paper to understand the emergence of
PVC oscillations in a constant mass flow rate, variable swirl jet experiment at Re = 59, 000
(based on the jet diameter and bulk flow velocity) (Frederick et al. (2018); Clees et al. (2018)).
Time-resolved velocity field measurements are obtained using stereoscopic particle image ve-
locimetry (sPIV) over a range of swirl numbers. The onset of PVC oscillations is observed at
Sc = 0.61. We model the impact of turbulent transport using an eddy viscosity model and derive
the Stuart-Landau equation governing the oscillation amplitude of coherent flow oscillations. The
analysis yields closed-form analytical expressions for the coefficients in this equation that control
the strength of the linear growth term and the nonlinear saturation term. These are are expressed
in terms of the helical linear eigenmode oscillating with the PVC frequency at Sc, functions that
describe the modification of the base flow for S > Sc, and the spatial amplitude distribution of
the flow oscillations at the first harmonic of the PVC.

We determine these coefficients for the present jet experiments using only the time-averaged
flow field at Sc as an input to these calculations. The numerical values of the coefficients of
our Stuart-Landau equation confirm that the PVC is indeed the result of a supercritical Hopf
bifurcation in the flow state at Sc. Prior studies presume this fact based on characteristics
observed in the experiment (Oberleithner et al. (2011); Rigas et al. (2017)).

Further, we can identify individual contributions to the nonlinear saturation coefficient in
the Stuart-Landau equation from base flow distortion and harmonic generation. Determining
the numerical values for these two individual contributions allows us to conclude, based on
the analysis of Sipp & Lebedev (2007), that linear hydrodynamic stability analysis using the
time-averaged flow field for S > Sc can indeed yield quantitatively accurate estimates of PVC
frequencies and spatial amplitude distributions in swirled jets.

Further, our analysis yields an equation for the base-flow modification function that describes
the impact that increasing S beyond Sc has on the time-averaged flow at Sc. Our analysis
shows that, in general, this quantity is independent of the characteristics of the hydrodynamic
instability modes of the flow. For the present jet experiment, the base flow modification shows
that increasing S beyond Sc induces the formation of a recirculation zone on the flow centerline,
i.e. a steady bubble type breakdown of the axial vortex in the flow. Thus, the dependence of
the linear growth term coefficient in the Stuart-Landau equation on the base flow modification
function shows that the PVC is a hydrodynamic instability that is caused by the change in flow
structure due to vortex breakdown and that the converse is not the case, thereby clarifying the
causality question mentioned earlier. To the best of our knowledge, prior studies of swirled jets
do not provide the insights summarized above, which are the principal contributions of this paper
determined ab initio from the time-averaged based flow at Sc.

The rest of this paper is organized as follows. Section 2 discusses the theoretical formulation
used for performing global stability and weakly nonlinear analysis. Section 3 explains the
experimental setup used in the present study. Section 4 discusses the time-averaged and unsteady
flow characteristics at various swirl intensities. Section 5 describes the numerical methods and
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base flow used to compute various results from section 2, for the present swirling jet experiment.
Section 6 presents the results obtained from global and weakly-nonlinear analysis. The section 7
concludes the paper with an overview of current findings and future work.

2. Theoretical Formulation
We first derive the governing equations for the coherent unsteady component of an unconfined,

nominally axisymmetric constant-density swirling turbulent jet. The equations are formulated
in cylindrical coordinates (r, θ, z) with the z-axis aligned along the streamwise flow direction.
Radial (ur) and axial (uz) velocity components are expressed in non-dimensional form using a
suitably chosen reference velocity, Uz,ref . Likewise, the azimuthal (uθ) velocity component is
non-dimensionalized using a suitably chosen reference velocity Uθ,ref . A reference length scale
lref is chosen to non-dimensionalize all lengths. Thus, the Navier-Stokes equations for constant
density swirling flows in operator form can be written as follows,

Bs ∂q

∂t
+ N {q}q + SN s{q}q + S2N ss{q}q = Lvq + SL s

v q (2.1)

where, q = [ur, uθ, uz, p]
T , is the vector of flow variables comprised of the three velocity

components and pressure. The operators N {q}, N s{q}, and N ss{q} are nonlinear operators
representing the convective terms in governing equations. The vector within ‘{}’ is used to denote
the fact that the nonlinear operators are functions of flow variables. The linear operators Lv and
L s
v contain the viscous and the pressure gradient terms. The details of these operators in matrix

form are given in Appendix A. The quantity S = Uθ,ref/Uz,ref is the swirl number. The operator
Bs is a diagonal matrix as follows, Bs = diag(1, S, 1, 0).

We next introduce the triple decomposition where the instantaneous flow variables are de-
composed into an axisymmetric time-averaged component, Q̄ = [Ūr, Ūθ, Ūz, P̄ ]T , a coherent
fluctuation component, q′c = [u′r, u

′
θ, u
′
z, p
′]T , and an incoherent turbulent fluctuation compo-

nent, q′′ = [u′′r , u
′′
θ , u
′′
z , p
′′]T , as follows (?),

q(r, θ, z, t) = Q̄(r, z) + q′c(r, θ, z, t) + q′′(r, θ, z, t) (2.2)

Using, eq. 2.2 in eq. 2.1 and time averaging yields the governing equations for Q̄ as follows,

N {Q̄}Q̄ + N {q′c}q′c + N {q′′}q′′ + S
(
N s{Q̄}Q̄ + N s{q′c}q′c + N s{q′′}q′′

)
+S2

(
N ss{Q̄}Q̄ + N ss{q′c}q′c + N ss{q′′}q′′

)
= LvQ̄ + SL s

v Q̄
(2.3)

where the terms in overbars represent the contribution to time-averaged momentum transport
from coherent and incoherent fluctuations. Following prior studies by Oberleithner et al.
(2015), Rukes et al. (2016), and Tammisola & Juniper (2016), we use the eddy viscosity
hypothesis, which relates these terms linearly to the time-averaged rates of strain in a Newtonian
fashion via a turbulent viscosity coefficient (νT ) (See Appendix B). Thus, all of these terms in
eq. 2.3 can now be written symbolically in terms of two new operators as follows,

N {Q̄}Q̄ + SN s{Q̄}Q̄ + S2N ss{Q̄}Q̄ = LT Q̄ + SL s
T Q̄ (2.4)

where, LT and L s
T include contributions from both molecular transport and eddy viscosity

model terms (see eqs. A 6- A 7).
Next, substituting eq. 2.2 into eq. 2.1 and phase averaging yields the evolution equations for
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the coherent flow component q̃ = Q̄ + q′c as follows,

Bs ∂q̃

∂t
+ N {q̃}q̃ + N {q′′}q′′

:
+ S

(
N s{q̃}q̃ + N s{q′′}q′′

:)
+S2

(
N ss{q̃}q̃ + N ss{q′′}q′′

:)
= Lvq̃ + SL s

v q̃

(2.5)

Subtracting eq. 2.3 from eq. 2.5 yields the evolution equations for (q′c) as follows,

Bs ∂q
′
c

∂t
+ N {Q̄}q′c + N {q′c}Q̄ + N {q′c}q′c + N {q′′}q′′

:
−N {q′c}q′c

−N {q′′}q′′ + S
(
N s{Q̄}q′c + N s{q′c}Q̄ + N s{q′c}q′c + N s{q′′}q′′

:
−N s{q′c}q′c

−N s{q′′}q′′
)

+ S2
(
N ss{Q̄}q′c + N ss{q′c}Q̄ + N ss{q′c}q′c + N ss{q′′}q′′

:

−N ss{q′c}q′c −N ss{q′′}q′′
)

= Lvq
′
c + SL s

v q
′
c

(2.6)

The difference between phase-averaged and time-averaged nonlinear terms in eq. 2.6 represents
the quantitative contribution of coherent fluctuating momentum transport by turbulence fluctua-
tions. Again, we model these terms in terms of the coherent fluctuating rates of strain using the
same νT that was used to model turbulent transport terms in eq. 2.3. Therefore, these terms can
now be replaced with LT and L s

T operators acting on coherent fluctuating quantities as follows,

Bs ∂q
′
c

∂t
+ N {Q̄}q′c + N {q′c}Q̄ + N {q′c}q′c + S

(
N s{Q̄}q′c + N s{q′c}Q̄ + N s{q′c}q′c

)
+S2

(
N ss{Q̄}q′c + N ss{q′c}Q̄ + N ss{q′c}q′c

)
= LTq

′
c + SL s

Tq
′
c

(2.7)

We add eqs. 2.7 and 2.4 to obtain the evolution equation for the total coherent component
q̃ = Q̄ + q′c as follows,

Bs ∂q̃

∂t
+ N {q̃}q̃ + SN s{q̃}q̃ + S2N ss{q̃}q̃ = LT q̃ + SL s

T q̃ (2.8)

2.1. Weakly nonlinear analysis

The parameter S in eq. 2.8 is chosen as the control parameter that is varied to change the
characteristics of the flow. We presume that there exists a critical swirl number, Sc, beyond
which the flow transitions from a stable steady state for S < Sc to an unsteady state for S > Sc.
We determine the characteristics of this unsteady state for small deviations of S from Sc when
compared to the flow oscillation amplitude, as follows,

S = Sc +∆sε
2 (2.9)

where, ε is the normalized amplitude of the unsteady state for S > Sc and ∆s ∼ O(1). Thus, the
matrix Bs in eq. 2.8 can be written as follows,

Bs = B +∆sε
2B1 (2.10)

where, B = diag(1, Sc, 1, 0) and B1 = diag(0, 1, 0, 0).
We also presume that the unsteady solution can be characterized by a combination of variations

over a ‘fast’ time scale t1 = t and a ‘slow’ time scale t2 = ε2t. Thus, q̃ is now expressed as an
asymptotic series in terms of ε as follows,

q̃(r, θ, z, t1, t2) = qo(r, z) + εq1(r, θ, z, t1, t2) + ε2q2(r, θ, z, t1, t2) + ε3q3(r, θ, z, t1, t2) + . . .
(2.11)
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where we have assumed that the contributions to q̃ at each order depends on both time scales.
Each of the nonlinear operators in eq. 2.8 can be expanded in powers of ε as follows,

N {q} = N {qo}+ εN {q1}+ ε2N {q2}+ .... (2.12)

N s{q} = N s{qo}+ εN s{q1}+ ε2N s{q2}+ .... (2.13)

N ss{q} = N ss{qo}+ εN ss{q1}+ ε2N ss{q2}+ .... (2.14)
Substituting eq. 2.9 and eqs. 2.11-2.14 into eq. 2.8, yields the following equation at O(1),

N {qo}qo + ScN
s{qo}qo + S2

cN
ss{qo}qo = LTqo + ScL

s
Tqo (2.15)

Comparing the above with eq. 2.4 shows that qo is just the time-averaged state at Q̄ at S = Sc.
The O(ε) terms yield the linearized evolution equation for q1, as follows,

B
∂q1

∂t1
+ N {qo}q1 + N {q1}qo + Sc

(
N s{qo}q1 + N s{q1}qo

)
+S2

c

(
N ss{qo}q1 + N ss{q1}qo

)
= LTq1 + ScL

s
Tq1

(2.16)

Equation 2.16 is the linearized evolution equation for flow unsteadiness from the time-averaged
state at S = Sc. For convenience of discussion in this paper, we rewrite eq. 2.16 using a single
operator to represent all terms with spatial derivatives as follows,

(B
∂

∂t1
+ L )q1 = 0 (2.17)

where L is the linear spatial operator acting on q1 (see eq. A 8 in appendix A). Note that eq. 2.17
does not have any term that depends on t2. Therefore, the general solution to eq. 2.17 can be
written as a superposition of harmonically oscillating azimuthal Fourier modes. However, in this
paper, we assume that the flow unsteadiness is characterized by a single neutrally stable Fourier
mode as follows,

q1(r, z, θ, t1, t2) = A1(t2)q̂1m(r, z)eimθ−iωg,mt1 + (A1(t2)q̂1m(r, z))∗e−imθ+iωg,mt1 (2.18)

where ωg,m is a real number and the superscript, ‘*’, here and in the rest of this paper, denotes
the complex conjugate. The mode shape, q̂m(r, z) = [ûr, ûθ, ûz, p̂]

T , is the spatial mode shape
of the mth Fourier mode that is determined by the following,

(−iωg,mB + Lm)q̂1m = 0 (2.19)

where Lm is the linearized spatial operator corresponding to the mth azimuthal mode. The
solutions to eq. 2.19 satisfy the following boundary conditions. At the centerline (r = 0),
q̂1m(r, z) must satisfy kinematic compatibility conditions as follows (Batchelor & Gill (1962)),

ûr = ûθ = 0

dûz
dr

=
dp̂

dr
= 0

 if m =0 (2.20)

ûz = p̂ = 0

ûr + imûθ = 0

dûr
dr

= 0

 if |m| = 1 (2.21)

ûr = ûθ = 0

ûz = p̂ = 0

}
if |m| > 1 (2.22)
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Since the flow is unconfined, the following boundary conditions must be satisfied at the far-field
boundary,

q̂m → 0, r →∞ (2.23)

Thus, eqs. 2.19 - 2.23 represent an global temporal eigenvalue problem where ωg,m is the
temporal eigenvalue and q̂1m(r, z) is the associated global hydrodynamic mode.

The solution for A1(t2) in eq. 2.18 must be derived from higher-order asymptotic relations as
follows. At O(ε2), we have the following equation for q2(r, z, θ, t1, t2),

(B
∂

∂t1
+ L )q2 = −N {q1}q1 − ScN s{q1}q1 − S2

cN
ss{q1}q1

−∆s(N
s{qo}qo + 2ScN

ss{qo}qo −L s
Tqo)

(2.24)

The general solution to eq. 2.24 is given by,

q2(r, z, θ, t1, t2) = ∆sq̂∆(r, z) + |A1|2(t2)q̂A∗A(r, z)

+
(
A2

1(t2)q̂AA(r, z)ei2mθ−i2ωg,mt1

+A∗1
2(t2)q̂∗AA(r, z)e−i2mθ+i2ωg,mt1

)
+
(
A2(t2)q̂1m(r, z)eimθ−iωg,mt1

+A∗2(t2)q̂∗1m(r, z)e−imθ+iω
∗
g,mt1

)
(2.25)

The first two terms and the third term, written as a pair of complex conjugate terms, are a
particular solution to eq. 2.24. The fourth term, also written as a pair of complex conjugate terms,
is the solution to the homogeneous equivalent of eq. 2.24. The functions q̂∆(r, z), q̂AA∗(r, z),
and q̂AA(r, z) all satisfy the same boundary conditions given in eqs. 2.20 - 2.23 and are given by
solutions to the following three equations.

The function q̂∆(r, z) is given by the following,

L0q̂∆ = −N s
0 {qo}qo − 2ScN

ss
0 {qo}qo + L s

T,0qo (2.26)

Note that the source terms in eq. 2.26 are a function of qo, i.e. the base flow at Sc, alone.
Therefore, q̂∆ quantifies to leading order in S − Sc, the modification of qo with increasing
S. Therefore, we will refer to q̂∆ as the intrinsic baseflow modification function. It is important
to note that, in general, eq. 2.26 shows that q̂∆ does not depend on any characteristics of the
linear instability mode.

The function q̂A∗A(r, z) is given by the following,

L0q̂A∗A = −N {q̂1m}q̂∗1m −N {q̂∗1m}q̂1m − Sc(N s
−m{q̂1m}q̂∗1m + N s

m{q̂∗1m}q̂1m)

−S2
c (N ss

−m{q̂1m}q̂∗1m + N ss
m {q̂∗1m}q̂1m)

(2.27)

Note that the source terms on the right of eq. 2.27 are independent of qo, showing that the
function q̂A∗A quantifies to leading order in S−Sc, the non-oscillatory, time-averaged distortion
that the linear instability imposes on the baseflow at Sc. Therefore, we will refer to q̂A∗A as the
baseflow distortion function.

The function q̂AA(r, z) quantifies the spatial distribution of the amplitude associated with the
first harmonic of the linear instability and is given by the following,

(−i2ωg,mB+L2m)q̂AA = −N {q̂1m}q̂1m−ScN s
m{q̂1m}q̂1m−S2

cN
ss
m {q̂1m}q̂1m (2.28)
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At O(ε3) we obtain,(
B

∂

∂t1
+ L

)
q3 = −B

∂q1

∂t2
−∆sB1

∂q1

∂t1
−N {q1}q2 −N {q2}q1

−Sc
(
N s{q1}q2 + N s{q2}q1

)
−S2

c

(
N ss{q1}q2 + N ss{q2}q1

)
−∆s

[
N s{q1}qo + N s{qo}q1

+2Sc(N
ss{q1}qo + N ss{qo}q1)−L s

Tq1

]
(2.29)

Physically relevant, non-trivial solutions to eq. 2.29 must be bounded in time and space. As is
common, the norm that is used to quantify the magnitude of q3 is generated by the following
definition of the inner product between two functions,

〈q1,q2〉 =

∫ Z

0

∫ R

0

∫ 2π

0

(qH∗1 )Tq2rdθdrdz (2.30)

where the superscript ‘H’ denotes the transverse complex conjugate.
Thus, the boundedness condition on q3 requires that the oscillatory contributions with fre-

quency, ωg,m, to the source term in eq. 2.29 must be orthogonal to the corresponding adjoint
eigenfunction of the operator on the left, associated with the inner product defined in eq. 2.30†.
These adjoint eigenfunctions can be written as q†1m(r, z, θ, t1) = q̂†1m(r, z)ei(mθ+ω

†
g,mt1), where

ω†g,m and q̂†1m(r, z) are given by solving the following equation ,

(iω†g,mB + L †m)q̂†1m = 0 (2.31)

where L †m is the adjoint linear operator that satisfies the following relation, 〈q̂†1m,Lmq̂1m〉 =

〈L †mq̂†1m, q̂1m〉. This relation, along with eqs. 2.19 and 2.31, gives ω†g,m = ω∗g,m (see Schmid
& Henningson (2001)).

Thus, substituting eqs. 2.18 and 2.25 into eq. 2.29 and invoking the boundedness condition,
yields the evolution equation for A1(t2) as follows (Landau & Lifshitz (1959)),

dA1

dt2
= ∆sBAA1 −NAA1|A1|2 (2.32)

Equation 2.32 is referred to as the Stuart-Landau amplitude evolution equation. The coefficient
in the linear term on the right in eq. 2.32, BA, is given by the following inner product,

BA =
1

〈q̂†1m,Bq̂1m〉

〈
q̂†1m, [iωg,mB1q̂1m −N {q̂1m}q̂∆ −N {q∆}q̂1m

−N s
0 {q̂1m}qo −N s

m{qo}q̂1m

−Sc(N s
0 {q̂1m}q̂∆ + N s

m{q̂∆}q̂1m

−2N ss
0 {q̂1m}qo − 2N ss

m {qo}q̂1m)

−S2
c (N ss

0 {q̂1m}q̂∆ + N ss
m {q̂∆}q̂1m)

+L s
T,mq̂1m]

〉
(2.33)

Thus it is clear that the growth of flow oscillations, determined by BA in linear term in eq. 2.32,
is in turn determined by q̂∆, i.e. the intrinsic base flow modification for S > Sc, which therefore,
is the cause for the onset of flow oscillations.

† This is the Fredholm’s alternative.
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The coefficient of the nonlinear term in eq. 2.32, NA, is given by the following inner product,

NA =
1

〈q̂†1m,Bq̂1m〉

〈
q̂†1m, [N {q̂1m}q̂A∗A + N {q̂∗1m}q̂AA

+N {q̂A∗A}q̂1m + N {q̂AA}q̂∗1m
+Sc(N

s
0 {q̂1m}q̂A∗A + N s

2m{q̂∗1m}q̂AA
+N s

m{q̂A∗A}q̂1m + N s
−m{q̂AA}q̂∗1m)

+S2
c (N ss

0 {q̂1m}q̂A∗A + N ss
2m{q̂∗1m}q̂AA

+N ss
m {q̂A∗A}q̂1m + N ss

−m{q̂AA}q̂∗1m)]
〉

(2.34)

The expression for NA in eq. 2.37 can be decomposed into two individual components such that
NA = NA1 +NA2. The component, NA1, is determined by base flow distortion as follows,

NA1 =
1

〈q̂†1m,Bq̂1m〉

〈
q̂†1m, [N {q̂1m}q̂A∗A + N {q̂A∗A}q̂1m

+Sc(N
s

0 {q̂1m}q̂A∗A + N s
m{q̂A∗A}q̂1m)

+S2
c (N ss

0 {q̂1m}q̂A∗A + N ss
m {q̂A∗A}q̂1m)]

〉 (2.35)

The component, NA2, is the component due to harmonic generation as follows,

NA2 =
1

〈q̂†1m,Bq̂1m〉

〈
q̂†1m, [N {q̂∗1m}q̂AA + N {q̂AA}q̂∗1m

+Sc(N
s

2m{q̂∗1m}q̂AA + N s
−m{q̂AA}q̂∗1m)

+S2
c (N ss

2m{q̂∗1m}q̂AA + N ss
−m{q̂AA}q̂∗1m)]

〉 (2.36)

Next, we rewrite eq. 2.32 in terms of a single time variable t by introducingA(t) = εA1(ε2t)+
ε2A2(ε2t) into eq. 2.32, which then yields the following equation at leading order,

dA

dt
= (S − Sc)BAA−NAA|A|2 (2.37)

Thus, the asymptotic solution to eq. 2.8, accurate to O(ε3), is given by,

q̃(r, z, θ, t) =qo(r, z) + (S − Sc)q̂∆(r, z) + |A(t)|2q̂A∗A(r, z) (2.38)

+A(t)q̂1m(r, z)eimθ−iωg,mt +A(t)q̂1m(r, z)∗e−imθ+iωg,mt

+ (A(t))2q̂AA(r, z)ei2mθ−i2ωg,mt + (A∗(t))2q̂A∗A∗(r, z)e−i2mθ+i2ωg,mt

+O((S − Sc)3/2)

Except for the first two terms, the remaining terms in eq. 2.38 are contributions that become
relevant when coherent unsteadiness is established in the flow for S > Sc. Note that this first
happens when the linear hydrodynamic mode, q̂1m, becomes neutrally stable, i.e. ωg,m is purely
real. In this case, the nature of flow unsteadiness for S > Sc depends on the characteristics
of A(t). These can be determined by setting A(t) = D(t)eiφ(t) in eq. 2.37, where D(t) and
φ(t) are real-valued functions that represent the time evolution of the amplitude and argument of
A(t). Thus, equating real parts on both sides of eq. 2.37 yields an evolution equation for D(t) as
follows,

dD

dt
= (S − Sc)BArD −NArD3 (2.39)

where BAr and NAr are the real parts of the coefficients NA and BA, respectively. Thus, the
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unsteady characteristics of the flow are determined by establishing the behaviour of D(t) as
t→∞ for a given non-zero initial perturbation, Di = D(0).

Assuming that the flow is nominally stable for S < Sc, the following types of unsteady flow
behaviour can be identified for S > Sc based on the signs of BAr and NAr as follows,

(i) Stable limit cycle (BAr > 0, NAr > 0): For any value of Di > 0, eq. 2.39 shows that
for S > Sc the first term causes D(t) to increase exponentially, while the second term limits this
growth. Eventually, D(t)→ DLC as t→∞ where, DLC , determined by letting dD/dt→ 0 in
eq. 2.39, is given by,

DLC =

√
(S − Sc)BAr

NAr
(2.40)

The change in oscillation frequency of the flow from ωg,m baseline at S = Sc with increasing S
can be determined using eq. 2.39 by choosing A(t) = DLCe

iωct and comparing imaginary parts
on both sides to yield,

ωc = (S − Sc)
[
BAi −BAr

(NAi
NAr

)]
(2.41)

Thus, eq. 2.38 shows that the angular frequency, ωLC , of the limit-cycle oscillation is given by,

ωLC = ωg,m − (S − Sc)BAi + (S − Sc)BAr
(NAi
NAr

)
(2.42)

Note also that for S < Sc, both terms on the right of eq. 2.39 cause D(t) → 0 as t → ∞ for
any value of Di. This type of flow behaviour corresponds to a supercritical Hopf bifurcation in
the flow state at S = Sc, i.e. the emergence of a stable limit cycle for S > Sc due to a linear
hydrodynamic mode of the system becoming neutrally stable. Thus, the spatial region where the
integrand in eq. 2.33 is non-zero can now be identified as the nonlinear wavemaker region, i.e. the
region of the flow that contributes to the growth of coherent oscillations. Note that we use the term
‘nonlinear’ to emphasise that this definition of the wavemaker is different from that defined from
linear, structural sensitivity considerations (Hill (1992); Giannetti & Luchini (2007); Tammisola
& Juniper (2016); Juniper & Pier (2015)). Further, we refer to the spatial regions where the
integrand in eq. 2.34 is non-zero as the nonlinear wavelimiter region because NA determines the
impact that the nonlinear terms have in determining the final saturated oscillation amplitude of
the limit cycle. Note that eq. 2.34 shows that amplitude saturation is caused by the modification
induced on the time-averaged flow for S > Sc as well as interaction between the the linear
eigenmode and its first harmonic.

(ii) Subcritical flow (BAr > 0, NAr < 0): In this case, eq. 2.39 suggests that for S > Sc
D(t) → ∞ as t → ∞ for any value of Di. This suggests that S = Sc represents a catastrophic
loss of stability. As such, the flow dynamics cannot be quantitatively described by the present
leading-order nonlinear analysis. On the other hand, for S < Sc, an unstable limit cycle with
an amplitude DLC =

√
(S − Sc)BAr/NAr exists. Note that for Di < DLC , dD/dt < 0 and

therefore, D(t) → 0 as t → ∞. For Di > DLC dD/dt > 0 and therefore, D(t) → ∞ as
t→∞. Thus, coherent flow unsteadiness is triggered when D > DLC for S < Sc.

(iii) Stable flow (BAr 6 0, NAr > 0): For this case, eq. 2.39 shows that D(t)→ 0 as t→∞
for any value of Di.

Note that other possibilities forNAr andBAr are not considered as they do not result in steady
flow behaviour for S < Sc. We next use these results to gain insight into the emergence of
globally self-excited helical oscillations in a variable swirl jet experiment that will be described
in the next section.
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FIGURE 1. Schematic of experimental setup. The blue box downstream of the dump plane shows the
field of view of the sPIV measurements. The red box shows schematically the computational domain. The
streamlines are shown for purpose of illustration alone. The nominal Reynolds number based on jet nozzle
diameter, Re = 59, 000.

3. Experimental study
Experiments were conducted in a swirling flow facility with the ability to continually vary

the swirl number of the jet. The main components of the setup, shown in Fig. 1, relevant to
the analysis performed in this work are: the injector nozzle, the swirler chamber with a variable
angle, radial entry swirler, and the settling chamber. Room temperature air enters the settling
chamber via the air inlet port at the bottom of the rig. Upstream of this inlet, the air passes
through a flow meter (Teledyne Hastings) with a 0.5% flow rate uncertainty. In all cases tested,
the flow rate remained with 0.12% of the 19.0 g/s set point that corresponds to a bulk flow
velocity (Uo) of 36 m/s.

Air enters the settling chamber through a flow-conditioning section comprised of perforated
plates at each end to breakup large turbulent structures. A smooth contraction downstream
reduces the diameter of the duct from 15 cm to 6.5 cm in order to create a radially uniform
velocity distribution upstream of the radial entry swirler block. The flow enters the variable angle
swirler radially and exits to the atmosphere through a 2.54 cm diameter nozzle. The nozzle is
fitted with two pressure transducers as shown in fig. 1. The pressure transducers (PT) are located
6.92 cm and 1.7 cm from the nozzle exit. PCB Piezotronics model 113B28 pressure transducers
are used. The pressure transducer signal is amplified using PCB Piezotronics four channel, ICP
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sensor signal conditioner, model 482C26. The pressure signal is recorded using LabView through
an National Instruments DAQ at 20 kHz for a duration of three seconds.

The variable-angle, radial-entry swirler allows for the swirl number to be changed continu-
ously without changing the net mass flow rate of air entering the setup. The swirler consists of
eight evenly-spaced movable vanes with a NACA 0025 airfoil cross-section. The span and chord-
wise dimensions of each vane are both 2.54 cm. The angle of the blades relative to the radius of
the duct can be changed using an encoded stepper motor within the range of −70o to 70o.

A Hawk/Darwin Duo Nd-YAG, 532 nm wavelength, 60 W laser is used for measuring three
components of velocity using stereoscopic particle image velocimetry (sPIV) in the r − z plane.
The blue rectangle in fig. 1 shows schematically the laser sheet and the field of view used to
acquire raw images using two Photron SA5 complementary metal oxide semiconductor (CMOS)
high-speed cameras. The sampling rate of the PIV system is 5 kHz, with an interframe time
ranging from 22 to 24 µs depending on swirl number. Images are recorded for a one-second
duration, yielding 5000 frames of velocity field data per test case.

Aluminum oxide particles with a nominal diameter of 0.5-2 µm are used as tracer particles
and can accurately follow flow perturbations up to a frequency of 4000 Hz. Velocity vectors
are calculated in DaVis 8.3.1 without any preprocessing or masking and stereoscopic cross-
correlation with multi-pass iterations and with decreasing window sizes. The first pass is a
32x32 pixel interrogation window with a 50% overlap followed by two passes with a 16x16
pixel interrogation with a 50% overlap. During vector post processing, there are two methods
used to reject vectors. First, if the vector is more than three times the RMS of the surrounding
vectors, the vector is removed and replaced. Additionally, universal outlier detection removes
and replaces spurious vector results. The uncertainty was calculated on the mean vector field for
each test case and did not exceeded 2 m/s.

4. Flowfield characterization
This section discusses the evolution of the flow field characteristics of the swirling jet as

determined from sPIV measurements. We define a geometric swirl number S in this paper to
quantify the intensity of swirl as follows,

S =
2

3
tanα

[1− (Rc/Rb)
3

1− (Rc/Rb)2

]
(4.1)

where, α is the swirler vane angle, Rc is the centerbody radius, and Rb is the swirler tube radius
(see fig. 1). The expression in eq. 4.1 can be derived from the momentum flux based definition
of swirl number (Beér & Chigier (1972)) by assuming an axial inflow into an annulus with inner
and outer radii,Rc andRb, respectively, undergoing a deflection through and angle α as it passes
through the swirl vanes. At each swirl number, the flow is defined by a certain state; pre-vortex
breakdown, near-vortex breakdown, steady vortex breakdown, weak PVC, and strong PVC Clees
et al. (2018). Pre-vortex breakdown swirling jets correspond to 0 6 S 6 0.38, before a central
recirculation zone forms. The near-vortex breakdown state occurs when 0.38 < S 6 0.67 and
is characterized by highly intermittent recirculation along the jet centerline. The steady vortex
breakdown state occurs beyond this range of S wherein a stable central recirculation zone is
established around the centerline of the jet. We being our discussion of these flow characteristics
by first examining the time-averaged characteristics of the flow field with increasing S.

4.1. Time-averaged characteristics

The evolution of the time-averaged flow field for S=0.67-1.83 is shown in fig. 2. In each of
the figures, the color field shows Ūz . Streamlines in white are overlaid to visualize the direction
of the flow. The broken black and magenta lines denote the time-averaged location of the shear
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(a) (b) (c)

(d) (e) (f)

FIGURE 2. Variation of the time-averaged axial velocity field with S (Re = 59, 000) with streamlines. The
solid black curve shows the time-averaged recirculation zone. The broken curves show the nominal location
of the inner (black) and outer (magenta) shear layers in the time-averaged flow. Color figure available online.

layers in the flow. These curves are determined from the radial position of the inflection points
in the Ūz profile at each z location. The thick black contours correspond to Ūz = 0 and denote
the boundaries of the recirculation zones. The same scheme is used to label these time-averaged
flow field features in all field plots in the rest of this paper.

Figure 2 shows that increasing S leads to increased jet spreading due to the formation of the
breakdown bubble, whose boundaries are captured by the thick black Ūz = 0 contour. Note that
the absence of a bubble for the S = 0.67 case is due to the fact that for this case, the bubble
is still intermittent and hence does not appear in the time-averaged result presented in fig. 2a.
This change in the time-averaged flow field structure is accompanied by the emergence of a
coherent flow oscillation in the jet. We next present results that characterize the nature of the
flow oscillation in the next subsection.

4.2. Unsteady dynamics

We characterize the global spatial structure of flow oscillations using the spectral proper
orthogonal decomposition (SPOD) on the time-resolved flow field measurements from sPIV. The
SPOD calculates the optimal energy-ordered but spectrally-resolved basis modes that can be used
to reconstruct the unsteady flow field (Towne et al. (2018)). Thus, SPOD is a superior method
for identifying narrow-band oscillations when compared to the traditional proper orthogonal
decomposition (POD), which does not discern modes based on frequency. As such, highly tonal
but low-energy oscillations that are not necessarily separated from other unsteady motions by the
POD are unambiguously identified by the SPOD. All results from SPOD in this paper have been
determined by dividing the time record of sPIV measurements into 18 ensembles with 256 points
per ensemble and 50% overlap between successive ensembles for the spectral estimation step.

Figures 3a-e shows the mode energy spectra from SPOD for S = 0.67 − 1.83. The mode
energy spectra show the energy spectra for each mode, where mode 1, the most energetic mode,
is highlighted in red (color online) and the remainder of the modes fade from black to gray in
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FIGURE 3. Variation of the energy spectra with S from spectral proper orthogonal decomposition (SPOD)
of the time-resolved flow fields determined from sPIV measurements (Re = 59, 000). The red curve shows
the spectrum for the most energetic modes. The spectra for the remaining modes are shown in grayscale
from high (dark) to low (light) total energy (color online). The values of S associated with each result are
shown within each plot.

descending order of total mode energy. As S is increased, the peak frequency, which appears in
mode 1 between 800 and 1100 Hz for each case, increases as well. Additionally, the energy of
the mode increases in amplitude and decreases in spectral width as the coherence of the PVC
increases. At the highest two swirl numbers shown, S=1.43 and 1.83, some of the PVC energy
appears in the second mode (mode 2) as well, where a smaller, more broadband peak is present
beneath the mode 1 spectrum. Additionally, the first harmonic of the PVC appears in mode 1 at
the higher swirl number cases, a result of the very high amplitude coherent oscillation.

Another feature that appears in mode 1 of the SPOD for swirl numbers between S = 0.95 −
1.15 (see 3c-d) is two additional peaks near 500 Hz and 300 Hz. A continuous wavelet transform
analysis of the velocity fluctuations at several points in the annular jet near the nozzle exit for
these two values of S showed that these peaks are due to an intermittent turbulent burst that
occurred at frequencies of 300 Hz and 500 Hz. Further, the pressure transducer signals show no
evidence of these oscillations( Manoharan (2019)). Note, however, that the energy associated
with these fluctuations is an order of magnitude less than that associated with the coherent
oscillation. As such, they are not the focus of the discussion in this paper.

Figures 4a-f show the normalized mode shapes corresponding to the mode 1 peak frequency
at each value of S. Each figure shows the real part of the horizontal velocity component in the
plane of light sheet, Re(ûx), associated with each SPOD mode. These mode shapes show the
evolution of the spatial dynamics of the coherent oscillation as a function of S. Note first that
the mode at S = 0.67 shows a mode shape with strong oscillations on the centerline, which
suggests that the coherent oscillation induces a precession of the axial vortex. Therefore, we
identify the coherent oscillation associated with the frequency corresponding to the peak in figs.
3a-e as the precessing vortex core (PVC) (Syred (2006)). We will show in a forthcoming section
of this paper that the PVC is a consequence of the formation of the breakdown bubble in the
flow, using the results from the theoretical analysis presented in section 2. It is useful at this
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(a) (b) (c)

(d) (e) (f)

FIGURE 4. Variation of the horizontal in plane velocity component modes determined from spectral proper
orthogonal decomposition (SPOD) at the PVC frequency, fPV C , with S (real part, Re = 59, 000). The
value of S associated with each result is shown on the title of each of the plots. The solid black curve shows
the time-averaged recirculation zone boundary. The broken curves show the nominal location of the inner
(black) and outer (magenta) shear layers in the time-averaged flow.

point to emphasize the distinction between the PVC oscillations shown in fig. 4 and helical spiral
breakdown studied by Meliga et al. (2012) and Qadri et al. (2013). In these two studies, the
helical rollup of the shear layers is due to the instability of helical modes that have significant
oscillation amplitudes downstream of the breakdown bubble. The PVC oscillation on the other
hand is associated with the precession of the vortex breakdown bubble and results in shear layer
rollup that originates at the upstream end of the breakdown bubble as fig. 4 and other prior
experimental studies show (Escudier & Keller (1985); Oberleithner et al. (2011)).

With increasing S, figs. 4a-e show that the centerline oscillation moves upstream into the
nozzle. This is consistent with the prior observation of Escudier & Keller (1985) in a very similar
experimental setup. Also, the region where the centerline oscillations are concentrated lies at
the upstream end of the bubble, consistent with observations in prior studies with experimental
setups similar to ours Oberleithner et al. (2011); Escudier & Keller (1985); Escudier (1988).
Note also that the oscillations along the OSL become progressively stronger relative to those on
the centerline with increasing S due to the development of helical oscillations of the shear layers
in the flow downstream of the bubble.

We next estimate the azimuthal mode number associated with the PVC oscillation and the
critical swirl number, Sc, at which it emerges from a spatial cross-spectral analysis of the sPIV
results as follows. Figure 5a shows the spatial variation of u′zu′z determined from the sPIV
measurements at S = 1.83. The broken black and magenta curves show the nominal position
of the ISL and the OSL respectively. Points 1 and 2, positioned at (r/D = ±0.4, z/D = 0.25)
(see fig. 5a), are chosen as reference points for cross-spectral analysis( Bendat & Piersol (2000)).
All cross-spectrum values are computed by dividing the time record of signals at points 1 and 2
into 19 ensembles with 500 samples each and with 50% overlap between successive ensembles.
Figure 5b shows a typical result for the variation of the magnitude of the cross-spectrum, |C12|,
between u′z signals at these two points (S = 1.83). Note that |C12| shows a strong peak (∼ 0.9)
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FIGURE 5. Variation of (a) u′zu′z in r − z plane (b) Coherence (|C12|) as a function of frequency for
S = 1.83. The broken curves show the nominal location of the inner (black) and outer (magenta) shear
layers in the time-averaged flow for this case.
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FIGURE 6. Variation of the phase of the cross-spectrum between axial velocity signals at points 1 and 2,
(φ12) at fPV C and f1h = 2fPV C , with S (Re = 59, 000).

at 1090Hz, which is close to the value of the peak frequency in the corresponding SPOD spectra
for mode 1 - see fig. 3e - as may be expected. In the rest of this paper, we define the characteristic
PVC oscillation frequency (fPV C) as the frequency at which the maximum value of |C12| occurs.

Figure 5b also shows a second peak at the first harmonic f1h = 2fPV C , consistently with
the corresponding spectrum from the SPOD (fig. 4e). The lower value of |C12| ∼ 0.6 at f1h

(see fig. 5b) is because of smaller amplitudes of velocity oscillation at f1h and therefore, lower
signal-to-noise ratio when compared with fPV C . These results are typical and similar results are
observed at other spatial locations for this case and for other cases with S > 0.67. The Fourier
mode number, m, associated with the oscillations at fPV C and f1h, can be determined from the
phase, φ12, of C12 at these frequencies for each S. Figure 6a shows the variation φ12 with S,
determined at fPV C and f1h. The data in fig. 6 correspond to values of S at which |C12| > 0.7
at fPV C and |C12| > 0.5 at f1h. Note that φ12 ∼ π for all S, suggesting that the PVC oscillation
shown in fig. 4 corresponds tom = 1 helical oscillations, as may be expected. The corresponding
result for f1h shows that φ12 ∼ 0, which suggests that the first harmonic corresponds to anm = 2
oscillation. These results are typical and, although not shown here, similar variations for φ12 with
S are observed at other downstream locations as well. Also, note that this difference in m values
associated with the PVC and its first harmonic is consistent with the general asymptotic solution
for stable limit-cycle oscillations determined from the theoretical analysis, eq. 2.38.

We next determine the critical swirl number, Sc, at which the coherent PVC oscillation
emerges as follows. Figures 7a and b show the variation of fPV C and |u′z|2 at fPV C , respectively,
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FIGURE 7. Variation of (a) fPV C and (b) |ûz|2 as a function of S. The solid lines show linear fits through
the experimental values. Figure (c) shows the SPOD spectrum for for the S = 0.61 case. The broken
vertical line corresponds to f = 723 Hz, determined from the fit in (a).

with S. The data in fig. 7b have been determined from the component at fPV C , of the continuous
wavelet transform, ũz , of the velocity time series at point 1 (see fig. 5a). All non-zero data
shown in figs. 7a-b correspond to values of S for which |C12| > 0.7 at their respective fPV C
values. Linear least-squares fits through the data, determined using non-zero values for fPV C
and |u′z|2, have been superposed in each case. The upstream movement of the breakdown bubble
can induce changes to |u′z|2 at point 1 because its distance from the region where the PVC
oscillation amplitude is maximum and varies as the bubble moves upstream with increasing S.
However, figs. 7a-b qualitatively show a nearly linear variation of fPV C and |u′z|2 with S. This
is consistent with the results in eq. 2.40 and eq. 2.42 and hence suggest that the jet undergoes a
supercritical Hopf bifurcation. Requiring |ũz|2 = 0 at S = Sc yields, from the linear fits shown
in figs. 7a-b, Sc ∼ 0.61 and fPV C = 723 Hz at Sc. Figure 7 shows the spectrum determined
from SPOD of the sPIV measured velocity fields at S = 0.61. The broken vertical line in fig. 7
corresponds to f = 723 Hz. Note that this result shows no evidence of a coherent oscillation
when compared with the results in fig. 3. This result, together with those in fig. 3 additionally
confirm that the bifurcaton in the flow state does indeed occur at S = 0.61.

It is interesting to note here that Oberleithner et al. (2011) report additional evidence for
the occurrence of supercritical Hopf bifurcation from experiments wherein the PVC is axially
forced near the jet exit using an arrangement of loudspeakers. Their results show that the forcing
amplitude needed to synchronize the oscillation frequency of the PVC with that of the forcing
scales linearly with |f − fPV C |, where f is the forcing frequency. These results suggest that the
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underlying PVC oscillation is a stable limit cycle and is therefore produced by a supercritical
Hopf bifurcation process, at least in the present class of variable swirl jet experiments.

We confirm the above facts in this paper by determining a series of results from the weakly
nonlinear theory presented in section 2. The time-averaged base flow field, qo, at S = Sc, needed
to compute these results is determined from sPIV measurements at S = 0.61. Further, we adopt
a numerical approach to solve the various equations presented in section 2. All of these details
are discussed in the next section.

5. Numerical methods
For all computations performed in this paper, the reference length lref and reference axial

velocity Ūz,ref are chosen as the jet exit diameter (2.54cm) and the bulk flow velocity (Uo =
36m/s). The reference azimuthal velocity component, Ūθ,ref , is then chosen as 0.61Uo at the
critical swirl number of S = 0.61. The physical extents of the flow domain captured in the present
computations correspond to the rectangular region lying between 0 < r < rmax, as shown in
fig. 1. The physical r−z space is mapped into the computational space, (ξ, η) ∈ [−1, 1]×[−1, 1],
using a modified form of the mapping functions given by Bayliss et al. (1995) (see Appendix C).
The parameter rmax represents the maximum radial extent of the solution domain at which far-
field boundary conditions, (eq. 2.23), are imposed. Our numerical tests revealed that choosing
values of rmax between 10−50 was adequate to ensure the convergence of solutions for all cases
computed in this paper. Accordingly we set rmax = 50 for all computational results presented in
this paper. The extents of the domain in the axial direction and are chosen to be zmin = 0.15 and
zmax = 2.8, i.e. 0.15D from the jet exit plane to the downstream extent of the flow region over
which flow field measurements from sPIV are available. At the upstream boundary we assume
that velocity perturbations vanish, i.e.

ûr = ûθ = ûz = 0 (5.1)

At the downstream boundary (z = zmax) we impose the following Neumann boundary condi-
tion,

∂ûr
∂z

=
∂ûθ
∂z

=
∂ûz
∂z

= 0 (5.2)

Note that the boundary conditions in eqs. 5.1 and 5.2 are artificial and are needed because of
having to choose a finite axial extent for the computational domain imposed by the field of view
of the sPIV measurements in this direction. Consequently, their use in this paper is justified only
for those cases for which the spatial extent of the region where q̂1m,d is non-zero is sufficiently
far away from these boundaries.

5.1. Linear and leading order nonlinear solutions

The global linear stability problem given by eq. 2.19, along with eqs. 2.20-2.22 and eqs. 5.1-
5.2, are solved using the pseudospectral collocation method (Boyd (2000)). Accordingly, all
dependent variables are written in terms of Chebyshev polynomials of the second kind using
function values defined on a two-dimensional mesh of Gauss-Lobatto points in computational
space. The parameters in eqs. C 1 and C 2 are tuned to ensure sufficient collocation point density
in physical space in the regions where shear layers of the time-averaged flow field are located
and at the domain centerline. The radial and the axial derivatives in eq. 2.19 are replaced by
equivalent discrete differentiation matrices (Boyd (2000)), which yields a generalized matrix
eigenvalue problem as follows,

Aq̂1m,d = iωg,mBq̂1m,d (5.3)
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FIGURE 8. Variation of E = |ωk+1
g,−1 − ωkg,−1| as a function of number of collocation points using the

swirling base flow from computations reported in Pradeep (2018) of the Re = 200 and S = 1 case
discussed in Meliga et al. (2012). The superscript k indexes computations in increasing order of N .

where, B and A are matrices representing the discrete equivalent of continuous operators B
and Lm, respectively. Also, ωg,m is the complex eigenvalue and q̂1m,d the discrete equivalent
of the eigenfunction q̂1m in eq, 2.19. The boundary conditions are written in discrete form and
are imposed by replacing the rows corresponding to points on the boundaries in B and A. The
eigenvalue problem given in eq. 5.3 is solved using the Arnoldi iterative solver ‘eigs’ available
in MATLAB.

The solutions for the adjoint mode are obtained using the discrete adjoint approach outlined
in Juniper & Pier (2015) as follows. First, the inner product, eq.2.30, is discretized using Gauss-
Chebyshev quadrature in computational space as 〈q̂1,d, q̂2,d〉 = q̂H1,dM q̂2,d, where, M is the
matrix generated by the weights of the quadrature rule and the superscript ‘H’ denotes the
transpose conjugate. The matrices of the discrete adjoint problem corresponding to eq. 5.3 are
now given by A† = M−1AHM and B† = M−1BHM . Thus, the adjoint mode q̂†1m,d is
computed using the eigs iterative solver as well.

We validate our linear stability analysis solver against the results reported by Meliga et al.
(2012) for the most unstable m = −1 mode of an unconfined swirling jet undergoing a spiral-
type vortex breakdown at S = 1.0 and Re = 200. The base flow for the validation case is
obtained from flow simulations performed by Pradeep (2018). These simulations are performed
on a on a cuboidal computational domain that extends 15 jet inflow diameters in the streamwise
direction and 20 jet inflow diameters in the transverse direction. The domain was discretized us-
ing 481 and 241 points in the streamwise and transverse directions respectively. These solutions
were obtained using the INCOMPACT3D solver (Laizet & Li (2011)). The solution captures
unsteady flow features described by Meliga et al. (2012) for this case (see Pradeep (2018) for
details).

Linear stability computations are performed on a computational mesh comprising N points
each in the radial and axial directions in the computational domain. The quasi-steady flow
solutions are interpolated onto the linear stability computational mesh at each axial location
using cubic spline interpolation along the radial direction. Figure 8 shows the variation of
E = |ωk+1

g,−1 − ωkg,−1| with the number of collocation points in the streamwise direction (NI ).
Note that the vertical axis uses a logarithmic scale. The superscript k indexes the computation in
the order of increasing NI . The value ωg,−1 is the prediction from our numerical solutions. Note
thatE ∼ 1×10−4 forNI = 120. The curve fit through the data, shown in fig. 8, shows that ωkg,−1

converges exponentially with grid refinement, as can be expected for the present pseudospectral
method. Table 1 shows the values of ωg,−1 for NI = 120 and the final converged value reported
by Meliga et al. (2012). The value of NDOF in tab. 1 refers to the total number of degrees of
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NDOF ωg,−1

Meliga et al. (2012) 2776758 1.16 + 0.0387i
Present solver 43200 1.16 + 0.0378i

TABLE 1. Most unstable m = −1 mode eigenvalues for the Re = 200, S = 1.0 case reported in Meliga
et al. (2012). Present results are determined using the swirling base flow from computations reported in
Pradeep (2018). The value ofNDOF refers to the total number of degrees of freedom for three-dimensional
state vector.

freedom for three-dimensional state vector in each study. The small difference between these
results (∼ 2.5%) validates the implementation of the linear global stability solver used in the
present study.

Once the linear stability solutions have been determined, the leading-order nonlinear solutions
are determined from eqs. 2.28-2.26. These are solved by replacing spatial derivatives occurring
in the operators on the left with the discrete differentiation matrices and solving the resulting
linear system using LU decomposition. The Stuart-Landau coefficients are then determined using
eqs. 2.34 and 2.33, using the discretized inner product.

We apply the numerical methods described in this section to the time-averaged base flow state
at S = 0.61 as determined from sPIV measurements in order to gain insight into the fundamental
physical mechanism that results in the emergence of PVC oscillations. Note that the fact that the
optimal locations for collocation points do not correspond to the centers of the interrogation
windows used while processing the sPIV measurements. Accordingly, the base flow state on
the computational mesh is determined using a combination of interpolation and extrapolation
procedures as will be described next.

5.2. Base flow

Figures 9a-c show the spatial variation of the time-averaged velocity components, Ūz , Ūθ,
and Ūr determined using sPIV at S = 0.61. Three-point moving-average filtering of these
time-averaged fields is used to remove small length scale oscillations due to uncertainties in
the experimental data. The spatial variations of Ūz and Ūθ (figs. 9a-b) show expected symmetry
characteristics across the flow centerline. However, the spatial variation of Ūr (fig. 9c) is not
perfectly anti-symmetric about r = 0, as one may expect. This is because the presence of
turbulence in the flow along with intermittent vortex breakdown observed for this case, both
of which cause the rotational axis of the flow to ‘wobble’ incoherently about the geometric jet
centerline; details of this process are described in Clees et al. (2018). Ideally, given a long enough
time record, one can expect that the impact of these incoherent flow centerline oscillations would
average out, yielding an axisymmetric Ūr field (Syred et al. (1994)). However the fact that fig. 9c
shows that this is not the case suggests that the intensity of turbulence fluctuations in the present
experiment is comparable to Ūr and that additional flow field samples are necessary to achieve
good statistical confidence in the data. We next describe how base flow velocity fields for stability
analysis computations are determined from these sPIV measurements.

Note that the collocation points used for computations do not necessarily lie at the same
locations in physical space as the interrogation window centers used in sPIV processing. Also,
the field of view of the cameras used in the experiments limits the availability of sPIV data to a
region corresponding to 0 6 r < 1.5 around the geometric centerline of the flow. Therefore, we
use a combination of interpolation and extrapolation using sPIV data to determine baseflow Ūθ
and Ūz fields for 1.5 < r 6 50 as follows. First, least squares fits to the time-averaged Ūθ and Ūz
sPIV data of model flow profiles for a swirling jet are determined using the model flow profiles
for a swirling jet suggested by Oberleithner et al. (2011). Next, individual cubic spline fits to the
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FIGURE 9. Time-averaged velocity fields (a) Ūz (b) Ūθ (c) Ūr (S = 0.61, Re = 59, 000). The broken
curves show the nominal location of the inner (black) and outer (magenta) shear layers in the time-averaged
flow.
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FIGURE 10. Extrapolated time-averaged velocity fields at z/D = 1 (a) Ūz (b) Ūθ (S = 0.61,
Re = 59, 000).

FIGURE 11. Base flow field for Ūr determined from time-averaged sPIV profiles for Ūθ and Ūz using the
divergence free constraint (S = 0.61, Re = 59, 000). The broken curves show the nominal location of the
inner (black) and outer (magenta) shear layers in the time-averaged flow.

radial profiles of Ūθ and Ūz at each z are determined. A uniform interpolation is then constructed
by smoothly merging the cubic spline fits with the fits to model flow profiles at each z in a small
region centered at r = 1.5 using a hyperbolic tangent function. Figure 10a-b shows typical radial
profiles of Ūθ and Ūz at z = 1 determined from the fitting procedure. The time-averaged sPIV
data are overlaid on these profiles for comparison. These results are typical and a similar quality
of agreement with sPIV data is seen at other z locations as well. The values of Ūθ and Ūz at the
collocation points on the computational mesh are determined using these fits.
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FIGURE 12. Turbulent viscosity, νT , field determined from sPIV data at Sc = 0.61 (Re = 59, 000).
The broken curves show the nominal location of the inner (black) and outer (magenta) shear layers in the
time-averaged flow.

We determine the Ūr field from from the measured Ūz field using the fact that the time-
averaged flow must be divergence free rather than use the experimentally measured result shown
in fig. 9c. This ensures that our stability analysis is anchored around a base flow that satisfies the
time-averaged mass balance condition. This constraint on the time-averaged flow field yields,( ∂

∂r
+

1

r

)
Ūr = −∂Ūz

∂z
(5.4)

along with Ūr = 0 at r = 0 (centerline). The spatial derivatives in eq. 5.4 are discretized using
the same Chebyshev pseudospectral scheme described in the previous subsection. The resulting
linear system of equations for Ūr = 0 at the collocation points in the domain is solved using an
LU decomposition. Figure 11 shows the Ūr field computed thus. For all computations involving
Ūr, the field shown in fig. 11 is used instead of the corresponding time-averaged sPIV field (see
fig. 9c).

Next, the turbulent viscosity, νT , field is determined as follows. Reynolds stress components
in the region 0 < r 6 1.5 are determined on the sPIV mesh from the sPIV measurements. These
values are then interpolated onto the computational mesh using the same interpolation procedure
as was used for the time-averaged velocity. The value of each of the Reynolds stresses is allowed
to smoothly vanish for r > 1.5 using a hyperbolic tangent function. The νT field is then
determined using eq. B 3 at each point. Figure 12 shows the spatial variation of νT normalized
by the value of the molecular viscosity, ν. As may be expected, νT is concentrated between
the two shear layers and increases with axial distance downstream. Note that eq. B 3 represents
the solution to an unconstrained least-squares minimization problem. Also, the experimental
uncertainty in the measured velocity values, translate into uncertainty in the Reynolds stresses
and mean strain-rate fields. Both of these reasons cause νT to become negative in some regions of
the flow. We find that these values appear predominantly in regions where turbulence intensities
are small. Accordingly, we set to νT = 0 at all points where νT < 0 in order to avoid the
generation of spurious eigenvalues in the linear stability analysis (Rukes et al. (2016)).

All curve fitting and linear equation solutions discussed in this subsection is performed using
functions available as part of MATLAB. The results presented in this paper use meshes that have
between 60 and 65 points in the axial direction and 80 and 100 points in the radial direction.
These limits represent the finest meshes possible such that there are no more than two collocation
points per cell of the sPIV data. For all cases, the number and location of collocation points
in physical space were refined until the change in the magnitude of all physically relevant
eigenvalues was less than 1× 10−5 between successive grid refinements.
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FIGURE 13. Spatial variation of velocity components of q̂∆ (a) ûz,∆ (b) ûr,∆ (c) ûθ,∆ and (d) p̂∆
(S = 0.61, Re = 59, 000). The broken curves show the nominal location of the inner (black) and outer
(magenta) shear layers in the time-averaged flow.

6. Results
We present results from the analysis described in section 2, which show that the flow under-

goes vortex breakdown at Sc = 0.61, resulting in the formation of an axisymmetric breakdown
bubble. The PVC oscillation shown in figs. 3 and 4 is due to the emergence of a linearly
marginally-stable hydrodynamic mode that results in the formation of a stable limit cycle. We
first discuss the the formation of a recirculation zone on the jet centerline with increasing S.

6.1. Vortex breakdown

Figure 13a-d show the spatial variation of the four components that comprise the intrinsic base
flow modification, q̂∆, given by eq. 2.26. The broken black and magenta curves in each of the
plots in fig. 13a-c show the nominal locations of the time-averaged inner and outer shear layers.
It is clear that ûz,∆ (fig. 13a) imposes an axial reverse flow near the jet centerline on the baseline
time-averaged flow field at S = 0.61 (see fig. 9), resulting in an outward radial deflection of the
oncoming flow as ûr,∆ (fig. 13b) shows.

The reason for this reverse flow in the axial direction is due to the development of a streamwise
adverse hydrodynamic pressure gradient within the jet, as fig. 13d shows. This adverse pressure
gradient develops due to pressure recovery along the axial direction resulting from a decrease
in Ūθ caused by the loss of confinement as the jet exits the nozzle (see fig. 9b). As such, the
present results suggest that the inception of vortex breakdown for swirling jets exiting a nozzle
into, generally speaking, a ‘less-confined’ region is simply due to the formation of an adverse
axial pressure gradient. Mathematically, the present analysis supports this conclusion as eq. 2.26
shows that the intrinsic base flow changes, quantified by q̂∆, depend only on the details of the
base flow at S = Sc. Also, eq. 2.38 shows that the quantitative impact of the fields shown in
fig. 13 increases with increasing S. Thus, the axial pressure gradient induced by p̂∆ (see fig. 13d)
increases with increasing S causing the flow stagnation point to move upstream.

Several theories have been proposed in the past for explaining the onset of vortex breakdown
in swirling flows based on the analogy with boundary layer separation, hydrodynamic instability,
and the existence of long wavelength spatially oscillatory standing wave disturbances (see Hall
(1972); Leibovich (1978); Benjamin (1962)). For cases where the solutions to eq. 2.26 have
similar characteristics as shown in fig. 13, the theory of Benjamin (1962) appears to be the most
plausible explanation for the onset of axisymmetric breakdown. A recent analysis evaluating the
outcomes of this theory in the context of laminar swirling flows can be found in Moise & Mathew
(2019).

Note that eq. 2.33 shows that the coefficient BA, which, from eq. 2.32, can potentially result
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FIGURE 14. Global eigenvalue spectrum for S = 0.61 (m = 1, Re = 59, 000). (a) Spectrum computed
for nominal νT (b) sensitivity of spectrum to the value of νT . The vertical broken lines in both figures mark
the value of ωPV C as determined from the linear fit to the experimental data shown in fig. 7a

in the growth of flow oscillations for S > Sc, depends only on q̂∆ and q̂1m. This means that the
PVC flow oscillations in the present experiment are caused by the formation of the axisymmetric
breakdown bubble. Thus, in general, the analysis presented in section 2 suggests that the various
types of unsteady breakdown states observed in swirling flows (Liang & Maxworthy (2005),
Sarpkaya (1971b), Sarpkaya (1971a)) correspond to the emergence of hydrodynamic instabilities
associated with the mean flow state after axisymmetric vortex breakdown has occurred. The
nature of the final unsteady state depends on the specific hydrodynamic modes whose instability
causes the bifurcation in the flow state.

6.2. Stability analysis

Prior local parallel flow linear stability analyses on time-averaged base flow profiles performed
by the present author and others show that for sufficiently high values of S, reverse flow on
the centerline can cause the emergence of locally absolutely unstable helical (i.e. m = 1)
modes (Manoharan (2019), Manoharan et al. (2015), Oberleithner et al. (2011), Gallaire &
Chomaz (2003b), Gallaire & Chomaz (2003a), Olendraru & Sellier (2002), Frederick et al.
(2018), Manoharan et al. (2017) and Oberleithner et al. (2015)). Local absolute instability can
result in global linear hydrodynamic modes that are marginally stable (Chomaz et al. (1991);
Monkewitz et al. (1993)). We show that this is indeed the case for the present experiment from
the global hydrodynamic stability analysis at Sc = 0.61.

Figure 14a shows the global eigenvalue spectrum for m = 1 (helical) oscillations at S = 0.61
that the global linear stability analysis yields. The vertical line at ωg,r ∼ 3.2 corresponds to the
angular frequency associated with fPV C = 723 Hz at Sc = 0.61, as determined from the linear
fit to experimentally determined values of fPV C - see fig. 7a and accompanying discussion.
As may be expected, fig. 14 shows that there is an isolated marginally stable eigenmode with
ωg = 3.2 + i(−0.25), which we designate as ‘GM1’ in this paper. Stability analysis for other
m values did not yield eigenmodes with similar oscillation frequencies for the Sc = 0.61 case.
Also, SPOD spectra at S = 0.61, determined from experiments, did not show the presence of
coherent oscillations. Therefore, we conclude that GM1 is the helical (m = 1) eigenmode that
determines the characteristics of the bifurcation in the flow state at Sc = 0.61 and the resulting
unsteady coherent flow oscillation characteristics for S > Sc.

We now discuss possible reasons for the global stability of GM1 (ωg,i ∼ −0.25). This may
be attributed primarily to quantitative uncertainty in the νT field. We assess the sensitivity of ωg
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FIGURE 15. Spatial variation eigenvector components of the mode GM1 (real part only shown) (a) ûr (b)
ûθ (c) ûz (S = 0.61, Re = 59, 000). The broken curves show the nominal location of the inner (black)
and outer (magenta) shear layers in the time-averaged flow.

to νT by re-computing linear eigenvalue spectra by applying a spatially uniform scale factor
on the baseline νT field shown in fig. 12). Figure 14b shows spectra for the baseline case
(crosses), 0.5νT (circles), and 0.25νT (filled boxes). The arrows in fig.14b label the eigenvalue
corresponding to GM1. It is clear that the sensitivity of ωg,i to νT is much more significant than
that of ωg,r and that the mode tends towards neutral stability as νT is reduced. This suggests that
the baseline νT determined from the sPIV measurements (see fig. 12) is possibly larger than what
it should be for the present jet. Also, Sc = 0.61 is the last experimental condition in the present
sPIV measurements for which no coherent flow oscillations are observed in the SPOD spectra.
This suggests that the exact value of Sc may be slightly greater than 0.61, which, in addition to
the uncertainty in νT , results in the linear stability analysis predicting a stable GM1 mode.

Figure 15a-c shows the spatial variation of the oscillation amplitude (real part) of the various
velocity components comprising the eigenvector, q̂1m, associated with GM1. Figure 15a-c shows
that this mode induces strong oscillations at the geometric centerline of the flow. Further, eq. 2.38
shows that to leading order in (S−Sc), the spatial amplitude distribution of this mode determines
the spatial amplitude distribution of the flow oscillation at the PVC frequency. Thus, it is
reasonable to compare the linear mode amplitude distribution with the result from the SPOD
analysis at S = 0.67, i.e for the first experimental condition after the bifurcation in the flow
state. Comparing fig. 4a with the result in fig. 15a, shows that the centerline oscillations occur
over the same axial extent in both the linear stability result in fig. 15a-c and the experimentally
determined SPOD mode for S = 0.67 (fig. 4a). The wavelength of these oscillations is similar
in both results as well. These results further confirm that the emergence of PVC oscillations is
due to the emergence of a linearly marginally stable mode at Sc = 0.61 in the present swirling
jet experiment.

However, the eigenvector solutions shown in fig. 15 do not show finite amplitude oscillations
in the outer shear layer as observed in the SPOD modes (fig. 4). This may be attributed to the
large values of νT in this region as fig. 12 shows. Further, with increasing S, the increase in
centerline backflow velocity results in an increase in the strength of the shear layer between the
breakdown bubble and the surrounding flow. This then results in a spatially growing response
to flow perturbations imposed on the time-averaged flow by GM1, thereby, causing shear layer
rollup. Note from fig. 4 that the shear layer oscillations appear to originate from the leading
end of the breakdown bubble where the centerline oscillations generated by GM1 are strongest.
Also, the amplitude of shear layer oscillations increases with increasing S. These trends suggest
that shear layer oscillations are a response to perturbations imposed by the PVC. We note here
that a similar hypothesis for shear layer oscillations has been suggested by Oberleithner et al.
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FIGURE 16. Spatial distribution of magnitudes of the integrands that determine the linear growth and
saturation of the flow oscillation amplitude (a) IBA (b) INA1 (c) INA2 (S = 0.61, Re = 59, 000).

(2011), based on the similarity between the spatial structure of flow oscillations determined
from weakly non-parallel linear hydrodynamic stability analysis at the PVC frequency and POD
modes determined from PIV measurements, in their variable swirl jet experiment.

We next compute the Stuart-Landau constants NA and BA using eqs. 2.34 and 2.33, respec-
tively, in order to determine the nature of the bifurcation in the flow state at S = Sc due to
GM1. It is interesting to examine the spatial distribution of the integrands that comprise the inner
products in eqs. 2.33, 2.35 and 2.36, denoted as IBA, INA1 and INA2, respectively. Figure 16
show the spatial variation of the magnitude of each of these quantities in the flow domain. Note
also, that fig. 16a shows that the primary contribution to BA is from the region just upstream
of where the amplitudes associated with GM1 are significant. This is easily seen be comparing
the results in fig. 15 with those in fig. 16a. As discussed in section 2 - see discussion below
eq. 2.42 - the region where |IBA| is large (see fig. 16a) is the nonlinear wavemaker region for
the PVC at S = Sc. Interestingly, the location of the wavemaker is at the upstream end of the
breakdown region for the PVC, which is consistent with the prediction from linear structural
sensitivity considerations (Tammisola & Juniper (2016)).

Thus, the values of BA and NA determined from eqs. 2.33 and 2.34 are as follows,

BA = 1.5 + i(1.6) NA = 0.56 + i(0.9) (6.1)

Note that the results in fig. 16a-c confirm that the present computational domain captures all
non-zero contributions to the integrands in the inner products of eqs. 2.33, 2.35, and 2.36, and
that the axial domain length limitation imposed by the axial extents of the field of view in the
sPIV measurements does not quantitatively affect the value of NA and BA. Thus, the values of
in eq. 6.1 (BAr > 0 and NAr > 0) confirm that a supercritical Hopf bifurcation in the flow state
occurs at Sc = 0.61 and that the PVC oscillation in the flow is due to the emergence of a stable
limit cycle as discussed in section 2 - see eq. 2.40.

Figure 17 compares predictions for the limit-cycle frequency, fLC , determined from eq. 2.42
using the values of NA and BA given in eq. 6.1. Note that the present stability analysis (solid
line) predicts an increasing fLC with S with a slightly different slope that that of the experiment.
The difference in the slopes between the two results can be attributed to two reasons. The first
and primary reason is the quantitative uncertainty in the νT field discussed earlier. These directly
influence BA and NA through the last term in eq. 2.33 and q̂AA - see eqs. 2.28 and 2.34. The
second reason is that the value of Sc = 0.61 used in the present analysis is because this is the
largest value of S in the current experimental dataset for which no coherent mode was observed
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FIGURE 17. Variation of fLC as a function of S obtained from weakly nonlinear analysis. The ’×’ markers
show the corresponding variation of fPV C determined from sPIV data. A linear fit through the data is
shown for reference (thin line). The vertical dotted line is at the critical swirl number, Sc = 0.61.

(a) (b) (c) (d)

FIGURE 18. Spatial variation of the components of q̂A∗A, (a) ûz,A∗A (b) ûr,A∗A (c) ûθ,A∗A and (d) p̂A∗A
(S = 0.61, Re = 59, 000). The broken curves show the nominal location of the inner (black) and outer
(magenta) shear layers in the time-averaged flow.

in the SPOD spectra. Thus, it is possible that in reality 0.61 < Sc < 0.67 where S = 0.67 is the
first condition for S > 0.61 at which sPIV measurements are available. Thus, it is possible that
using linear stability results at S = 0.61 introduces errors in the value ofBA andNA, leading to a
difference in the predicted slop from the experiment. Nevertheless, the result in fig. 17 represents
the best possible match between experiment and analysis that is possible with the present sPIV
dataset and together with the fact that the harmonic of fPV C corresponds to an oscillations with
m = 2, (see fig. 6), as the present theory suggests, confirm that the PVC is indeed a stable limit
cycle oscillation caused by the emergence of an axisymmetric vortex breakdown bubble in the
jet.

We next examine the impact that the PVC oscillation induced by GM1 has on the time-
averaged base flow field. Note that this impact is quantified by q̂A∗A - see eq. 2.38. Further,
from eq. 2.38, it is clear that the influence of q̂A∗A scales linearly with S − Sc to leading order.
Figures 18a-d show the spatial variation of ûz,A∗A, ûr,A∗A, ûθ,A∗A, and p̂z,A∗A components of
q̂A∗A. The broken black and magenta lines show the nominal location of the inner and outer
axial shear layers in the time-averaged flow for the Sc = 0.61 case for reference.

Figure 18d shows that the axial vortex core precession induced by GM1 creates a pocket of low
hydrodynamic pressure near the flow centerline over the axial extent where the flow oscillations
due to GM1 are significant - compare figs. 18d and 15b. This pocket of low pressure induces
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a radially-inward deflection of the flow as fig. 18b shows. Eventually, the flow must turn at the
centerline resulting in a the strong axial velocity being induced in the direction of the overall flow
as fig. 18a shows. The helical nature of the flow oscillations also has an impact on Ūθ as shown by
the spatial variation of ûθ,A∗A in fig. 18c. Thus, with increasing S > Sc it is clear from eq. 2.38
that q̂A∗A counteracts the impact of q̂∆, resulting in a shortening of the length of the breakdown
bubble and an overall reduction in the centerline reverse flow velocity magnitude. Figures 16b-
c show that the nonlinear wavelimiter region, i.e. the flow region contributing to nonlinear
amplitude saturation of the PVC (see discussion below eq. 2.42), is located downstream of the
nonlinear wavemaker. This may be expected as the impact of q̂A∗A becomes more significant
with increasing distance downstream of the nonlinear wavemaker as figs. 18a-d suggest.

We next discuss insights that can be gained from the asymptotic solution in eq. 2.38 on
the general question of the usefulness of linear stability analysis in understanding the coherent
unsteady behaviour of turbulent flow fields, given an estimate of their time-averaged flow state.
In a practical engineering design scenario, it is not always easy to determine the value of Sc for
a given nozzle geometry. Therefore, it is interesting to know whether linear stability analysis
can be used to predict coherent unsteady behaviour of turbulent swirled flows, in general for
S > Sc, using only the time-averaged flow field as an input. For this discussion, it is useful
to view eq. 2.38 as the leading-order estimate of the exact solution for the unsteady coherent
component of the flow at any general value of S. Thus, the mathematical structure of eq. 2.38
suggests the following points,

(i) The first three terms in eq. 2.38 represent the time-averaged flow field at a general value
of S.

(ii) For unsteady coherent flow oscillations resulting from the emergence of a stable limit-
cycle flow state (i.e. a supercritical Hopf bifurcation), the mathematical form of the first oscilla-
tory term in eq. 2.38 suggests that a linear stability analysis using the time-averaged flow at any
S > Sc should yield a nearly neutral mode at the limit cycle frequency given by ωLC .

Sipp & Lebedev (2007) discuss the validity of the second point above in their study of flow
state bifurcations in 2D laminar flows using weakly-nonlinear analysis with the bifurcation
parameter as Re−1. A comparison between the theoretical formulation in section 2 of this paper
and that presented in Sipp & Lebedev (2007) shows that both formulations are analogous. This
means that their conclusions concerning the validity of point (ii) above apply analogously to our
study as well. They show that for quantitatively accurate predictions of limit-cycle characteristics
from linear stability analysis using the time-averaged flow as the base flow, NA2r/NA1r � 1
andNA2i/NA1i � 1, where the subscripts ‘r’ and ‘i’ denote the real and imaginary parts ofNA1

and NA2 given by eqs. 2.35 and 2.36, respectively. The values of NA1 and NA2 for the present
swirling jet experiment using eqs. 2.35 and 2.36 as follows,

NA1 = 0.52 + i(0.62) NA2 = 0.036 + i(0.11) (6.2)

Thus, we have NA2r/NA1r = 0.07 and NA2i/NA1i = 0.13, thereby, suggesting that linear
stability analysis using the time-averaged flow for S > Sc should yield nearly neutrally stable
eigenmodes, whose oscillation frequency and spatial amplitude distributions that match those of
the PVC for the present experiment.

It is common engineering practice to use fully nonlinear, time-accurate CFD methods such as
large eddy simulations (LES) in the design of practical swirl nozzles. In principle, these methods
can directly yield accurate predictions of unsteady flow characteristics. In practice, however,
it is more economical from the standpoint of computational time and effort to determine the
time-averaged mean flow alone using CFD. This time-averaged flow can then be used within
the framework of linear stability analysis to determine unsteady flow field characteristics that
the PVC generates. The result in eq. 6.2 suggests that this approach can be adopted for nozzles
with a single swirled air stream. We believe that the same conclusions should extend to more
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complicated configurations with multiple co-annular air streams with varying levels of swirl as
well.

In addition, access to hydrodynamic instability modes and their corresponding adjoint modes
allows for the generation of linear structural sensitivity maps (see eg. Tammisola & Juniper
(2016)) that provide deeper insight into flow regions that are responsible for the generation
of coherent oscillations. This type of insight, which LES does not directly provide, can then
be used to guide nozzle geometry modifications that can either eliminate or strengthen the
PVC depending on what the higher level engineering design objectives are. Solving the steady
Reynolds-averaged Navier-Stokes (RANS) equations is an alternative route to determining es-
timates of time-averaged mean flows. However, it is unlikely that these methods can capture
the impact of base flow distortion due to coherent flow oscillations correctly due to the fact
that they do not formally include the possibility of coherent unsteady oscillations within their
framework. The analysis in Sipp & Lebedev (2007) suggests that the accuracy of coherent flow
oscillation characteristics from linear hydrodynamic stability analysis predictions using steady
RANS solutions as a base flow would in general be poor.

A last point we consider is the case of flows that experience a subcritical bifurcation at S = Sc.
For these types of flows, eq. 2.39 shows that A(t) in eq. 2.38 grows in an unbounded fashion for
S > Sc. Therefore, the analysis presented in this paper cannot predict the characteristics of
the final state of the flow for S > Sc. However, if the final state of the flow happens to be a
stable limit cycle, the results for time-averaged mean flow stability analysis presented in Sipp &
Lebedev (2007) suggest that it may be possible to determine the unsteady characteristics of the
flow from a linear stability analysis for S > Sc.

7. Conclusions
The present paper derives a solution in the weakly-nonlinear limit for the coherent unsteady

state of a statistically axisymmetric swirled turbulent jet. It is assumed that increasing the swirl
number, S, beyond a critical value Sc results in the onset of coherent unsteady flow oscillations.
The analysis develops an asymptotic solution to leading order in S−Sc using the time-averaged
flow at S = Sc as a base state. We show that the flow can exhibit stable coherent limit cycle
oscillations for S > Sc, whose characteristic frequency scales linearly with S−Sc. The analysis
also yields formulae that can be used to determine when this scaling applies. Another important
result from this analysis shows that with increasing S − Sc, an intrinsically steady modification
to the time-averaged base flow occurs at S = Sc. The analysis shows that the unsteady behaviour
in the flow for S > Sc is caused by the intrinsic change in the time-averaged state.

These results are used to understand the unsteady flow dynamics in an experimental study
of a variable swirl, Re = 59, 000, round jet. The swirl intensity is changed with the mass
flow rate entering the setup held constant. Time-resolved flow field measurements are obtained
using stereoscopic particle image velocimetry (sPIV). The results show that for S > 0.61,
coherent helical PVC oscillations occur in the jet, coinciding with the onset of bubble-type vortex
breakdown. The frequency and the square of the amplitude of these flow oscillations are found
to scale linearly with S − Sc. This suggests that the PVC is a stable limit cycle state of the flow
that emerges from the steady flow state at Sc = 0.61 as S is increased.

We confirm the above conclusion using results from the weakly-nonlinear analysis derived in
this paper. The results show that intrinsic base flow modification, i.e. the solution component
that does not depend on the characteristics of the unsteady flow oscillations, shows that a reverse
axial flow accompanied by an adverse streamwise pressure gradient is induced on the centerline
for S > Sc. This suggests that vortex breakdown occurs due to the presence of long wavelength,
standing waves downstream of the stagnation point as suggested by the theory of Benjamin
(1962). A linear stability analysis using the time-averaged flow at Sc = 0.61 shows the presence
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of a marginally-stable eigenmode with the same oscillation frequency as the PVC oscillation as
determined from the experiments. Thus, these results clarify the fact that the PVC occurs because
of a self-excited hydrodynamic instability induced by vortex breakdown, as was hypothesized by
Escudier & Keller (1985), whose variable swirl experimental setup is similar to ours.

The present analysis also yields insight into the regions of the flow that are responsible for
the growth of the PVC amplitude, i.e. the wavemaker region, and those that are responsible
for its saturation, i.e. the wavelimiter region. Our analysis shows that for the present flow, the
former lies on the centerline at the upstream end of the breakdown bubble while the latter
lies further downstream on the centerline. The nonlinear wavemaker location is consistent with
prior linear wavemaker location predictions using linear structural sensitivity analysis in swirling
flows (Tammisola & Juniper (2016)).

A key question of engineering relevance is modelling the coherent unsteady characteristics
of turbulent swirled jets using only time averaged flow information at any general Sc. Note
that typically, the value of Sc for a given swirl nozzle depends on the nature of the flow it
generates and is an unknown in most cases. Sipp & Lebedev (2007) explore this question in
the context of 2D laminar flows. They show for flows in which coherent unsteadiness emerges
due to a supercritical Hopf bifurcations in the flow state, the saturation amplitude of the limit-
cycle is governed by contributions from the time averaged distortion that the limit cycle imposes
on the base flow, as well as, generation of flow oscillations at the first harmonic of the limit
cycle. Thus, when the contribution from base flow distortion dominates amplitude saturation,
linear stability analysis using the time-averaged flow would yield eigenmodes that accurately
approximate the limit-cycle frequency and amplitude distribution. The analysis in our paper is
mathematically analogous with that presented by Sipp & Lebedev (2007), the key difference
being that we’ve added terms that account for turbulence transport. Thus, we find for the present
jet experiments that the contribution to PVC oscillations amplitude saturation is dominated by
the contribution from base flow distortion. Accordingly, the results suggest that for this class
of flows, linear stability analysis using time-averaged base flows may present a viable way to
predict PVC occurrence and oscillation frequency by the appearance of a neutrally stable helical
mode in a linear stability analysis.

However, for flows in which coherent flow unsteadiness results from a subcritical Hopf
bifurcation, the present analysis cannot give insight into the quantitative accuracy with which
linear stability analysis describes the final state of the flow. How this can be assessed using only
time-averaged flow data alone remains as yet unclear.

Appendix A. Governing equations in the operator form
In the present study the governing equations are represented in the operator form as given in

eq. 2.1. Each of the operator acting on the vector field, q, are defined as follows,
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The operators LT and L s
T used for modelling nonlinear products of coherent and incoherent

fluctuations using eddy viscosity hypothesis in eqs. 2.4, 2.7, and 2.8 are given as follows,
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where, Reeff = 1/Re + νT . The linearized Navier-Stokes operator can now be written as
follows,

L q1 = N {qo}q1 + N {q1}qo + Sc(N s{qo}q1 + N s{q1}qo)

+S2
c (N ss{qo}q1 + N ss{q1}qo)− (LTq1 + ScL

s
Tq1)

(A 8)

The operator matrices N s
m{q}, N ss

m {q}, Lm and L s
T,m are obtained by making the substi-

tution ∂/∂θ → im in eqs. A 1-A 8.
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Appendix B. Turbulent viscosity model
The time averaged Reynolds stresses are related to the time averaged rates of strain using the

turbulent viscosity co-efficient, νT as follows,
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where, the quantity k in SKE is the turbulent kinetic energy defined as follows,
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The components of τRe and SKE are determined from time averaging each of these quantities
from time resolved sPIV measurements. Thus, eq. B 1 is an overdetermined linear problem for
νT . Following Tammisola & Juniper (2016), we determine νT as the value that minimizes the
least-squares residual of the linear system eq. B 1 as follows,

νT =
S̄ : (−τRe + 2

3SKE)

2S̄ : S̄
(B 3)

where, ‘:’ represents the Frobenius product defined in general for any two matrices P and Q as
P : Q = PijQij - assuming tensor index notation. The value of νT determined by eq. B 3 is
assumed to relate the coherent fluctuating Reynolds stresses in eq. 2.6 to the coherent fluctuating
rates of strain. This is an additional modelling assumption that is made in this paper to close
eq. 2.6.

Appendix C. Mapping function
The mapping function used in the present study to map collocation points in the ξ − η

computational space to points in physical space r − z is based on a modified form of the
formulation given by Bayliss & Turkel (1992),
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κξ2 = tan−1(βξ1(rmax − βξ2)) (C 8)



34 K. Manoharan, M. Frederick, S. Clees, OConnor, J. and S. Hemchandra

κη1 = tan−1(βη1 (βη2 − zmax)) (C 9)

κη2 = tan−1(βη1 (rmax − βη2 )) (C 10)

Equations. C 1 and C 2 are used to the refine mesh in the flow domain. The parameter β1 controls
the density of points in physical space. The parameter β2 represents the location where mesh
refinement is applied. In the present study, parameters β1 and β2 are so chosen to concentrate
points along the shear layers and along the domain centerline.
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CANDEL, SÉBASTIEN 2012 Nonlinear interaction between a precessing vortex core and acoustic
oscillations in a turbulent swirling flame. Combustion and Flame 159 (8), 2650–2668.

MOISE, PRADEEP & MATHEW, JOSEPH 2019 Bubble and conical forms of vortex breakdown in swirling
jets. Journal of Fluid Mechanics 873, 322–357.

MONKEWITZ, PETER A, HUERRE, PATRICK & CHOMAZ, JEAN-M 1993 Global linear stability analysis
of weakly non-parallel shear flows. Journal of Fluid Mechanics 251, 1–20.

MUTHIAH, GOPALSAMY & SAMANTA, ARNAB 2018 Transient energy growth of a swirling jet with vortex
breakdown. Journal of Fluid Mechanics 856, 288–322.

OBERLEITHNER, K, SIEBER, M, NAYERI, CN, PASCHEREIT, CO, PETZ, C, HEGE, H-C, NOACK, BR
& WYGNANSKI, I 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex
breakdown: stability analysis and empirical mode construction. Journal of Fluid Mechanics 679,
383–414.
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