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Optimizing Thermoacoustic Characterization Experiments for 

Identifiability Improves both Parameter Estimation Accuracy and 

Closed-Loop Controller Robustness Guarantees 

This article examines the degree to which optimizing a Rijke tube experiment can 

improve the accuracy of thermoacoustic model parameter estimation, thereby 

facilitating robust stability control. We use a one-dimensional thermoacoustic 

model to describe the combustion dynamics in a Rijke tube. This model contains 

two unknown parameters that relate velocity perturbations to heat release rate 

oscillations, namely, a time delay 𝜏 and amplification factor 𝛽. The parameters are 

estimated from experiments where the system input is the acoustic excitation from 

a loudspeaker and the output is the pressure response captured by a microphone. 

Our work is grounded in the insight that optimizing an experiment’s design for 

higher Fisher identifiability leads to more accurate parameter estimates. The novel 

goal of this paper is to apply this insight in the laboratory using a flame-driven 

Rijke tube setup. For comparison purposes, we conduct a benchmark experiment 

with a broadband chirp signal as the excitation input. Next, we excite the Rijke 

tube at two frequencies optimized for Fisher identifiability. Repeats of both 

experiments show that the optimal experiment achieves parameter estimates with 

uncertainties at least one order of magnitude smaller than the benchmark. With 

smaller parameter estimate uncertainties, an LQG controller designed to attenuate 

combustion instabilities is able to achieve stronger robustness guarantees, 

quantified in terms of closed-loop structured singular values that account for 

parameter estimation uncertainty. 

Keywords: Optimal experimental design; Fisher identifiability; uncertainty 

quantification; linear quadratic Gaussian; robustness guarantees 

Introduction 

Combustion instability is an issue in many power and propulsion systems, including gas 

turbines, rockets, and process furnaces. It manifests itself in the form of large-amplitude 

pressure oscillations that can lead to hardware vibrations and, in extreme cases, 

combustion system failures (Lieuwen and Yang, 2005). The cause of combustion 

instability is the coupling between combustor acoustics and unsteady heat release 



(Lieuwen et al., 1999). This coupling is problematic for modern power generation gas 

turbines operated with a lean-premixed combustion technique, where low-emissions 

operation has the potential to cause combustion instability. This is the result of the higher 

sensitivity of heat release to equivalence ratio with this combustion technique. 

Combustion instability can be mitigated through either passive or active means. 

Passive mechanisms include the change of combustor acoustic characteristics or heat 

release dynamics. The former includes the use of acoustic damping resonators to absorb 

acoustic oscillations (Dupere and Dowling, 2005). The latter adjustment can be achieved 

either through fuel injection strategy changes (Steele et al., 2000) or fuel staging 

techniques (Samarasinghe et al., 2017). Active mitigation (Dowling and Morgans, 2005), 

in contrast, typically utilizes external actuation signals such as acoustic forcing (Dines, 

1984; Lang, Poinsot and Candel, 1987; Annaswamy et al., 2000; Gelbert et al., 2012) or 

a secondary heat source (Seume et al., 1997; S Murugappan et al., 2003) to suppress the 

thermoacoustic instability. Regardless of the techniques of instability suppression used, 

the availability of an accurately parameterized model of combustion dynamics can be 

valuable for system design, simulation, and evaluation. Additionally, estimating the 

parameters of a combustion instability model more accurately has the potential to allow 

for closed-loop control design with stronger robustness guarantees.  

Combustion instability models can either take the form of a frequency response 

of the combustion system (Bernier et al., 2003; Epperlein, Bamieh and Åström, 2015) or 

be physics-based and built from combustor acoustics and heat release dynamics (Hathout 

et al., 1998; Schuller, Durox and Candel, 2003; Heckl, 2010; Palies et al., 2011). Both 

types of models need to be fitted to experimental data: a process known as “system 

identification” or “model identification”. Much of the model identification literature 

focuses on one-dimensional combustors known as Rijke tubes (Balasubramanian and 



Sujith, 2008; Heckl, 2010). This includes both electrically-driven (Heckl, 1988; Bittanti 

et al., 2002; Selimefendigil, Sujith and Polifke, 2011; Subramanian, Sujith and Wahi, 

2013; Rigas et al., 2016) and flame-driven configurations (Crocco and Cheng, 1956; 

Dines, 1984; Vaudrey, 2001; Morgans and Dowling, 2005). The identified parameters 

include acoustic mode frequency (Rigas et al., 2016), growth rate (Selimefendigil, Sujith 

and Polifke, 2011; Nair, Sarkar and Sujith, 2013; Subramanian, Sujith and Wahi, 2013; 

Rigas et al., 2016), and time delay (Murray et al., 1998; Bittanti et al., 2002). The methods 

applied to achieve the parameter estimation include pseudospectra and Kreiss' theorem 

(Selimefendigil, Sujith and Polifke, 2011), linear stability analysis and nonlinear 

harmonic balance (Morgans and Dowling, 2005; Subramanian, Sujith and Wahi, 2013; 

Rigas et al., 2016), describing functions (Bittanti et al., 2002), least-square fitting 

(Koshigoe, Komatsuzaki and Yang, 1999; Vaudrey, 2001), and online identification 

(Koshigoe, Komatsuzaki and Yang, 1999). The uncertainties in parameter estimates 

determine the accuracy of a combustion dynamics model. Recent research explores 

different methods to quantify uncertainties in combustion instability models. This 

includes Monte Carlo analysis (Bauerheim et al., 2014; Ndiaye et al., 2015; Magri et al., 

2016; Silva et al., 2017), adjoint perturbation theory (Mensah, Magri and Moeck, 2018), 

non-intrusive polynomial chaos expansion (Avdonin et al., 2018), and integrated 

interpolation schemes (Nair, Sarkar and Sujith, 2013). 

Given the importance of accurate parameter identification in a combustion model 

for instability control, this work poses two research questions: First, to what extent can 

combustion instability experiments be designed to minimize the resulting parameter 

uncertainties? Second, to what extent does the improvement in combustion instability 

model accuracy affect the robustness of a linear quadratic Gaussian (LQG) controller in 

attenuating the combustion instabilities? 



This work is motivated by the above two questions. Specifically, the article 

focuses on the use of Fisher information analysis to quantify the best-achievable 

parameter estimation accuracy from Rijke tube experiments. The parameter estimate 

accuracy is optimized by maximizing a scalar Fisher information metric subject to 

constraints on the experiment’s design. This metric quantifies the accuracy with which 

the Rijke tube’s parameters can be estimated from input-output experimental data 

(Manchester, 2010). A classical time-delay model, the 𝑛-𝜏 model (Dowling and Stow, 

2003), is used in this work to show the utility of the Fisher information method using both 

theory and experiment, rather than to innovate in terms of thermoacoustic model. As such, 

this methodology could be extended to more complex models in the future. 

Fisher information analysis provides a minimum co-variance matrix bound for the 

estimated parameters via the Cramér-Rao inequality (Pronzato, 2008; Forman et al., 

2012; Mendoza et al., 2016). In this work, based on the nominal values of the estimated 

parameters, we can apply Fisher information analysis to assess the local identifiability of 

a model’s parameters around the nominal values. Previous work by the authors shows, in 

simulation, the potential benefits of optimizing a Rijke tube experiment for Fisher 

identifiability (Chen et al., 2019). This work provides the experimental validation of the 

applicability of Fisher information analysis to combustion stability experiments. The 

work shows that optimizing a Rijke tube experiment for Fisher identifiability furnishes 

tighter parameter estimates (i.e., smaller estimation uncertainties) compared to a 

benchmark experiment where the Rijke tube is excited using a broadband input signal. 

This broadband excitation is similar to traditional flame transfer function measurement 

methods, where flames are subjected to large ranges of individual frequencies and their 

response measured (Freitag et al., 2006; Kim et al., 2010; Palies et al., 2010); these 



methods are time consuming and information-heavy, making them cumbersome to use in 

control settings.  

To the best of the authors' knowledge, such validation is a novel contribution to 

the combustion instability literature, where the focus has been on uncertainty 

quantification (Bauerheim et al., 2014; Ndiaye et al., 2015; Magri et al., 2016; Silva et 

al., 2017) rather than optimizing experimental designs for uncertainty minimization. A 

second contribution of this work is to show that the above improvement in parameter 

estimation accuracy makes it possible to design a closed-loop LQG combustion stability 

controller with stronger robustness guarantees. A control system that is designed using a 

simulation model of a given system is “robust” if it continues to operate in a stable and 

acceptable manner when implemented on the real physical system. Robustness is 

important in the presence of modeling uncertainties, including uncertainties in the given 

system’s parameters. One way to achieve robustness is to design a control algorithm 

explicitly for robustness: a process that often involves navigating fundamental trade-offs 

between performance and robustness. Another way that we ensure robustness is to 

maximize model accuracy, thereby minimizing the discrepancies between the 

“simulated” and “true” combustion systems and achieving stronger robustness 

guarantees.  

The outline of the rest of the article is as follows. The “Combustion Instability 

Model” section introduces both the experimental setup for a one-dimensional 

thermoacoustic model identification as well as the model that describes the combustion 

system. The “Experimental Designs for Model Identification” section presents the 

benchmark and optimized experimental designs for identifying the model’s two key 

parameters. This section also compares the parameter estimation results from these two 

experiments. The last section, titled “Robustness of LQG Controller based on Identified 



System”, uses the structured singular value, 𝜇 , to analyze the robustness of an LQG 

controller designed for suppressing the combustion instabilities. This analysis shows the 

degree to which tighter parameter estimation errors can enable tighter robustness 

guarantees for closed-loop combustion stability control.  

Combustion Instability Model 

Rijke Tube Experimental Setup 

The one-dimensional thermoacoustic system studied in this article is a flame-driven Rijke 

tube. This tube’s cross-sectional view is illustrated in Fig. 1. This combustor consists of 

two concentric tubes. The diameters of the inner and outer tubes are 𝑑𝑖𝑛𝑛𝑒𝑟 = 0.022𝑚 

and 𝑑𝑜𝑢𝑡𝑒𝑟 = 0.091𝑚, respectively. The outer tube is of length 𝐿 = 0.875𝑚. The inner 

tube delivers the air/fuel mixtures, and a premixed flame at equivalence ratio 𝜙 = 0.8 is 

stabilized on a perforated plate on top of this inner tube. In the outer tube, a co-flow of 

air flows in the same direction as the fuel/air mixture in the inner tube. Flows within both 

tubes pass through ball bearings and perforated plates before entering the experiment, in 

order to achieve a uniform flow profile. A speaker mounted near the Rijke tube inlet 

provides acoustic forcing to the system. At the exit, the Rijke tube is open to the 

atmosphere. Thermocouples and pressure transducers are placed at discrete locations 

along the outer tube to measure local temperatures and pressures. 

The inner tube is adjustable vertically such that the flame location can be varied, 

where the flame location 𝑏 is defined as the length from the inlet of the outer tube to the 

top of the inner tube. Due to the heat release from the flame, the temperatures in the region 

downstream of the flame will be higher than that in the upstream region, resulting in 

variations in gas density, flow velocity, and sound speed. 



 

Figure 1. Cross-sectional view of the Rijke tube experimental setup 

One-dimensional Thermoacoustic Model 

To describe the thermoacoustic dynamics in the Rijke tube, we use a one-dimensional 

combustion instability model. The radial and azimuthal variations of the gas properties in 

the Rijke tube are small and hence neglected. The geometry of the modeled system is 

shown in Fig. 2. The main difference between the modeled system and the real system is 

the temperature distribution along the length of the Rijke tube. In the experimental setup, 

the temperature decays downstream of the flame due to the heat loss to the surrounding 

environment. In contrast, the model assumes a step temperature change across the flame, 

with a spatially uniform temperature 𝑇2  in the region downstream of the flame. The 

temperature of the reactants upstream of the flame is 𝑇1. 



 

Figure 2. One-dimensional thermoacoustic model configuration 

In addition to the assumption of a step temperature rise from 𝑇1 to 𝑇2 across the 

flame, we also assume an isentropic, homogeneous, and steady mean flow in the tube. 

Following the work of Dowling and Stow (Dowling and Stow, 2003), we describe the 

thermoacoustic system with linearized partial differential equations for the conservation 

of mass, momentum, and energy, as indicated in Eqn. (1-2). 

 
𝜕𝜌′

𝜕𝑡
+ 𝜌̅

𝜕𝑢′

𝜕𝑥
= 0, 𝜌̅

𝜕𝑢′

𝜕𝑡
= −

𝜕𝑝′

𝜕𝑥
  (1) 

 
𝜕𝑝′

𝜕𝑡
= −𝜌̅𝑐̅2

𝜕𝑢′

𝜕𝑥
+ (𝛾 − 1)𝑞′  (2) 

These equations assume that: (i) the mean flow Mach number is significantly 

smaller than one (i.e., the mean flow velocity 𝑢𝑏 is much smaller than the speed of sound 

𝑐̅ ); and (ii) fluctuation amplitudes in the following variables including density 𝜌′ , 

pressure 𝑝′, velocity 𝑢′, and temperature 𝑇′ around the equilibrium are much smaller 

than the corresponding mean variables  𝜌̅, 𝑝𝑎𝑡𝑚, 𝑐̅, and 𝑇̅, respectively. 

In Eqn. (2), 𝑞′ represents the fluctuation of heat release rate per unit volume and 

𝛾 is the specific heat capacity ratio. We apply a linear time lag model (Crocco and Cheng, 

1956), as indicated in Eqn. (3), to describe the response of the oscillating heat release per 



unit area 𝑄′ to acoustic particle velocities for the acoustically compact flame, which is 

modeled by a spatial Dirac delta function 𝛿(𝑥 − 𝑏). 

 𝑞′(𝑥, 𝑡) = 𝑄′(𝑡)𝛿(𝑥 − 𝑏), 𝑄′(𝑡) = −
𝛽𝜌̅𝑐̅2

𝛾−1
𝑢1
′ (𝑡 − 𝜏)  (3) 

In Eqn. (3), 𝛽 is the amplification factor, representing the interaction strength 

between the heat release rate and velocity oscillations, and 𝜏 is time delay between the 

flame response and the incident velocity perturbation. The variable 𝑢1
′  is the acoustic 

particle velocity near the upstream margin of the flame. Two boundary conditions shown 

in Fig. 2 are in Eqn. (4). The speaker inputs an acoustic particle velocity 𝑢𝑖𝑛𝑙𝑒𝑡
′ (𝑡) at the 

inlet of the Rijke tube. The outlet, in contrast, is a pressure release boundary with zero 

pressure oscillations. 

 𝑢′(0, 𝑡) = 𝑢𝑖𝑛𝑙𝑒𝑡
′ (𝑡), 𝑝′(𝐿, 𝑡) = 0  (4) 

By manipulating Eqn. (1) and Eqn. (2), we obtain the governing non-

homogeneous acoustic wave equation, as indicated in Eqn. (5). 

 
𝜕2𝑝′
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− 𝜌̅𝑐̅2

𝜕
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(
1

𝜌̅

𝜕𝑝′
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𝜌̅1
𝛿(𝑥 − 𝑏)

𝜕𝑝1
′ (𝑡−𝜏)

𝜕𝑥
  (5) 

Equation (5) describes the thermoacoustic wave behavior in the Rijke tube with a 

flame. The source term on the right-hand side is represented by 𝑝1
′  after the manipulation, 

which is the pressure oscillation at 𝑥 = 𝑏−, just upstream of the flame. 

Transfer Function Representation of the Thermoacoustic System 

The governing wave equation describing the thermoacoustic system's behavior is linear 

with respect to time, 𝑡. As a result, with the assumption of zero initial conditions, we can 

apply the Laplace transform to the equation and solve it analytically with the boundary 



conditions specified in Eqn. (4). The solution to the differential wave equation in the 𝑠 

domain is pressure oscillation 𝑃′(𝑥, 𝑠) along the Rijke tube. 

The input to the thermoacoustic system is the acoustic particle velocity from the 

speaker at the inlet and the output is the local pressure oscillation along the tube. The 

input particle velocity can be estimated using the two-microphone method (TMM) 

(Bodén and Åbom, 1986). Because the input and output variables have different units, we 

normalize them before calculating the system transfer function. The nominal particle 

velocity and pressure oscillation used for normalization are bulk flow velocity, 𝑢𝑏, and 

atmospheric pressure, 𝑝𝑎𝑡𝑚. The definitions of the normalized transfer function, input, 

and output are in Eqn. (6). 

 
𝐻𝑛(𝑥, 𝑠) ≡

𝑃𝑛
′ (𝑥,𝑠)

𝑈𝑛
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𝑈0
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𝑢𝑏
 
  (6) 

Like the output pressure distribution, the above transfer function also has different 

forms in the regions upstream and downstream of the flame, as shown in Eqn. (7-8).  

 𝐻𝑛(𝑥, 𝑠) =

{
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  (7) 
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  (8) 

The transfer function depends not only on experimental design variables such as 

flame location 𝑏, co-flow velocity 𝑢𝑏, sensor placement 𝑥, and excitation frequency 𝑠, 



but also on the parameters to be identified: 𝜏 and 𝛽 in the heat release dynamics model. 

For any given choice of the experimental design variables, we can estimate the two 

parameters by measuring the transfer function’s magnitude versus frequency. To solve 

for the two unknown parameters, we need at least two equations based on two different 

transfer function magnitudes, measured at two different frequencies. If experimental data 

is available at a large set of excitation frequencies, one can use optimization methods to 

find the best fit values of the two unknown parameters.  

Experiment Designs for Model Identification 

We present model identification experiments for two cases with two different flame 

locations. The intent is to illustrate the broad applicability of this article’s optimal 

experimental design methods. Two experimental design variables, namely, flame location 

and co-flow velocity, determine the temperature distribution along the Rijke tube. With 

different temperature distributions, the acoustic characteristics of the combustion system 

are also different. Thus, our examination of two different cases with different flame 

locations makes it possible to illustrate the benefits of optimal experimental design for 

combustors with different acoustic characteristics.  

We characterize the temperature distribution inside the tube with experimental 

measurements obtained via K-type thermocouples. The gas temperature downstream of 

the flame decreases in both the positive axial and radial directions due to the co-flow’s 

existence and heat loss to the surrounding environment. To match the simplified step 

distribution in the model in Fig. 2, we average the downstream temperature 

volumetrically to a constant. The resulting step temperature distributions along the Rijke 

tube for the two cases are summarized in Table 1. The heat release remains constant for 

the two cases because of the same combustion equivalence ratio. The downstream 



temperature changes because of the changes in flame location: the higher flame location 

causes a slight increase of the temperature by approximately 4℃ in the product region 

because distance available for heat loss to the environment is shorter when the total length 

of the Rijke tube is fixed. 

Table 1. Cases with characterized temperature distribution 

Variable Case 1 Case 2 

b [m] 0.3 0.4 

ub [m/s] 2 2 

T1 [℃] 21.0 21.0 

T2 [℃] 67.1 71.0 

Experimental Design 

For each one of the two experimental cases, we identify the parameters 𝜏̂ and 𝛽̂ from 

measurements of the system’s transfer function magnitudes at multiple frequencies. As 

defined in Eqn. (6), we add an acoustic signal as input to the system from a speaker and 

measure the output pressure oscillations along the Rijke tube using PCB 113B24 series 

pressure transducers. We collect the pressure signal using a dSPACE DS1104 board at a 

specified sampling rate 𝑓𝑠 = 20 𝑘𝐻𝑧 and recording duration 𝑡𝑑. As indicated in the sub-

sections “Benchmark – Broadband Frequency Response” and “Optimal – Two-Frequency 

Response”, data acquisition time lengths are 20 seconds and 4 seconds for the benchmark 

case and optimal case, respectively. The measurement uncertainty of the pressure 

transducers is 𝜎𝑝 = 7 𝑃𝑎 and the number of repeated measurements is 𝑁𝑟𝑝 = 50 (𝑁𝑟𝑝 =

4
𝑍2𝜎𝑝

2

𝑊2
) to ensure sufficient statistical power with 95% confidence and ±2𝜎𝑝 error bounds 

(𝑊 = 4) in measuring the output pressure oscillations. 



Benchmark - Broadband Frequency Response 

Thermoacoustic systems are typically identified by measuring the frequency-

domain response of the system at a range of frequencies (Epperlein, Bamieh and Åström, 

2015). Based on the measured frequency response, researchers usually choose a rational 

transfer function with an appropriate order to represent the identified system. Then they 

determine the coefficients in the transfer function expression using the least-mean-

squares (LMS) method over the frequency range of interest. In our work, we apply this 

method as a benchmark to identify the two parameters. The frequency response range we 

select for the benchmark cases is from 400 Hz to 800 Hz, which avoids low frequencies 

that can blow off the flame easily but still covers the third and fourth acoustic modes of 

the system. The frequency of the input signal varies linearly for 20 seconds, at a variation 

rate of 20 Hz/s, and a fast Fourier transform is used for obtaining an empirical transfer 

function from the resulting time series with a frequency resolution of 5 Hz. Then there 

are 81 points in showing the frequency response of the transfer function magnitude in the 

frequency range from 400 Hz to 800 Hz, with an increment of frequency 5 Hz. For the 

sensor placement, the optimal location for the pressure transducer is the location closet to 

the Rijke tube inlet, which is concluded in the following sub-section “Optimal 

Experimental Design – Two-Frequency Response”. 

Optimal Experimental Design – Two-Frequency Response 

In the previous sub-section, we apply a broad band signal as the input to identify the 

thermoacoustic model parameters in a Rijke tube combustion system. As a comparison, 

we conduct an optimal model identification experiment based on the designs achieved 

from Fisher information analysis. The optimization problem aims to minimize the 

resulting parameter estimation uncertainties. We apply Fisher identifiability analysis to 

obtain a quantification of the lower bound of parameter estimation uncertainty. In this 



case, the determinant of the Fisher information matrix is the scalar objective for 

optimization, subject to constraints on input frequencies and sensor placement along the 

Rijke tube. 

Fisher identifiability analysis has been commonly used to estimate uncertainties 

of system characteristics such as initial conditions, state variables, or certain parameters 

when measurements are limited (Sharma and Fathy, 2014; Mendoza et al., 2016). Prior 

to using Fisher identifiability analysis, we make the following assumptions. First, we 

assume a constant variance of output pressure measurements no matter where the pressure 

transducer is placed and what excitation frequencies are used. The second assumption is 

that there is no uncertainty in the measurement of input particle velocity. As a result, the 

magnitude of the measured system transfer function, which is defined as the ratio of 

pressure to particle velocity, is only affected by uncertainties from pressure magnitude 

measurement. Third, we assume that the estimation process furnishes unbiased estimates 

of the unknown parameters (𝜏̂0 = 𝜏0,𝑡𝑟𝑢𝑒, 𝛽̂0 = 𝛽0,𝑡𝑟𝑢𝑒). Lastly, we assume independent, 

identically distributed errors in measuring the transfer function magnitude, as indicated 

in Eqn. (9). 

 𝑝(|𝐻𝑛,𝑚(𝑥, 𝑠)|; 𝜽̂) =
1

√2𝜋𝜎2
𝑒
−

1

2𝜎2
[|𝐻𝑛,𝑚(𝑥,𝑠)|−𝐺(𝑥,𝑠,𝜽̂)]

2

  (9) 

The subscript “m” in 𝐻𝑛,𝑚(𝑥, 𝑠) denotes measurements. The function 𝐺(𝑥, 𝑠, 𝜽̂) 

describes the modelled transfer function magnitude |𝐻𝑛(𝑥, 𝑠)| based on the estimated 

parameter vector 𝜽̂, with definitions in Eqn. (10) and Eqn. (11). 

 𝜽̂ = [
𝜏̂𝑛
𝛽̂𝑛
]  (10) 

 𝜏̂𝑛 =
𝜏̂

𝜏̂0
, 𝛽̂𝑛 =

𝛽̂

𝛽̂0
, 𝜏̂0 ≡

𝑏0

𝑢0
, 𝛽̂0 ≡ 1  (11) 



In the thermoacoustic model, the two estimated parameters have different units 

and orders of magnitude. To make them comparable, we define a normalized parameter 

estimates vector 𝜽̂ in Eqn. (10) with each parameter normalized by its corresponding 

nominal value. The definitions of the nominal values are in Eqn. (11). In this equation, 

the nominal flame location, 𝑏0, is 0.25 m and the nominal bulk flow velocity, 𝑢0, is the 

same as co-flow velocity 𝑢𝑏. 

In Eqn. (9), the probability density function represents the likelihood that 

observed discrepancies between the estimated and measured system transfer functions are 

mere outcomes of measurement noise. Maximum likelihood estimation methods, 

including least squares estimation, attempt to maximize this likelihood function. The idea 

is to minimize systematic errors in system identification by finding those parameter 

estimates for which the estimation residuals are most likely to be consequences of 

measurement noise. When such maximum likelihood estimation is performed, the 

expected value of the Hessian of the likelihood function with respect to the unknown 

parameters is called the Fisher information matrix, 𝑭(𝜽̂). Intuitively, the larger this 

expected value, the “sharper” the likelihood function will be around the maximum 

likelihood estimation results, which implies more accurate parameter estimation. This 

intuitive result is formalized mathematically through the Cramér-Rao theorem, which 

states that the best-achievable unbiased parameter estimation covariance is equal to the 

inverse of the Fisher information matrix, assuming this inverse exists. Stated 

mathematically, the Cramér-Rao lower bound (CRLB) is given by Eqn. (12). 

 var(𝜽̂) ≥ [−𝐸 [
𝜕2ln𝑝( |𝐻𝑛,𝑚|;𝜽̂)

𝜕𝜃̂𝑖𝜕𝜃̂𝑗
]]

−1

  (12) 

The Fisher information matrix is strongly influenced by the sensitivity of the 

likelihood function to the underlying unknown parameters. Intuitively, the more sensitive 



the likelihood function is to the underlying unknown parameters, the more accurately they 

can be determined via maximum likelihood estimation. Mathematically, this insight 

translates into the following relationship between the Fisher information matrix and the 

sensitivity of the likelihood function with respect to the underlying parameters:  

 [𝑭(𝜽̂)]
𝑖𝑗
= −𝐸 [

𝜕2ln𝑝( |𝐻𝑛,𝑚|;𝜽̂)

𝜕𝜃̂𝑖𝜕𝜃̂𝑗
] = −𝐸 [(

𝜕ln𝑝( |𝐻𝑛,𝑚|;𝜽̂)

𝜕𝜃̂𝑖
) (

𝜕ln𝑝( |𝐻𝑛,𝑚|;𝜽̂)

𝜕𝜃̂𝑗
)
𝑇

]  (13) 

Given the definition of the likelihood function, one can rewrite the Fisher 

information matrix in terms of the thermoacoustic system’s transfer function 𝐺(𝑥, 𝑠, 𝜽̂), 

as follows:  

 𝑭(𝜽̂) =
1

𝜎2
[
𝐹11 𝐹12
𝐹21 𝐹22

]  (14) 

 

𝐹11 = ∑
𝜕𝐺𝑗𝜔𝑖

(𝑥,𝑠,𝜽̂)

𝜕𝜏̂𝑛
⋅
𝜕𝐺𝑗𝜔𝑖

(𝑥,𝑠,𝜽̂)

𝜕𝜏̂𝑛

𝑁
𝑖=1

𝐹12 = 𝐹21 = ∑
𝜕𝐺𝑗𝜔𝑖

(𝑥,𝑠,𝜽̂)

𝜕𝜏̂𝑛
⋅
𝜕𝐺𝑗𝜔𝑖

(𝑥,𝑠,𝜽̂)

𝜕𝛽̂𝑛

𝑁
𝑖=1

𝐹22 = ∑
𝜕𝐺𝑗𝜔𝑖

(𝑥,𝑠,𝜽̂)

𝜕𝛽̂𝑛
⋅
𝜕𝐺𝑗𝜔𝑖

(𝑥,𝑠,𝜽̂)

𝜕𝛽̂𝑛

𝑁
𝑖=1

  (15) 

In Eqn. (15), 𝜔 is the acoustic excitation frequency, 𝑁 is the number of model 

identification tests, each test occurring at an individual frequency. According to Eqn. (12), 

the covariance matrix 𝑪𝜽̂ quantifying the parameter estimates uncertainties is no smaller 

than the Fisher information matrix inverse, as expressed in Eqn. (16). 

 𝑪𝜽̂ ≥ 𝑭−1(𝜽̂) =
𝜎2

𝐹11𝐹22−𝐹12
2 [

𝐹22 −𝐹12
−𝐹21 𝐹11

]  (16) 

Minimizing this lower bound will, in theory, furnish better (i.e., more accurate) 

bounds on the best-achievable parameter estimation accuracy levels for the two unknown 

combustion model parameters. This explains the frequent use of Fisher information 



maximization as a tool for optimal experimental design in the literature. One common 

optimization metric is the determinant of the Fisher information matrix, but other 

optimization metrics are possible, including maximizing the trace and/or eigenvalues of 

this matrix (Mehra, 1974; Pronzato, 2008), respectively. This article uses D-optimality, 

i.e., the optimization of the determinant of the Fisher information matrix, as its optimal 

experimental design criterion. This determinant is given by Eqn. (17) below:  

 det(𝑭) =
1

𝜎4
(𝐹11𝐹22 − 𝐹12

2 ) =
1

𝜎4
(
𝜕𝐺𝑗𝜔1
𝜕𝜏̂𝑛

𝜕𝐺𝑗𝜔2
𝜕𝛽̂𝑛

−
𝜕𝐺𝑗𝜔2
𝜕𝜏̂𝑛

𝜕𝐺𝑗𝜔1
𝜕𝛽̂𝑛

)
2

  (17) 

In Eqn. (17), the Fisher information matrix is calculated based on two excitation 

frequencies 𝜔1 and 𝜔2. The Fisher information matrix determinant depends not only on 

the case definition parameters - flame location 𝑏 and co-flow velocity 𝑢𝑏, but also on the 

experimental design variables - acoustic excitation frequency 𝑓𝑒𝑥, and sensor placement 

𝑥 . This article particularly considers the optimization of the parameter estimation 

accuracy by varying the following key experimental design variables: excitation 

frequencies 𝑓𝑒𝑥 and sensor placement 𝑥. 

We describe the experimental design optimization problem with the statement in 

Eqn. (18). The objective of the optimization is to maximize the determinant of the Fisher 

information matrix, where 𝐺 is the modeled transfer function magnitude based on the 

estimated parameters, 𝜏̂𝑛and 𝛽̂𝑛. The subscript “prior” refers to the nominal parameter 

values obtained from prior work in the literature (Dowling and Stow, 2003). 



 

max
𝜔1,𝜔2,𝑥

det(𝑭) =
1

𝜎4
(
𝜕𝐺𝑗𝜔1
𝜕𝜏̂𝑛

𝜕𝐺𝑗𝜔2
𝜕𝛽̂𝑛

−
𝜕𝐺𝑗𝜔2
𝜕𝜏̂𝑛

𝜕𝐺𝑗𝜔1
𝜕𝛽̂𝑛

)
2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{
 
 
 
 

 
 
 
 𝐺𝑗𝜔𝑖𝑓

(𝑥, 𝜏̂𝑛, 𝛽̂𝑛) = |𝐻𝑛 (𝑥, 𝑗𝜔𝑖𝑓 , 𝜏̂𝑛, 𝛽̂𝑛)|

𝜏̂𝑛 = 𝜏̂𝑛,𝑝𝑟𝑖𝑜𝑟, 𝛽̂𝑛 = 𝛽̂𝑛,𝑝𝑟𝑖𝑜𝑟
𝜔𝑖𝑓 = 2𝜋𝑓𝑖𝑓 , 𝑖𝑓 ∈ {1,2}

400𝐻𝑧 ≤ 𝑓1,2 ≤ 800𝐻𝑧, 𝑓1,2 ∈ ℤ

|𝑓1 − 𝑓2| ≥ min
𝑚𝑓,𝑛𝑓∈{1,2,3,4}

{|𝑓𝑚𝑓
− 𝑓𝑛𝑓|}

𝑥 = 𝑥min + 𝑖𝑥 ⋅ Δ𝑥, 𝑥min = 0.041𝑚

 Δ𝑥 = 0.026𝑚, 𝑖𝑥 ∈ {0,1, … , ⌊
𝑏−0.05

Δ𝑥
⌋}

  (18) 

The excitation frequency constraint between 400 and 800 Hz is derived from the 

fact that longitudinal instabilities in gas turbine technologies are typically found in this 

range. Additionally, this frequency range covers two acoustic modes of the 

thermoacoustic system, which are the third and fourth modes near 500 Hz and 700 Hz. 

An additional frequency constraint is related to the difference between the two test 

frequencies, where 𝑓𝑚𝑓
 and 𝑓𝑛𝑓 represent the 𝑚𝑓

𝑡ℎ and 𝑛𝑓
𝑡ℎ acoustic modes, respectively. 

This means that the difference between the two excitation frequencies should be at least 

larger than the minimum difference between any two of the first four acoustic modes, 

which guarantees that the two frequencies are distinct. Constraints on sensor placement 

are dependent on the geometry of the experiment; the closest placement to the Rijke tube 

inlet is at 0.041 m (𝑥min), and it is better to place the sensor upstream of the flame with a 

distance of at least 5 cm avoiding high temperature radiation on the sensor. 

Parameter Estimates 

Benchmark - Broadband Frequency Response 

With time series data acquisition of both input acoustic particle velocity and output 

pressure, we apply the fast Fourier transform to achieve the frequency response of the 

system as the ratio between the normalized pressure spectrum 𝑃𝑛(𝜔) and normalized 



acoustic velocity spectrum 𝑈𝑛(𝜔). The definitions of the normalized input and output are 

the same as the definitions in Eqn. (6). Fig. 3 shows one of the repeats of the identified 

frequency responses in the two benchmark cases. The co-flow velocity is 2 m/s for both 

cases and the flame locations are 0.3 m and 0.4 m. With a chirp signal over frequency 

range of 400 to 800 Hz, we capture the third and fourth acoustic resonance modes of the 

system. As mentioned earlier, different flame locations cause differences in temperature 

distribution and different acoustic characteristics as a result, which can be seen from the 

difference of the two modes between the two cases in Fig. 3. The case with a higher flame 

location generates a fourth mode approximately 20 Hz lower than that with a lower flame 

location. This difference in the system transfer function will be reflected by different 

groups of parameters we need to identify.  

 

Figure 3. Frequency response of the system transfer function magnitude from a 

broadband chirp signal input 

Based on the measured transfer function magnitudes, we minimize the root-mean-

squares (RMS) of the errors between estimated and measured transfer functions to 

identify the parameters 𝜏̂ and 𝛽̂ at the frequencies displayed in Fig. 3. The parameter 

estimation is stated as the optimization problem in Eqn. (19). 



 

min
𝜏̂,𝛽̂

Δ|𝐻𝑛(𝑥, 𝑠)| = √
1

𝑁𝑓
∑ [|𝐻𝑚,𝑖𝑓(𝑥)| − 𝐺𝑖𝑓(𝑥, 𝜏̂, 𝛽̂)]

2𝑁𝑓
𝑖𝑓=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{
  
 

  
 
11𝑚𝑠 ≤ 𝜏̂ ≤ 12𝑚𝑠, 0.1 ≤ 𝛽̂ ≤ 5

Δ𝑓 = 5𝐻𝑧,𝑁𝑓 =
(800−400)𝐻𝑧

Δ𝑓
+ 1

|𝐻𝑚,𝑖𝑓(𝑥)| =
𝑃𝑛(𝑥,𝜔𝑖𝑓)

𝑈𝑛(𝑥,𝜔𝑖𝑓)

𝐺𝑖𝑓(𝑥, 𝜏̂, 𝛽̂) = |𝐻𝑛 (𝑥, 𝑗𝜔𝑖𝑓 , 𝜏̂, 𝛽̂)|

  (19) 

The objective of this optimization problem Δ|𝐻𝑛(𝑥, 𝑠)| is the root mean square of 

the transfer function magnitude difference between experimental measurements 

|𝐻𝑚,𝑖𝑓(𝑥)| and modeling results 𝐺𝑖𝑓(𝑥, 𝜏̂, 𝛽̂) based on estimated parameters. The ranges 

of the estimated parameters 𝜏̂ and 𝛽̂ are 11 to 12 ms and 0.1 to 5, respectively. In the 

literature (Dowling and Stow, 2003), it was suggested that the range of 𝛽 is from 0 to 10, 

𝜏 is typically the convection time from fuel injection to its combustion. We observed 

periodic distributions of time delay estimates and select the current range based on our 

experimental setup. The smaller range of 𝛽 is selected because we found there are no 

estimated values of 𝛽 greater than 5 in the initial estimation with a larger range from 0 to 

10.  

The parameter estimation problem in Eqn. (19) is non-convex because of the 

periodic dependence of the transfer function magnitude on the time delay in acoustic 

systems. There exist multiple local optimal parameter groups to match the measured 

transfer function magnitudes. So, we apply a genetic algorithm (GA) solver to find the 

estimates of time delay 𝜏̂  and amplification factor 𝛽̂ . The genetic algorithm uses the 

settings outlined in Table 2. Fig. 4 shows the distribution of the estimated time delay 𝜏̂ 

and amplification factor 𝛽̂ from 50 repeated experiments in the two cases. 

Table 2. GA settings for parameter estimates in the benchmark case 



Options Values 

Generation number 300 

Population size 2000 

Crossover fraction 0.85 

Crossover function crossoverarithmetic 

Selection function selectionroulette 

Function tolerance 0.001 

Mutation function mutationadaptfeasible 

Computational time [s] 185 

 

The bottom two histograms in Fig. 4 show the distribution of the RMS difference 

between modeled and measured non-dimensional transfer function magnitudes. The RMS 

values of the difference for the two cases are mainly around 0.02, which are at the same 

order of magnitude as the absolute normalized transfer function magnitude, as shown in 

Fig. 3. This indicates that the parameter estimation based on a chirp signal excitation does 

not ensure a good accuracy. 



 

Figure 4. Parameter estimates from a broadband chirp signal in the benchmark 

case 

The top two subplots in Figure 4 show the distribution of the two estimated 

parameters for the two cases, separately. A 95% confidence ellipse is also plotted to show 

the covariance of the two estimated parameters. The ellipse in case 1 with b = 0.3 m is 

slightly more inclined compared with that in case 2 with b = 0.4 m, which means that the 

two parameters are more correlated in cases 1 than those in case 2. For both cases, the 

standard deviations of amplification factor estimate 𝛽̂  are around 0.4. The standard 

deviations of time delay estimate 𝜏̂ are slightly different between the two cases. For the 

case with lower flame height at 0.3 m, the time delay estimate 𝜏̂ achieves a larger standard 

deviation of 0.25 ms compared with the standard deviation of 0.07 ms in the case with 

higher flame height. Considering the dimensionless uncertainties normalized by the 



estimated nominal parameter values 𝛽̂0 = 1.5 and 𝜏̂0 = 11.5 𝑚𝑠, the standard deviation 

of the estimated time delay is at least one order of magnitude smaller than that of the 

estimated amplification factor. This difference implies that the system's transfer function 

magnitude has a stronger dependence on time delay than amplification factor, as indicated 

by Figure 5 in the authors’ previous work (Chen et al., 2019), and other works earlier in 

the literature (Venkataraman et al., 1999; Lieuwen et al., 2001). 

Optimal Experimental Design - Two-Frequency Response 

In the last sub-section, we apply a chirp signal as an input to identify the thermoacoustic 

model parameters in a Rijke tube combustion system. The large difference between the 

experimentally-observed and modeled transfer function magnitudes indicates inaccurate 

parametric identification in this benchmark case. As a comparison, we conduct an optimal 

model identification experiment based on the optimization process outlined in section 

3.1.2. To make a more direct and fair comparison between the benchmark and optimal 

experimental designs, we do not use the nominal parameters identified from benchmark 

case as the prior nominal values for optimal experimental design, otherwise we will have 

different prior information between benchmark and optimal cases. Instead, we start with 

the same prior information as that in benchmark case and adopt the nominal values of the 

two parameters from the current literature as the reasonable prior information of the 

system we work on. For experimental design optimization, the prior nominal values of 

the two parameters in the literature (Dowling and Stow, 2003) are: 𝛽0  =  0.5 and 𝜏0 =

 2 𝑚𝑠. In the Fisher information matrix determinant optimization with prior nominal 

values of the two parameters, we achieve an optimal experimental design for the 

thermoacoustic model identifiability in the optimal case. Because both the excitation 

frequencies and sensor placements are discretized with finite numbers, we apply a grid 



search method to achieve the optimal combination of the three design variables that leads 

to the largest Fisher information matrix determinant. 

The experimental design variables for the two cases are shown in Table 3. The 

two optimal excitation frequencies in the two cases are close to the third and fourth 

acoustic modes in the system. At the two optimal frequencies, we achieve higher signal-

to-noise ratios when measuring the magnitude of the frequency response, which helps to 

decrease the parameter estimate uncertainties. The optimal sensor location is always at 

0.041 m, which is the sensor placement closest to the Rijke tube inlet. This optimal sensor 

placement is located near the acoustically closed boundary where the acoustic reflection 

coefficient is nearly 1, resulting in a pressure anti-node with highest oscillation amplitude. 

After achieving the optimal experimental designs, we implement them in the 

laboratory. We apply two sinusoidal waves with two frequencies as the input and measure 

the output pressure at optimal sensor placement to estimate the two parameters of the 

thermoacoustic model. The data acquisition takes four seconds for a single repetition and 

we use the same number of repetitions as the benchmark case (namely, 50 repetitions) in 

order to achieve a fair comparison of results. 

Table 3. Optimal experimental design for thermoacoustic model identifiability 

Variable Case 1 Case 2 

fex,1 [Hz] 501 525 

fex,2 [Hz] 710 726 

x0 [m] 0.041 0.041 

 

We apply the same optimization technique as in the benchmark case to estimate 

the two parameters. The only difference lies in number of frequencies in the objective 

function (namely, two frequencies instead of 81). To solve the optimization problem, we 



also apply a genetic algorithm with the same settings as in the benchmark case in Table 

2. The computational time for the optimal case is approximately 18 seconds for one 

repetition, which is nearly 10% of that of the benchmark case due to the reduction in the 

number of excitation frequencies. In each case, 50 repetitions of the model identification 

experiments generate 50 groups of the two parameter estimates.  

 

Figure 5. Parameter estimates from the optimal experimental design 

 

The two histograms in Figure 5 provide the RMS of the difference between 

modeled and measured transfer function magnitudes in the two cases, where the 

differences are both close to zero. This means that the parameter estimates accurately 

describe the combustion instability in the Rijke tube for the two cases. We show the 

distribution of the estimated parameters in the top two subplots in Fig. 5. A 95% 



confidence ellipse is also included to show the covariance of the two estimated 

parameters. Nominal values of the estimated time delay 𝜏̂0 are between 11 and 12 ms for 

both cases. However, changing the flame location from 0.3 m to 0.4 m significantly 

impacts the amplification factor 𝛽̂0, due to the relative position change of the flame to the 

pressure node. Whether the heat release location is near the pressure node/anti-node 

affects the interaction strength between the oscillations of heat release rate and acoustic 

waves. In terms of the estimation accuracy, the standard deviations of both amplification 

factor 𝛽̂ and  𝜏̂ are both on the order of 10−3. The uncertainty levels in estimating 𝛽̂ 

and  𝜏̂ are comparable, in contrast to the benchmark experiments, where 𝛽̂ was estimated 

with significantly lower accuracy levels. A detailed summary of both nominal values and 

variances of the parameter estimates from benchmark and optimal experimental designs 

is presented in the following section. 

Parameter Estimates Comparison 

Table 4 summarizes the parameter estimation accuracies from all experiments conducted 

in this work. The nominal values of the parameter estimates are similar between the 

optimal and benchmark cases. The optimal experimental design improves the estimate 

accuracy by at least one order of magnitude compared to the benchmark cases, especially 

for the amplification factor. The method of optimizing experimental design for parameter 

estimates has two main advantages. First, experimental time is significantly reduced from 

20 to 4 seconds, with a commensurate reduction in the computational time for parameter 

estimation. Second, optimal experimental design improves the accuracy of parameter 

estimates by one order of magnitude at least. 

Table 4. Summary of parameter estimates in benchmark and optimal cases 

Nominal Value Case 1 Case 2 



𝛽̂𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 [1] 0.782 2.116 

𝛽̂𝑂𝑝𝑡𝑖𝑚𝑎𝑙 [1] 0.827 1.337 

𝜏̂𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 [ms] 11.690 11.514 

𝜏̂𝑂𝑝𝑡𝑖𝑚𝑎𝑙 [ms] 11.897 11.724 

STD Case 1 Case 2 

𝛽̂𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 [1] 0.082 0.123 

𝛽̂𝑂𝑝𝑡𝑖𝑚𝑎𝑙 [1] 0.003 0.007 

𝜏̂𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 [ms] 0.084 0.069 

𝜏̂𝑂𝑝𝑡𝑖𝑚𝑎𝑙 [ms] 0.0065 0.0043 

Robustness of LQG Controller based on Identified System 

The goal of combustion instability control is to attenuate the pressure oscillation 

amplitude when the instability grows. We can apply optimal control with the pressure 

oscillation amplitude as the cost to minimize. Linear quadratic Gaussian (LQG) control 

is one of the optimal control techniques that can be used for combustion stability control 

in the presence of noisy measurement and actuation signals. There have been a number 

of applications of LQG control technique to attenuate the combustion instability in the 

literature (Hathout et al., 1998; Annaswamy et al., 2000; S. Murugappan et al., 2003). 

LQG controllers are optimal, in the sense of minimizing combustion instability 

oscillations assuming that the system models used for LQG design are accurate. This 

optimality comes at a price in terms of robustness: an LQG controller designed to stabilize 

a combustion process for a nominal plant may become unstable if the dynamics of the 

true plant are sufficiently different from nominal. One pathway for ensuring greater 

robustness is to design a control algorithm explicitly for robustness, using methods such 

as loop transfer recovery (LTR), 𝐻∞ control, etc. Optimal experimental design offers an 



important complementary pathway: by reducing parameter estimation errors, one can 

reduce the uncertainty in the dynamics of the nominal plant model used for control design. 

Regardless of the control design scheme used, LQG or otherwise, reductions in plan 

model uncertainties lead to greater mathematical assurances (i.e., “robustness 

guarantees”) for the stability of the resulting controller in the presence of uncertainty. The 

goal of this section is to examine this important connection between optimal experimental 

design and combustion stability controller robustness. 

Specifically, we analyze the robustness guarantees of an LQG controller designed 

to attenuate the combustion instability with model uncertainties. The model used for 

controller design is identified with the parameters 𝛽̂ and 𝜏̂ estimated from the last section. 

Before designing the LQG controller for the nominal plant, we reduce the order of the 

original time-delayed thermoacoustic model. Model order reduction generates 

approximation errors. However, when we analyze the controller's robustness, we only 

consider the uncertainties from parameter estimation and neglect the uncertainties caused 

by order reduction errors. We evaluate the robustness of the controller using the structured 

singular values of the closed-loop system with the LQG controller designed for the 

nominal plant. The smaller parameter estimation uncertainties achieved from the optimal 

experimental design should help to design an optimal controller with stronger robustness 

guarantees compared to the benchmark case. 

Model Order Reduction 

The model parameters for the LQG controller design and robustness analysis are from 

Table 4. We apply multipoint Padé approximation (Celik et al., 1995) on the identified 

transfer functions to obtain order-reduced models with finite dimensions. In the 

approximation, the moment-matching points are near the four acoustic modes and the 



order of each moment matching point is two, which means that the approximated model 

has an order of eight. The frequencies of the matching points are 108, 311, 535, and 709 

Hz for case 1 and 110, 313, 477, and 732 Hz for case 2. As indicated in Fig. 6, the 

approximated models keep the original systems' characteristics with small transfer 

function magnitude differences, especially near the four acoustic modes. With the 

nominal transfer function magnitude around 0.15, the relative differences of the 

approximated systems to original systems are not greater than 10% at most frequencies. 

 

Figure 6. Magnitude error of Padé approximation for the original transfer 

functions in both benchmark and optimal cases 

LQG Design and Uncertainty Matrix 

Optimal LQG Controller Design 

The approximated models maintain the instability characteristics at the same modal 

frequencies as the original models. To suppress the combustion instabilities at those 

frequencies, we design an LQG controller based on the nominal plant after the multipoint 

Padé approximation. The cost function of the LQG controller design 𝐽 is defined as Eqn. 

(20). 

 𝐽 = ∫ [𝑥𝑇 , 𝑢𝑇]𝑄𝑥𝑢 [
𝑥
𝑢
] 𝑑𝑡

∞

0
  (20) 



The weighting matrix 𝑄𝑥𝑢 determines the tradeoff between inputs 𝑢 and states 𝑥. 

The definition of 𝑄𝑥𝑢 depends on the objective of the LQG controller and we aim to 

suppress the pressure oscillation, also as the output of the system. So, the definition of 

𝑄𝑥𝑢 is in Eqn. (21). 

 𝑄𝑥𝑢 = [𝐶
𝑇𝐶 𝟎
𝟎 𝑅

] , 𝑄𝑤𝑣 = [
𝑤
𝑣
] ⋅ [𝑤𝑇 𝑣𝑇] = [𝑤𝑤

𝑇 𝟎
𝟎 𝑣𝑣𝑇

]  (21) 

We assume that no correlation exists between states and inputs, so the off-

diagonal elements are 𝟎 in matrix 𝑄𝑥𝑢. The bottom-right element 𝑅 is selected to be 1 

and 𝐶  in the upper-left element is the output matrix in the state space form. In this 

equation, another weighting matrix 𝑄𝑤𝑣  describes the covariance from the two noise 

sources: 𝑤 for processing noise and 𝑣 for measurement noise. The intensities of Gaussian 

white noise sources 𝑤 and 𝑣 are selected to be 7 × 10−5, which is the uncertainty level 

of the normalized pressure measurement, approximately the ratio of the pressure 

transducer measurement uncertainty 7 𝑃𝑎 to the atmospheric pressure 1.013 × 105 𝑃𝑎. 

The two noise sources are assumed to be statistically independent. 

Multiplicative Uncertainty Weighting Matrix 

As illustrated in Table 4, both parameters have uncertainties from the system 

identification tests. Since we neglect modeling errors from the Padé approximation, we 

quantify the model's uncertainty by evaluating the relative difference between the 

perturbed model 𝐺𝑝  and nominal model 𝐺0 . The definition of the multiplicative 

uncertainties is in Eqn. (22). 

 Δ𝑢 =
𝐺𝑝−𝐺0

𝐺0
, 𝐺𝑝 = (1 + Δ𝑢)𝐺0  (22) 



The multiplicative uncertainty Δ𝑢 can be replaced by an upper bound weighting 

matrix 𝑊𝑢(𝑠) , as in Eqn. (23). 

 Δ𝑢(𝑠) = 𝑊𝑢(𝑠)Δ, ‖Δ‖∞ ≤ 1  (23) 

Assuming both parameters have an uncertainty of one standard deviation level, 

that  𝜏̂  varies within [𝜏̂0 − 𝜎𝜏̂ , 𝜏̂0 + 𝜎𝜏̂ ] and 𝛽̂  varies within [ 𝛽̂0 − 𝜎𝛽̂ ,  𝛽̂0 + 𝜎𝛽̂ ], the 

multiplicative weighting matrix 𝑊𝑢 has a frequency response indicated in Fig. 7 for the 

two cases with both benchmark and optimal system identification conditions. Similar to 

the parameter estimate uncertainties comparison in Table 4, the multiplicative uncertainty 

weights for the benchmark cases are about one order of magnitude higher than those for 

optimal cases. 

 

Figure 7. Frequency dependence of the multiplicative uncertainty weight Wu(s) 

Robustness of LQG Controller 

Structured Singular Value 

The multiplicative transfer function 𝐻𝑚𝑢𝑙𝑡 has the corresponding form in Eqn. (24). 

 𝐻𝑚𝑢𝑙𝑡 = [
0 𝑊𝑢
𝐺0 𝐺0

]  (24) 



The output 𝑦 and input 𝑢 are connected by the feedback LQG controller. The 

uncertain closed-loop system 𝑀 with feedback control is achieved with a lower linear 

fractional transform as in Eqn. (25). 

 𝑀 = 𝐹𝑙(𝐻𝑚𝑢𝑙𝑡 , −𝐾𝑙𝑞𝑔)  (25) 

The robustness of the controller can be evaluated by the structured singular 

value 𝜇Δ(𝑀) of the closed-loop system 𝑀, which describes the gain from disturbance to 

error. We apply the MATLAB robust control toolbox to calculate the structured singular 

values.  

LQG Robustness Comparison 

In this section, we compare the robustness of the LQG controller, represented by the 

structured singular value of the closed-loop system, between models identified from 

benchmark and optimal conditions. The frequency response of the singular value 𝜇 is 

illustrated in the Fig. 8. 

 

Figure 8. Frequency response of LQG robustness metric structured singular value 

µ 

The structured singular value of a closed-loop dynamic system (i.e., a system with 

an active controller) is a function of frequency, as shown in Figure 8. The magnitude of 

the structured singular value is an indication of (the lack of) robustness: a larger 



magnitude corresponds to weaker robustness guarantees. If the structured singular value 

exceeds 100, at any frequency, for a given closed-loop system, this is an indication of 

very poor controller robustness. In such a case, uncertainties in the underlying system’s 

dynamics are highly likely to result in instability, even for a nominally stable controller. 

As shown in Fig. 8, the optimal experimental design results in lower structured singular 

values, for both of the two flame locations considered in this work, at all frequencies.  

This shows the degree to which optimal experimental design can furnish stronger 

robustness guarantees compared to the benchmark experiment. This improvement in 

robustness guarantees is particularly important for the second case (i.e., the second flame 

location), where the structured singular value exceeds 1.0 neat 480Hz, indicating very 

poor robustness. The use of optimal experimental design mitigates this issue, achieving a 

much stronger robustness guarantee.   

Conclusions 

In this paper, we consider a thermoacoustic model identification and build an experiment 

to validate the hypothesis of improving model identification accuracy with applications 

of optimal experimental designs. We start from the derivation of a thermoacoustic model 

including a linear time-lag model that describes the heat release dynamics in a premixed 

flame in a Rijke tube. 

As a benchmark case, we apply a linear chirp signal with slowly varying 

frequencies as the input to achieve the frequency response of the system. Using the least 

mean square method, we estimate parameters  𝜏̂ and  𝛽̂ from experiments by minimizing 

the RMS of the magnitude error between measured and estimated transfer functions. It 

turns out that it is difficult to achieve an accurate structured model identification with the 



chirp signal because the estimated thermoacoustic model fails to describe the system 

dynamics accurately at every single frequency within the interested frequency range. 

For a comparison to the benchmark case, we apply Fisher identifiability analysis 

to optimize the experimental designs for parameter estimates accuracy improvement. 

Optimal experimental design outputs two frequencies and one sensor placement for 

model identification. We use the same method as that for the benchmark case to estimate 

the time lag 𝜏  and amplification factor 𝛽  with uncertainties quantified. The optimal 

experiment indeed achieves more accurate parameter estimates with smaller 

uncertainties. Additionally, it saves 75% of time in model identification experiments and 

90% of the computational time in estimating parameters as compared to the benchmark 

case. 

A negative correlation exists between the system's model uncertainties and the 

robustness of the optimal LQG controller, which is within expectation. The system 

identification with optimal uncertainty can lead to a controller design with more 

confidence in terms of the robustness.  

The spirit of this article is to show, using a laboratory experiment, the degree to 

which optimal experimental design can lead to more accurate combustion instability 

models, and therefore stronger robustness guarantees for active combustion stability 

controllers. To the best of the authors’ knowledge, this article is the first contribution to 

the literature that uses laboratory experiments to illustrate these important insights. By 

necessity, we perform this illustration for a specific combustion stability model (namely, 

the so-called “n-tau” model), a specific stability controller (namely, LQG control), and a 

specific combustor (namely, a flame-driven Rijke tube). However, the primary tool 

illustrated in the paper (namely, Fisher information-based optimal experimental design) 

is applicable to other combustion stability control problems, and has been widely adopted 



in the literature for experimental design problems beyond the field of combustion stability 

control.   
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