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ABSTRACT 
In this study, we experimentally investigate both the 

intrinsic instability characteristics and forced response to 

transverse acoustic excitation of a non-reacting, swirling flow 

for application to combustion instability in annular gas turbine 

engines. The non-axisymmetry of the velocity field is quantified 

using an azimuthal mode decomposition of the time-averaged 

velocity field that shows that (1) the flow field is largely 

axisymmetric, (2) axisymmetry decreases with downstream 

distance, and (3) forcing does not significantly alter the time-

averaged shape of the flow field. The flow field is analyzed in a 

companion linear stability analysis that shows that the most 

unstable modes in the flow field are m=-1 and m=-2, which 

agrees with the experimental observations and shows that the 

intrinsic dynamics of this flow field are non-axisymmetric with 

respect to the jet axis. The linear stability analysis captures the 

spatial variation of mode strength for certain modes, 

particularly mode m=-1, but there are some deviations from the 

experimental results. Most notably, these deviations occur for 

mode m=0 at radii away from the jet axis. Experimental results 

of the forced response of the flow indicate that the intrinsic 

instability characteristics of the flow field have an impact on the 

forced-response dynamics. Response of the flow field to a 

velocity anti-node in a standing transverse acoustic field shows 

non-axisymmetric vortex rollup and the dominance of the m=-1 

and m=1 azimuthal modes in the fluctuating flow field. In the 

presence of a pressure anti-node, the m=0 mode of the 

fluctuating flow field is very strong at the jet exit, indicating an 

axisymmetric response, and ring vortex shedding is apparent in 

the flow measurements from high-speed PIV. However, further 

downstream, the strength of the axisymmetric mode decreases 

and the m=-1 and m=1 modes dominate, resulting in a tilting of 

the vortex ring as it convects downstream. Implications for 

flame response to transverse acoustic fields are discussed. 

NOMENCLATURE 

,i mB  Azimuthal mode shape of the m-th mode 

 

,
ˆ

i mB  
Mode amplitude of Fourier transformed velocity 

of the m-th mode 

D Outer nozzle diameter 

IP In-phase 

OP Out-of-phase 

UO Mean/Bulk flow velocity 

m  Mode number 

r Radial direction 

t Time 

u Axial velocity component 

v Radial velocity component 

x Downstream distance 

iu
 

Averaged i-direction velocity 

ˆ
iu

 
Fourier transform of the fluctuating velocity in i-

direction 

α Complex axial wavenumber 

  
Azimuthal direction 

  Angular frequency 

io,  Temporal growth rate at the saddle point 

         

 

INTRODUCTION 
 Combustion instabilities in gas turbine engines raise a 

number of issues for both the development and operation of 

these machines [1]. Driven by feedback between flame heat 

release rate oscillations and acoustic fluctuations, combustion 

instability can result in reduced engine operability, increased 

emissions, and in extreme circumstances, engine hardware 

failure [2]. In gas turbines with annular combustion systems, 

such as those used for aircraft propulsion and some power 

generation devices, instabilities can arise from coupling 
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between the flame oscillations and azimuthal, or transverse, 

modes in the combustion chamber [3]. 

A number of important issues arise when transverse 

combustion instabilities are excited. In particular, the coupling 

pathways between the acoustic oscillations and the flame heat 

release rate fluctuations may differ from those found during 

longitudinal instabilities. Work by several authors has outlined 

the mechanisms by which transverse acoustic fields couple with 

flame oscillations, and only a brief overview is provided here 

[4-11]. 

Flame heat release rate oscillations can arise through a 

number of pathways, including fluctuations in mixture 

composition, referred to as “equivalence ratio coupling” [12, 

13], and fluctuations in the velocity field, referred to as 

“velocity coupling” [14-20]. This study focuses on the velocity-

coupled pathway of combustion instability, where velocity 

fluctuations are generated by two sources. First, the acoustic 

field drives acoustic velocity fluctuations in the region of the 

flame in both the transverse and longitudinal direction. The 

transverse oscillations arise from the azimuthal mode, and the 

longitudinal acoustic fluctuations are generated through an 

acoustic coupling between the azimuthal mode and the nozzle 

acoustics [21]. This transverse-to-longitudinal coupling 

mechanism has been described extensively in the rocket 

literature, and is referred to there as “injector coupling” [22]. 

Further, flame heat release rate oscillations can arise from 

vortical velocity oscillations in the flow field. These oscillations 

typically stem from the coupling between acoustic oscillations 

and hydrodynamically unstable portions of the flow field. High 

swirl-number swirling flows are absolutely unstable, resulting in 

the breakdown of the jet structure and the formation of a 

recirculation zone along the centerline of the jet in a process 

referred to as “vortex breakdown” [23-26]. Studies have shown 

that high-amplitude acoustic forcing can impact the dynamics of 

the vortex breakdown bubble, and even lead to flame heat 

release rate oscillations driven by vortex breakdown motion 

[20, 27-31]. 

More typically, though, vortical velocity fluctuations are 

excited in the shear layers by the presence of acoustic 

oscillations. Acoustic fluctuations in both the longitudinal and 

transverse directions can excite vortex rollup at the separation 

point of the shear layers, and as flames typically stabilize in 

these shear layers, the vortex rollup and subsequent convection 

can lead to significant flame disturbance [17-19]. Longitudinal, 

or axisymmetric, acoustic forcing results in ring vortex rollup at 

the separation point [18]. However, non-axisymmetric forcing, 

like that from transverse instabilities, can result in non-

axisymmetric response of the shear layers and helical vortex 

rollup [5, 6, 32]. The dependence of shear layer response on the 

axisymmetry of the incident acoustic field has been observed in 

circular jets as well [33, 34]. 

Even in the absence of acoustic forcing, vortical 

fluctuations in the shear layers are present in the flow field as a 

result of naturally occurring hydrodynamic instabilities [35-38]. 

Swirling flows have multiple shear layers and a vortex 

breakdown bubble that are highly susceptible to hydrodynamic 

instabilities. A swirling flow can have multiple instability 

mechanisms, which can be broadly classified into (1) shear 

layer instability, (2) centrifugal instability, and (3) Kelvin 

instability [38]. The importance of the three instability 

mechanisms are discussed further in the companion paper by 

Manoharan et al. [39]. Shear layer instability is primarily due to 

velocity gradients in axial and azimuthal velocity profiles. 

Unlike in a single, planar shear layer, the shear layer instability 

in swirling flows is due to the finite shear layer in both the axial 

and azimuthal velocity profiles. A perturbation can create 

vortical fluctuations in both the axial and azimuthal vorticity 

field, which when amplified, results in an unsteady flow. To 

quantify flow field fluctuations, azimuthal mode decomposition 

is performed on the velocity field in the r-θ plane. An azimuthal 

mode decomposition decomposes the flow field into a set of 

spatially-varying Fourier modes in the azimuthal direction. The 

mode number quantifies the order of the mode, where m=0 is 

the axisymmetric mode, whereas m<0 and m>0 are the co-

swirling and counter-swirling helical modes, respectively.  

The centrifugal and Kelvin instabilities are the result of 

centrifugal and Coriolis forces in a rotating flows [38]. These 

forces can have both stabilizing and destabilizing effects 

depending on the flow field characteristics. Thus the dominant 

hydrodynamic instability mechanism in a swirling flow is 

determined by several factors, primarily the shear layer 

thicknesses in the azimuthal and axial velocity profiles, ratio of 

the maximum reverse flow velocity magnitude to the maximum 

axial flow velocity magnitude, and the direction of propagation 

of unsteady flow perturbations. For example, thinner axial shear 

layers promote axial shear layer instability. Likewise thinner 

azimuthal shear layers promote azimuthal shear layer instability. 

However, the shear layer instability mode dominating the flow 

dynamics is decided by the orientation of the perturbation wave 

vector with respect to the axial and azimuthal shear layers. 

Perturbations along the azimuthal direction promote azimuthal 

shear layer instability while perturbations along the streamwise 

direction promote axial shear layer instability. A combination of 

both these instability mechanisms can result in helical 

disturbances in the flow field. In general, all these mechanisms, 

i.e., Kelvin, centrifugal, and shear layer instability mechanisms, 

interact, potentially resulting in an unsteady, non-axisymmetric 

flow.  

Instability characteristics of spatially developing flows can 

be classified on the basis of their response to an impulsive 

forcing at a point in the flow field at large times [40]. If the 

impulsive forcing results in disturbances being convected away 

from the point of forcing and growing spatially, then the flow is 

said to be a convectively unstable flow. This kind of flow 

requires continuous forcing to sustain flow unsteadiness. In 

absolutely unstable flows, impulsive forcing results in both 

temporal and spatial disturbance growth. This kind of flow 

continues to sustain flow unsteadiness without external forcing, 

hence these flows acts like self-excited oscillators. 

Absolute/convective instability characteristics are a strong 
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function of the time-averaged traits of the flow field. In 

particular, for a swirling flow, shear layer thickness, backflow 

ratio, and swirl number all impact the stability boundary. 

Several prior studies have reported the influence of swirl on the 

absolute/convective nature of the flow field [36, 37, 41-43].  

In this work, we systematically quantify the time-averaged 

characteristics, the natural instability modes, and the forced 

response of a swirling flow subjected to transverse acoustic 

forcing, like would be seen during an azimuthal instability. 

Experimental results measured with high-speed particle image 

velocimetry (PIV) are compared with linear stability 

calculations to better understand the natural hydrodynamic 

instabilities of the flow field and how these natural modes 

impact the response of the flow to both axisymmetric and non-

axisymmetric acoustic forcing. 

The remainder of the paper is organized as follows. First, 

we provide an overview of the experimental and analytical 

techniques used. Next, the time-averaged characteristics of the 

flow field are discussed to provide a baseline for the dynamical 

results, and to quantify how closely the experimental data 

matches the input velocity field assumptions required for the 

linear stability predictions. Both experimental results and linear 

stability prediction of the natural dynamics of the flow field are 

presented, and the paper concludes with a discussion of the 

forced response dynamics.  

EXPERIMENTAL OVERVIEW AND ANALYSIS 
These experiments were performed in a transverse forcing 

facility capable of creating standing-wave transverse acoustic 

excitation. This experimental setup has been described in 

previous works [4, 29]. The experiment was designed for 

excitation frequencies between 400 Hz and 2000 Hz, a typical 

frequency range for combustion instabilities in annular gas 

turbines. Acoustic modeling indicates that the transverse wave 

in this facility is one-dimensional up to a frequency of 

approximately 1200 Hz, after which the longitudinal mode of 

the combustor is also excited, resulting in a mixed-mode. The 

combustor is shown in Figure 1. 

 

 
Figure 1. Transverse forcing experiment.  

 

Before entering the combustor, the flow passes through a 

large settling chamber with perforated plates. The chamber acts 

to both break up large coherent structures upstream of the 

combustor and acoustically decouple the combustor acoustics 

and the air and fuel supply. The flow enters the combustion 

chamber through a 12-bladed swirler with a blade angle of 45 

degrees, resulting in a geometric swirl number of 0.85 [44]. The 

nozzle has a diameter of 3.175 cm and contains a cylindrical 

centerbody with diameter of 1.09 cm that is flush with the dump 

plane.  

The high aspect ratio combustor is 114.3 cm in the 

transverse direction, 35.56 cm in the longitudinal direction, and 

7.62 cm wide. The design mimics an unwrapped annular 

combustor, retaining the boundary conditions of the flame with 

strong confinement on two sides and open conditions on either 

side. The current experiment only considers one swirling flow, 

so that the boundary condition on either side of the flame in the 

transverse direction is quiescent air, unlike a real combustor 

where there would be adjacent flames on either side. Recent 

studies have shown that single flame dynamics in a transverse 

forcing facility can reasonably mimic those of a flame in a 

multi-flame [8] or annular combustor [45]. The necessary 

conditions to make this comparison are explained in Ref. [45]. 

The bulk velocity, Uo, through the combustor is 10 m/s. 

The bulk velocity was determined by taking the mass flow rate 

and dividing it by the area of the nozzle times the reactant 

density. Transverse acoustic forcing was supplied by six drivers, 

three on each side of the combustor at the end of 1-meter long 

adjustable tubes. Two standing-wave modes were investigated 

in this study, the axisymmetric and non-axisymmetric 

conditions. At the axisymmetric condition, the speakers are 

forced “in-phase” and an approximate pressure anti-node is 

created at the centerline of the combustor. Forcing the speakers 

180 degrees “out-of-phase” results in a non-axisymmetric 

forcing condition with an approximate velocity anti-node along 

the centerline. The out-of-phase forcing frequencies have 

velocity fluctuations near 40% of the mean flow velocity and 

the in-phase forcing has velocity fluctuations that are close to 

5% the mean flow [29]. Wavelengths for the 400 and 800 Hz 

frequencies are 0.86 meters and 0.43 meters, respectively, while 

the nozzle is only 0.0318 meters; the nozzle is acoustically 

compact. More details of these forcing conditions can be found 

in O’Connor and Lieuwen [32]. 

 

Diagnostics 

The flow field was measured using high-speed particle 

image velocimetry (PIV). The high-speed PIV was taken at 10 

kHz with a Litron LDY303He Nd:YLF laser and an SA1.1 

Photron camera at a resolution of 0.14 mm/pixel. One to two 

micron seeding particles of alumina were used for flow 

tracking. The data were taken in two planes. One we term the r-

x plane, where the two-dimensional PIV measures the axial and 

radial components of velocity, and the other we term the r-θ 

plane where the radial and azimuthal velocity components are 

measured. 

The PIV calculations were performed with LaVision’s 

DaVis 7 with a final interrogation window size of 16x16. The 

calculation was made with a three-point Gaussian fit and a 

three-pass calculation; the first pass at an interrogation window 

size of 32x32 and the second two passes with a size of 16x16. 

During post-processing, vectors were rejected based on three 
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criteria. First, velocity vectors with magnitudes greater than 25 

m/s were deemed unphysical for this flow. Second, median 

filtering was used to filter points where surrounding velocity 

vectors had an RMS value greater than three times the local 

point. This filter is used to rid the field of spurious vectors that 

occur due to issues with imaging. A third outlier detection 

scheme was also used that removed groups of outlier vectors; 

this operation removes errors caused by local issues with the 

original image, including window spotting, and are aggravated 

by using overlapping interrogation windows. The rejected 

vectors were replaced with interpolated values; on average, 8% 

of the vectors were removed and replaced. 

 

Data Analysis  

The flow dynamics quantified in this work can best be 

described in cylindrical coordinates, where radial and azimuthal 

velocity fluctuations are significant metrics for jet instability. 

However, PIV inherently uses a Cartesian coordinate system, so 

a transformation to cylindrical coordinates is required in the r-θ 

plane. To transform the velocity field from Cartesian to 

cylindrical coordinates, each component of velocity is 

interpolated using a spline scheme onto a cylindrical coordinate 

system with 21 radial increments and 180 azimuthal increments. 

Similar spatial resolution between the Cartesian and cylindrical 

coordinates is maintained as much as possible. The resultant 

interpolation points are shown in Figure 2. This figure shows 

the velocity magnitude normalized by the bulk velocity with the 

interpolation points. The velocity magnitude is given by: 

2 2

Mag r zU u u         (1) 

The flow field center (and interpolation origin) was found 

manually at x/D=0, and was maintained at each downstream 

position. Numerous comparisons were made between the 

original Cartesian and interpolated data to ensure that important 

characteristics of the velocity field were not distorted by the 

interpolation. These comparisons are not shown. 

 

 
Figure 2. Interpolation points (white diamonds) shown with 

the velocity magnitude in the r-θ plane at x/D=0. 

Recent work has shown that axisymmetry of the time-

averaged velocity field plays an important role on the response 

of flames to acoustic forcing [9]. In this work, we use a 

harmonic azimuthal decomposition to quantify the level of 

axisymmetry of the time-averaged flow field, as shown in Eq. 2. 
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Here, ,i mB  is the strength of mode m of the time-averaged 

velocity component i. Mode m=0 has an axisymmetric shape, 

while modes m≠0 are non-axisymmetric shapes; these shapes 

follow those from acoustic theory [46]. For example, if the 

magnitude of , 0i mB   is much larger than any other , 0i mB  , then 

the flow field is highly axisymmetric in a time-averaged sense. 

However, if any , 0i mB   has a significant amplitude, then the 

time-averaged velocity component, iu , is non-axisymmetric 

with a shape given by m. 

The dynamic behavior of the velocity field is quantified in 

both the frequency and azimuthal mode domains. A Fourier 

transform is applied to each component of the velocity field, 

resulting in a 20 Hz spectral resolution and a maximum 

resolvable frequency of 5000 Hz. Additionally, an azimuthal 

mode decomposition is used to quantify fluctuations in the r-θ 

plane, as shown in Eq. 3. This decomposition is similar in form 

to the decomposition in Eq. 2, but here the Fourier transformed 

fluctuating velocity is transformed, resulting in azimuthal mode 

strengths, ,
ˆ

i mB , that quantify the modal dynamics of fluctuating 

velocity components, not the shape of the flow field. These 

mode strengths can be calculated for different velocity 

components, i, and at different frequencies, ω, to understand 

both the spatial and temporal dynamics of the flow field. 
2
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In Eq. 3, ˆ
iu  is the Fourier-transformed fluctuating velocity 

component in direction i. This decomposition will allow the 

measurements of instability modes in the flow to be compared 

to the predictions from linear stability analysis.  

It is important to note the differences in the physical 

interpretations of the azimuthal decompositions in Eq. 2 and 

Eq. 3, despite the similarities in mathematical formulation. The 

set of ,i mB  from Eq. 2 describes a time-averaged shape and 

should not be thought of as “modes” in the oscillating sense. It 

is natural to decompose a swirling flow field into azimuthal 

components, and the time-averaged shape strengths, ,i mB , 

provide quantitative information about the level of axisymmetry 

in the time-averaged flow field. This method is also consistent 

with recent work on the dynamics of non-axisymmetric flames 

by Acharya and Lieuwen [9, 47], where the time-averaged flame 
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shape is quantified in this same manner. On the other hand, the 

fluctuating mode strengths, ,
ˆ

i mB , describe the amplitude and 

phase of spatial modes of fluctuating velocities. 

 

Linear Stability Analysis  

In the present study, an inviscid, low Mach number, local 

hydrodynamic stability analysis is performed using the 

experimentally measured, time-averaged velocity fields as the 

base flow. The well-posedness of stability analysis on a time-

averaged velocity field is a topic of current research, but prior 

studies using the same approach have shown qualitatively and 

quantitatively accurate predictions [43]. We provide an 

overview of the formulation of this analysis in this section. The 

reader is referred to a companion paper [39] for a more detailed 

description. 

The base flow is assumed to be axisymmetric. Also, the 

radial component of base flow velocity is neglected because the 

maximum magnitude of the radial component of the base flow 

velocity was found to be negligible when compared with other 

base flow velocity components in the present study. The base 

flow is assumed to be locally parallel (i.e., does not vary in the 

axial direction). The Navier-Stokes equations in cylindrical 

coordinates are linearized about the time-averaged 

axisymmetric base state to obtain the linearized Navier-Stokes 

(LNS) equations [39]. The perturbation quantities in the LNS 

equations at the r limit are assumed to be zero. An auxiliary 

kinematic boundary condition is also imposed at the centerline 

as derived by Batchelor et al. [48]. All perturbation quantities 

are written in the normal mode form, 

     tmxierqtxrq   ˆ,,, , where, q  is a vector of 

perturbation quantities and  puuuq xr
ˆ,ˆ,ˆ,ˆ,ˆˆ

 . The 

quantities α and m corresponds to the axial wavenumber and 

azimuthal wavenumber respectively. Thus, the LNS equations, 

along with the boundary conditions, yield an eigenvalue 

problem in terms of α, m and ω. This essentially amounts to 

solving a dispersion relation between these quantities. The real 

part (αr) is the axial wavenumber and the imaginary part (αi) is 

the spatial growth rate. Likewise, ω is the temporal eigenvalue, 

where the real (ωr) and imaginary (ωi) parts corresponds to the 

real frequency and temporal growth rate, respectively. In 

general, the dispersion relation relates the spatial and temporal 

eigenvalues for a given azimuthal wavenumber (m).  

This eigenvalue problem cannot be solved in closed form 

for a general base-flow. Therefore, we use the Chebyshev 

pseudospectral collocation method to solve this problem 

numerically. The physical space, r[0,2] is mapped onto the 

computational space [-1,1] using a transformation function 

suggested by Malik et al. [51]. Next, the LNS are discretized on 

the computational space at Chebyshev collocation points using 

cardinal functions [52], yielding a discrete equivalent of the 

exact eigenvalue problem. The base flow velocity profile in the 

present study is obtained by fitting to the time-averaged velocity 

in the r-θ plane to the velocity model suggested by from 

Oberleithner et al. [43] using least-squares curve fitting. The 

curve fit allows for smoothing of the experimental noise as well 

as interpolation of the data on to the Chebyshev collocation 

points. The number of collocation points as well as the 

parameters in the mapping function are adjusted so that the 

change in the real and imaginary part of the computed 

eigenvalues is less than 0.01%. As such, 100-150 collocation 

points were found to be necessary to achieve this level of 

convergence. We perform temporal and spatio-temporal 

analyses in this paper in order to identify unstable modes as 

well as their absolute/convective nature at three axial locations 

in the experimental dataset. We use the algorithm suggested by 

Deissler [49] to identify the saddle points in the complex α-

plane as needed by the spatio-temporal analysis in order to 

determine the nature of the flow instability.  

RESULTS 

Time-Averaged Flow Field  

The flow field in this study has been discussed in earlier 

work [29]. Figure 3 shows the time-averaged velocity field on 

the left, and out-of-plane vorticity on the right in the r-x plane. 

The velocity is normalized by the bulk velocity, Uo, and the 

vorticity is normalized by the bulk velocity divided by the 

nozzle diameter, D. The streamlines show a noticeable 

difference between the left and right half of the flow field as a 

result of the non-axisymmetry of the flow field, which is 

quantified in this section. Here, an annular jet flows around a 

recirculation zone and forms two shear layers. The outer shear 

layer results from mixing of the jet with the ambient quiescent 

fluid, and the inner shear layer results from mixing of the jet 

with the reverse flow in the vortex breakdown region.  

 

 
Figure 3. Non-dimensionalized time-averaged velocity (left) 

and vorticity (right) in the r-x plane with mean flow velocity 

of Uo=10 m/s, swirl number of 0.85. Colorbar applies to 

both normalized velocity and vorticity. 
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a)  

b)  

c)  

Figure 4. Time-averaged velocity magnitude in the r-θ 

planes at three downstream locations: a) x/D=0, b) x/D=1, 

and c) x/D=2, with mean flow velocity of Uo=10 m/s, swirl 

number of 0.85 

 

Figure 4 shows the magnitude of the velocity in the r-θ 

plane at three downstream distances. The high velocity of the 

swirling jet core is evident at each downstream location, as is 

the low-velocity center of the jet. It is evident from the velocity 

magnitude plots in the r-θ plane that the axisymmetry of the 

time-averaged flow field varies as a function of downstream 

distance. At x/D=0, the flow field is relatively axisymmetric as 

the jet first exits from the axisymmetric nozzle. As the flow 

progresses downstream, however, the influence of the high 

aspect ratio combustor shapes the flow so that the jet is 

somewhat elliptical by x/D=2. We quantify the non-

axisymmetry using the azimuthal decomposition described in 

Eq. 2. Figure 5 shows the results of the azimuthal shape 

decomposition on the time-averaged azimuthal and radial 

velocity components. 

 

a)  

b)  

c)  

Figure 5. Time-averaged shape quantified with the 

azimuthal mode decomposition at a) x/D=0, b) x/D=1, and c) 

x/D= 2 for azimuthal velocity (open symbols) and radial 

velocity (filled symbols). 



 7  

 

The azimuthal shape modes in Figure 5 quantify the time-

averaged axisymmetry of the jet. At all three downstream 

locations, the m=0 shape mode is significantly larger than the 

other modes, indicating the jet is largely axisymmetric on 

average. The results show that the annular jet core is located 

near r/D=0.5, as can be seen by the high velocities in that 

region. As the flow progresses downstream, the jet spreads 

radially outwards and the velocity decays, decreasing the 

strength the m=0 mode in particular. The strengths of the non-

axisymmetric shape modes decrease less dramatically with 

downstream distance than the axisymmetric shape modes, 

indicating that the non-axisymmetric contributions have a 

greater relative importance away from the dump plane. This is 

likely the result of the non-axisymmetric wall boundary 

conditions that confine the jet in the high aspect ratio 

combustor. The radial velocity displays similar behavior to the 

azimuthal velocity except at a much lower magnitude; this 

indicates that the swirling velocity component is much stronger 

than the radial velocity component. 

There are two key assumptions in the accompanying linear 

stability analysis that relate to the time-averaged shape of the 

flow field. The first is that the time-averaged flow field is 

axisymmetric, and the second is that the radial velocity is zero. 

The results of this azimuthal shape decomposition show that 

these assumptions are generally applicable to this flow field. 

In this section we further discuss shape modes between 

m=-2 and m=2 because they contain most of the energy. In the 

azimuthal mode decomposition, modes m=-10 to m=10 are 

calculated, but the amplitude of the modes outside the m=-2 to 

m=2 range are very low. To show this, the sum of modes m=-2 

to m=2 and the sum of modes m=-10 to m=10 are presented in 

Figure 6 for 400 Hz IP forcing, 400 Hz OP forcing, and no 

forcing. These three cases are the main focus of this study. 

Here, the sum of mode strengths for m=-2 to m=2 are shown as 

symbols, and the sum of mode strengths for m=-10 to m=10 are 

shown in dotted lines. Both mode ranges are plotted from 

r/D=0.1 to r/D=1.5. These limits are chosen because r/D=0 is a 

singularity and the modal decomposition does not work at this 

point; therefore, r/D=0.1 is the lower limit. The upper limit, 

r/D=1.5, is the outer edge of the jet at both x/D=1 and x/D=2. 

The edge of the jet at x/D=0 is r/D=0.9 (see Figure 2). For all 

radii, modes m=-2 to m=2 contain the majority of the total 

modal strength; therefore, using modes m=-2 to m=2 captures 

most of the time-averaged mode energy.  

Figure 7 distills some of the important results from Figure 

5, and shows the amplitude of azimuthal shape modes, from 

m=-2 to m=2, at three key radial positions as a function of 

downstream distance. The position r/D=0.2 is located inside the 

vortex breakdown bubble, r/D=0.4 is located at the inner shear 

layer, and r/D=0.6 is located at the outer shear layer. These 

locations were determined by inspecting the r-x plane as in 

Figure 3. Please note that to make the mode strengths clearer, 

the radial velocity the ordinate upper limit is 1.5 m/s, while for 

the azimuthal velocity the upper limit is 8 m/s. 

 

a) b)  

c)  

Figure 6: Sum of time-averaged mode strengths from modes 

m=-10 to m=10 (dashed line) and modes m=-2 to m=2 

(symbols) for 400 Hz IP forcing, 400 Hz OP forcing, and no 

forcing at a) x/D=0, b) x/D=1, and c) x/D=2. 

 

A number of features are evident from these plots. First, the 

strength of the axisymmetric azimuthal shape mode, m=0, is 

greater than all other modes, indicating that the axisymmetric 

assumption in the linear stability analysis applies relatively well 

to this flow field. This decomposition gives us a quantitative 

way to assess this assumption, showing the relative strengths of 

the modes as a function of downstream distance. From these 

relative strengths, it is evident that the assumption breaks down 

further downstream, where the strength of the axisymmetric 

shape mode is only 2.5 times that of modes m=1 and m=-1 at 

x/D=1 in the vortex breakdown bubble.  

Further, the time-averaged radial velocities in all shape 

modes are much less than the azimuthal velocities. In this 

combustor the bulk motion of the swirl is much larger than the 

jet spread; therefore, the time-averaged strength of the 

azimuthal velocity is much stronger than the radial velocity. 

However, the time-averaged radial velocity profiles are much 

less axisymmetric than the azimuthal velocity profiles. 

The application of acoustic forcing does not appreciably 

change the time-averaged azimuthal shape modes. Figure 8 

shows an example of the azimuthal shape modes for a number 

of acoustic forcing conditions, including two forcing 

frequencies, 400 Hz and 800 Hz, and both in-phase and out-of-

phase acoustic forcing. In the out-of-phase forcing cases, the 

transverse acoustic velocity fluctuation amplitude was 

approximately 4 m/s, v'/Uo=0.4, and the acoustic drivers were 

run at the same amplitude for the in-phase forcing cases, 

although the centerline acoustic velocity fluctuation is 

negligible in this case as a velocity node is present. Numerous 
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studies have shown that these forcing conditions can impact the 

dynamic behavior of the flow field [4, 6], but the time-averaged 

flow behavior between the no forcing and forcing cases is 

similar. These cases stay away from a flow-field bifurcation 

behavior that was observed by O’Connor and Lieuwen [29] at 

800 Hz out-of-phase forcing at very high forcing amplitudes.  

 

 
Figure 7. Azimuthal shape modes of the time-averaged 

azimuthal and radial velocities for m=-2 to m=2. The first 

row is r/D=0.2, second row is r/D=0.4, and third row is 

r/D=0.6. 

a) b)  

c)  

 
Figure 8. Azimuthal shape modes for mode m=0 for all time-

averaged flows in this study at a) breakdown bubble 

(r/D=0.2), b) inner shear layer (r/D=0.4), and c) outer shear 

layer (r/D=0.6). 

 

Self-Excited Dynamics 

Several researchers have reported on various aspects of the 

natural dynamics of swirling flows [29, 35, 50]. The self-

excited dynamics of this particular flow field were analyzed 

extensively in O’Connor and Lieuwen [29], and only pertinent 

results are presented here as a baseline of comparison to the 

forced response results below. Low frequency content, less than 

200 Hz, dominates the natural swirling dynamics for this flow 

field. The dynamics are quantified here using the azimuthal 

mode decomposition described in Eq. 3, where the velocity 

fluctuations have been integrated over frequency space before 

being transformed into azimuthal modes.  
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Figure 9. Ratio of mode energy in modes m=-2 to m=2 to 

mode energy in modes m=-10 to m=10 for x/D=0 at a range 

of radial positions and forcing conditions. 

 

Modes m=-2 to m=2 are studied in the dynamics portion of 

this paper because of the important dynamical features that 

contain these modes, as will be explained in this section. Figure 

9 shows the ratio of the mode energy from m=-2 and m=2 

divided by the total mode energy at x/D=0. At x/D=0, much of 

the energy is concentrated between modes m=-2 and m=2 in the 

inner region of the flow field, although this ratio decreases 

significantly at the edge of the jet, particularly for the no-

forcing case. Similar trends are seen at x/D=1 and x/D=2. 

The modal decomposition of the fluctuating flow field is 

shown in Figure 10. The mode strengths are shown at three 

radial locations and for three downstream stations. The mode 

strength of the fluctuating velocity is an order of magnitude 

smaller than the time-averaged mode strengths, indicating that 

the velocity fluctuations are on the order of 10% of the mean 

flow velocity. In the vortex breakdown bubble, at r/D=0.2, the 

magnitudes of the velocity fluctuations at all mode numbers 

increase from x/D=0 to x/D=1 but either decrease or stagnate 

from x/D=1 to x/D=2. The fluctuating radial and azimuthal 

velocities both exhibit this nonmonotonic behavior. At all three 

radial locations, modes m=-2 and m=-1 are dominant. This 

behavior was seen in O’Connor and Lieuwen and was attributed 

to a precessing vortex core motion [29]. Mode m=-1 is related 

to helical motion inside the bubble, while mode m=-2 is related 

to jet deformation.  

The stability of modes m=-2 through m=2 from the spatio-

temporal stability analysis is shown in Figure 11. Modes m=-1 

and m=-2, non-axisymmetric modes, are both absolutely 

unstable, and the amplitude of the growth rate shows a non-

monotonic behavior with downstream distance. Modes m=0, 

m=1, and m=2 are convectively unstable, but not absolutely 

unstable.  

 

 
Figure 10: Azimuthal modes, m=-2 to m=2, at three radial 

positions for unforced swirling flow with mean flow velocity 

of Uo=10 m/s, swirl number of 0.85 

 

 
Figure 11. Linear stability analysis prediction of the growth 

rate of modes m=-2 to m=2 at three downstream distances. 
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The stability analysis also provides the strength of modes 

m=-2 to m=2 as a function of radius at the three downstream 

positions. Mode m=-1 predictions are compared to the 

experimental data in Figure 12, while modes m=0 and m=-2 

predictions are displayed in Figure 13. The stability analysis 

predicts the modal strength for all three velocity components, 

while the experimental data only has the azimuthal and radial 

velocities. Therefore, the modal strength of the predicted axial 

velocity fluctuations is removed. As a result, only the shapes of 

the modes should be compared between the prediction and the 

experimental results, instead of quantitative mode strengths. 

In Figure 12, the comparison between the experimental 

results and stability predictions is presented for mode m=-1. 

The solid lines are the stability calculations and the dashed lines 

with symbols are the experimental data. The azimuthal mode 

decompositions of the azimuthal velocity are in red and the 

radial velocity are in blue. The stability calculations agree well 

with the experimental results inside the breakdown bubble, 

r/D≤0.3. Outside the breakdown bubble, mode m=-1 decreases 

in both the stability predictions and the experimental results. 

 

a)  

b)  

c)  

Figure 12: Comparisons between linear stability analysis 

(solid line) and experimental data for mode m=-1 at a) 

x/D=0 b) x/D=1 c) x/D=2 at all radii. 

 

Stability calculations under-predict the strength of the 

mode m=-1 in the shear layers at r/D>0.3. The local peak in the 

experimental data around the outer shear layer, near r/D=0.6, 

indicates that the shear layers contain helical modes but the 

stability predictions do not capture this quantitatively, but do so 

qualitatively. Both the experimental data and stability 

calculations indicate that the edge of the jet is located near 

r/D=2 because velocity fluctuation levels go to zero.  

Figure 13 shows the comparisons between the experimental 

data and the stability analysis for modes m=0 and m=-2, using 

the same formatting as Figure 12. The same three downstream 

distances are plotted, x/D=0, 1, and 2, and modal strengths are 

plotted out to r/D=3. Here, the stability predictions identify 

several important features but there is more deviation from the 

experimental results than the calculations for mode m=-1. For 

mode m=0, there are local peaks in the shear layers for both 

experimental and stability predictions. The outer shear layer, at 

0.6<r/D<1, is stronger than the inner shear layer, at 

0.3<r/D<0.5, at x/D=0. Stability calculations show that the 

inner shear layer fluctuations become stronger than the outer 

shear layer fluctuations between x/D=1 and x/D=2, whereas in 

the experimental data, the inner shear layer fluctuations begin to 

dominate at x/D=1. In the jet core, near r/D=0.5, the stability 

analysis predicts a sharp decrease in the strength of mode m=0, 

whereas in the experimental results the local minima is not as 

severe. These minima indicate that velocity fluctuations in the 

jet core are relatively smaller than those in the shear layers, 

which is consistent with physical mechanism driving the 

instability, which is fluid shear.  

For mode m=-2, the maximum mode strength occurs inside 

the breakdown bubble for both the predicted and experimental 

results, and the predicted shape of the mode in this region is 

quite accurate. The stability calculation deviates from the 

experimental data outside the vortex breakdown region, 

r/D≤0.3, as the predicted mode strength decays more strongly 

than the measured mode strength with radial distance. The peak 
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in the m=-2 mode in the outer shear layer, near r/D=0.6, is not 

predicted in the stability analysis. 

 
Figure 13: Comparisons between linear stability analysis 

(solid line) and experimental data for modes m=0 (left) and 

m=-2 (right) at a) x/D=0, b) x/D=1, and c) x/D=2. 

 

Overall, the stability predictions are able to the capture the 

trends of the experimental data. The predictions correctly 

capture the mode numbers of the absolutely unstable modes, 

m=-1 and m=-2. The experimental results show that these 

absolutely unstable modes have local peaks in the shear layers 

but the stability prediction does not always capture this. There 

are some deviations from the experimental data, most notably 

that the stability analysis predicts narrow peaks in mode 

strengths inside the shear layers whereas the data varies much 

less dramatically. Also, the prediction of the radial velocity 

fluctuations are poor relative to the azimuthal velocity 

fluctuation. To increase the accuracy of the linear stability 

analysis, the axisymmetric assumption will be relaxed in future 

work. 

 

Forced Response 

The forced response of the flow field is highly dependent 

on the forcing conditions. The response of the flow field to 

acoustic forcing is quantified using the azimuthal mode 

decomposition on the Fourier-transformed velocity field at the 

forcing frequency and visualized by comparing the 

instantaneous and phase-averaged vortex roll-up in the velocity 

data. The flow response to non-axisymmetric, out-of-phase, 

forcing has strong non-axisymmetry with respect to the jet axis. 

Different mode strengths for the vortex breakdown region, inner 

shear layer, and outer shear layer are presented in Figure 14, 

and the visualization of the velocity field in shown in Figure 15. 

 

 
Figure 14: Azimuthal modes, m=-2 to m=2, at three radial 

positions for 400 Hz out-of-phase forcing with mean flow 

velocity of Uo=10 m/s, swirl number of 0.85. 
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The response does not vary greatly between different radii. 

Modes m=-1 and m=1 are dominant across the flow field at a 

range of radial and downstream positions. This non-

axisymmetric fluctuating energy is a result of both the non-

axisymmetric acoustic velocity fluctuations as well as the non-

axisymmetric shear layer oscillations. The physical 

manifestation of the shear layer oscillation is helical vortex roll-

up, which is evident in both the instantaneous and phase-

average velocity fields in Figure 15. Notional representations of 

the helical shape of the vortex roll-up are shown as well. 

 

Instantaneous Velocity Phase-Averaged Velocity 

  

  

  
Figure 15. Normalized velocity (vectors) and vorticity 

(color) at three phases of the acoustic cycle showing 

instantaneous (left) and phase-averaged (right) fields at 400 

Hz out-of-phase forcing. 

 

To help explain the prominence of the m=-1 and m=1 

modes in the out-of-phase forcing cases, we perform the 

azimuthal mode decomposition on a model problem that is 

composed of two out-of-phase oscillating panels. This model 

problem represents a flapping motion similar to the transverse 

acoustic velocity field in the out-of-phase forcing case. This 

configuration captures m=|1|, non-axisymmetric motion while 

simplifying the geometry considerably. The difference between 

the oscillating planes and the out-of-phase acoustic forcing is 

the presence of swirl and helical fluid motion in the actual flow 

field. Figure 16 shows the scalar values of each half, where 

points on the left oscillate as a cosine of a set frequency, and 

points on the right oscillate with the same frequency but a phase 

difference of 180°.  

 
Figure 16: Oscillating planes of the model problem with 

white interpolation points. 

 

The azimuthal mode decomposition of the model problem 

is plotted in Figure 17, which shows the mode strengths for 

modes m=-10 to m=10 at the frequency of oscillation. This 

configuration has strong peaks for modes m=-1 and m=1 while 

the other modes have lesser strength. In the oscillating panels 

case modes m=1 and m=-1 have the same magnitudes. Higher-

order odd modes appear as well, but the mode strengths are 

much lower than the first helical modes. These higher order 

modes are most likely a manifestation of the step change 

between the two halves of the field, which leads to the Gibb’s 

phenomena.  

 
Figure 17: Mode strengths for model problem consisting of 

oscillating planes. 

 

As shown in Figure 14 and Figure 17, modes m=-1 and 

m=1 are the strongest modes for the out-of-phase forcing and 

oscillating planes cases. This shows the similarity of the motion 

of the transverse acoustic velocity fluctuations in the out-of-

phase forcing case to a bulk oscillatory motion in the field, 

described by the oscillating plates.  

One difference between the oscillating planes and out-of-

phase forcing cases is the phase difference between the m=1 

and m=-1 modes. The phase difference between the m=1 and 
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m=-1 modes of the model problem is shown in Figure 18 in 

black squares, while the phase difference between these same 

modes of the 400 Hz and 800 Hz out-of-phase forcing data is 

shown in red circles and blue diamonds, respectively. The phase 

difference between modes m=1 and m=-1 in the oscillating 

planes case is zero. However, in the out-of-phase forcing data, 

the phase between modes m=1 and m=-1 is approximately 

180°. The difference between the oscillating planes and the 

experimental results is most likely due to the swirling motion in 

the flow field. The swirl motion has a preferential direction, 

causing the helices in the flow field to not only wind but also 

rotate around the flow field, whereas in the oscillating planes 

there is no rotation.  

 
Figure 18: Phase difference (normalized by π) between 

modes m=-1 and m=1 for 800 Hz out-of-phase forcing (blue 

diamonds), 400 Hz out-of-phase forcing (red circles), and 

the oscillating plane model problem (black squares). 

  

The response of the flow field to axisymmetric, or in-phase, 

forcing is quite different. Figure 19 shows the azimuthal mode 

decomposition of the fluctuating velocities at 400 Hz in-phase 

forcing. Inside the vortex breakdown bubble, at r/D=0.2, the 

response of the flow field is relatively small, and differences in 

the strength of the velocity fluctuations from the inherent 

instability are minimal; this was discussed in more detail in 

O’Connor and Lieuwen [29]. However, the response of the 

shear layers, at r/D=0.4 and r/D=0.6, is quite different in the in-

phase forcing case than with out-of-phase forcing. In the 

presence of in-phase forcing, the response of the m=0 mode is 

quite strong at x/D=0 – several times stronger than the 

fluctuating energy in the other modes. This is a result of the 

axisymmetric forcing imposing an axisymmetric boundary 

condition at the vortex separation point, resulting in ring vortex 

shedding. This ring vortex can be seen in the velocity field 

visualization in Figure 20 for the axisymmetric forcing case.  

However, the strength of the m=0 mode significantly 

decays downstream of the separation point and the strengths of 

the non-axisymmetric m=1 and m=-1 modes increase. This loss 

of axisymmetry is also evident in the flow visualization in 

Figure 20, where the vortex “tilts” as it moves downstream in 

both the instantaneous and phase-averaged images. The fact that 

this tilting occurs in the phase-averaged images is indicative of 

the repeatability of this phenomenon. This non-axisymmetric 

behavior, even in the presence of axisymmetric acoustic forcing, 

is likely the result of the inherent non-axisymmetric instability 

characteristics of the flow field, as shown in Figure 11. The 

inherent instabilities have significant m=-1 and m=-2 content, 

and after the separation point where the axisymmetric boundary 

condition is imposed by the acoustic forcing, the inherent non-

axisymmetric behavior is evident.  

  

 
Figure 19: Azimuthal modes, m=-2 to m=2, at three radial 

locations for 400 Hz in-phase forcing.  
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Instantaneous Velocity Phase-Averaged Velocity 

  

  

  
Figure 20. Normalized velocity (vectors) and vorticity 

(color) at three phases of the acoustic cycle showing 

instantaneous (left) and phase-averaged (right) fields at 400 

Hz in-phase forcing. 

 

Similar results were seen at 800 Hz at both in-phase and 

out-of-phase conditions. When comparing the same forcing 

conditions, there are not many differences between the 400 Hz 

and 800 Hz conditions. Forcing at 400 Hz generally leads to 

higher velocity fluctuation amplitudes but overall growth and 

decay of mode strength does not vary significantly. 

CONCLUSIONS 
This work has described both the time-averaged and 

fluctuating velocity fields of a transversely forced swirling 

annular jet. The results show that the jet is largely axisymmetric 

in the time-average. This was quantified using an azimuthal 

mode decomposition of the time-averaged velocity field. 

Axisymmetry is strongest at the jet exit and decreases as the 

flow progresses downstream as a result of the non-axisymmetric 

boundary conditions imposed by the combustor geometry. It 

was also shown that acoustic excitation does not significantly 

alter the time-averaged behavior of the strongly axisymmetric 

flow field.  

The inherent instability modes of the jet are dominated by 

m=-1 and m=-2 in both the measurements and stability analysis. 

These results indicate that the vorticity fluctuations in the jet, 

driven by hydrodynamic instability, are non-axisymmetric. 

Acoustic forcing is able to alter the dynamic behavior of 

the jet, and the response of the jet is largely dependent on the 

axisymmetry of the acoustic forcing condition. Non-

axisymmetric acoustic forcing leads to non-axisymmetric 

fluctuation in the m=1 and m=-1 modes throughout the flow 

field. Through the use of a model problem, it was shown that 

this m=1 and m=-1 modal content is due to both the non-

axisymmetric acoustic velocity fluctuations and helical motion 

in the flow field. The axisymmetric forcing condition, however, 

results in strong axisymmetric motion at the dump plane, shown 

to be an m=0 mode resulting in a ring vortex roll-up. Further 

downstream, however, the m=0 mode decays and the m=1 and 

m=-1 modes increase in strength, resulting in a tilting of the 

vortex ring. This is likely a result of the natural non-

axisymmetry of the flow field driving the dynamical behavior, 

even in the presence of acoustic forcing. 

These results have important implications for flame 

response during transverse instabilities. Previous theoretical 

work has shown that the response of a time-averaged 

axisymmetric flame, as would be supported in this time-

averaged axisymmetric flow field, does not respond to purely 

non-axisymmetric input disturbances, as would be driven by 

out-of-phase forcing, in the linear, compact flame regime [9, 

47]. Despite the vortical velocity fluctuations in the flow field 

and resultant flame wrinkling, the net fluctuation in flame 

surface area over an acoustic cycle is zero. It has been shown 

that axisymmetric disturbances do result in net flame surface 

area fluctuations in these flames, although the non-axisymmetric 

behavior of the vortical velocity fluctuations further 

downstream of the dump plane may decrease the overall 

response of the flame. Future work will involve further 

investigation into the overall impact of this non-axisymmetric 

downstream development on flame response. 
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