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Abstract

This article focuses on co-simulation of the coupled nonlinear dynamics of

flame heat release rate, acoustics, and feedback control in an active thermoa-

coustic oscillation control system. This work is motivated by an extensive ex-

isting body of literature showing the potential of closed-loop active control to

suppress thermoacoustic oscillation. Linear algorithms such as linear quadratic

Gaussian (LQG) control are often used for thermoacoustic oscillation control,

with the important caveat that flame heat release rate oscillation is often highly

nonlinear. This creates a need for a tool that can co-simulate the coupled non-

linear thermoacoustic dynamics with linear control. The main contribution of

this article is the development of a tool capable of co-simulating nonlinear heat

release dynamics using a level-set formulation, together with linear acoustics

plus a linear feedback controller. The article demonstrates this framework on

an LQG-controlled wedge flame in a unidimensional Rijke tube. The nonlinear

thermoacoustic model is formed in a modified level-set solver by connecting the

linear acoustics to the original nonlinear flame dynamics via a velocity convec-

tion equation. This framework succeeds in preserving the nonlinearity of the

thermoacoustics in the Rijke tube without the LQG control. For the flame-

driven Rijke tube in this article, LQG control is successful in suppressing the

nonlinear thermoacoustic oscillation. In addition, the simulation based on the
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framework is useful in elucidating the impact of factors such as flame location,

flame temperature rise, and the timing of the onset of LQG control on the

instability suppression performance and energy needs.
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1. Introduction

Modern gas turbine combustors apply lean-premixed combustion to satisfy

the low NOx emission requirement in the power industry. Thermoacoustic os-

cillation is an undesirable issue in lean-premixed combustion systems [1] and

manifests as large amplitude pressure oscillations. It is generated by the feed-5

back coupling between flame heat release rate oscillations and combustor acous-

tic perturbations [2], where the flame heat release rate oscillation serves as an

energy source for the acoustics. The acoustics inside the combustor affect the

flame heat release rate and this relation is captured by a flame describing func-

tion (FDF) [3, 4, 5]. To attenuate or even avoid thermoacoustic oscillations,10

active control has been extensively studied in the literature and demonstrated

to be effective, especially model-based control [6, 7].

Among different methods used for model-based control design, physics-based

modeling of the thermoacoustic system captures more knowledge compared to

empirical modeling and is more effective in suppressing the thermoacoustic oscil-15

lations in practical systems. A physics-based model of a thermoacoustic system

is built by connecting the heat release dynamics model to an acoustic solver.

In gas turbine combustors, acoustics are assumed to be linear since the pres-

sure oscillation amplitude is usually two orders of magnitude smaller than the

mean pressure. The heat release rate dynamics can be either linear or nonlinear20

depending on the oscillation amplitude and frequency. When the oscillation

amplitude is small, a linear time-lag model (n− τ) can be used to describe the

flame dynamics [8]. In this situation, the flame heat release rate is proportional

to the velocity oscillation with a time delay; this flame model has been useful
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in analyzing the instability of certain thermoacoustic systems [9, 10]. For most25

practical flames, the flame dynamics are nonlinear and usually modeled by a

flame describing function (FDF). The FDF captures the nonlinear dependence

of flame heat release oscillations on the acoustic perturbations upstream of the

flame [3]. This dependence has been observed in some experimental studies

[11, 3, 12]. The nonlinear flame dynamics features are included in prediction of30

limit cycle amplitudes [3, 5, 13, 14], and can explain mode switching and insta-

bility triggering behaviors [3, 15, 16, 17], including spinning modes in annular

combustors [18]. Compared to the linear n−τ model, the FDF is more accurate

in capturing the flame dynamics and describing the nonlinear dynamics in the

thermoacoustic system. A control design based on an FDF will likely perform35

better at suppressing oscillations.

In describing the flame dynamics, the level-set formulation, sometimes re-

ferred to as a “G-equation” formulation, is one of the methods that captures

the nonlinearity in flame heat release response [19, 20, 21, 22, 23]. Initially

used by Fleifil et al. [21] to model heat release rate dynamics in the presence40

of acoustic fluctuations, the method captures one of the key sources of non-

linearity in flame dynamics: kinematic restoration [24]. Previous studies have

considered the nonlinear dynamics of Rijke tubes using level-set models to study

the nonlinear behaviors of thermoacoustic systems [25, 26, 15, 16, 17]. Dowling

[25] derived a kinematic model of the response of the flame to flow distur-45

bances from a more general G-equation and coupled this kinematic flame model

with the acoustic waves generated in the duct. The nonlinearity is observed

in the system from the time evolution of disturbances. Kashinath et al. [26]

modeled the flame using a nonlinear kinematic model based on the G-equation.

The time-domain simulation of the coupled thermoacoustic system is performed50

with a Galerkin discretization for acoustic pressure and velocity. The heat re-

lease rate in the time-domain simulation is highly nonlinear and the limit cycle

predictions agree with the frequency domain analysis. Kashinath et al. [15]

furthered the nonlinear analysis in a similar system. The study focused on a

two-dimensional premixed Bunsen flame numerically simulated by a G-equation55
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coupled with duct acoustics and examined the bifurcations and routes to chaos

for three control parameters. Waugh et al. [16] considered a ducted axisym-

metric premixed flame using a level-set solver. They improved the calculation

efficiency of the bifurcations from the limit cycles using matrix-free continuation

methods. Orchini et al. [17] coupled a level-set kinematic model for a laminar60

flame with a state-space realization of the linearized acoustic equations to form

a low-order time-domain model. They investigated the nonlinear stability of

the thermoacoustic system, both in the frequency and time domains. These

studies show the potential of applying the similar method for control applied

closed-loop thermoacoustic system.65

Thermoacoustic oscillation can be attenuated using either linear or nonlin-

ear control algorithms, with the former being more common. There have been

several studies of applying linear control to suppress nonlinear thermoacoustic

oscillations. Different controls are selected for thermoacoustic oscillations with

different levels of nonlinearity in the instability model [27, 28, 29, 30]. Though70

some researchers initially treat the nonlinearity in a manner similar to model

uncertainty, then evaluate the stability of the closed loop system with a con-

troller using the integral quadratic constraints method [29]. The most often

used control for nonlinear thermoacoustic oscillations is linear quadratic Gaus-

sian (LQG) control [31, 32, 33]. LQG control is composed of two parts: a linear75

quadratic regulator (LQR) and a Kalman filter [34]. The idea behind LQR is

to design a stabilizing control input for a linear system that simultaneously op-

timizes a quadratic cost function in the system states and control inputs [35].

The Kalman filter, which can be regarded as a noise attenuator, estimates the

system states from observed noisy measurements [34]. Compared to phase-80

shift control [36], the main advantage of LQG control is that it can suppress

multiple instability modes instead of single mode. LQG has been successfully

applied to suppress thermoacoustic oscillation in some laboratory combustors

[31, 32, 37, 38].

The literature shows that it is promising to apply linear control to suppress85

nonlinear thermoacoustic oscillations, and so the goal of this work is to ex-
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plore the utility of linear control on nonlinear thermoacoustic oscillations. In

this work, we adopt a level-set solver to describe the nonlinear flame dynamics

and model the thermoacoustic system with LQG control. The thermoacous-

tic model, describing the thermoacoustic oscillations in a unidimensional Rijke90

tube, is formed by adding a linear state-space acoustic model to a level-set

solver, which describes the nonlinear flame dynamics. The LQG controller is

designed based on a linearization of the flame describing function of this flame.

We then apply the LQG controller to the original thermoacoustic model, which

is realized by connecting the LQG controller with the level-set solver. There are95

certain limitations to using a level-set formulation for modeling flame dynamics.

In particular, the formulation does not conserve momentum or energy across the

flame; the implications of this will be noted in the results of our work. However,

the level-set formulation provides two major advantages over other flame mod-

eling strategies. First, it faithfully captures the nonlinear behavior of flames100

that arises from kinematic restoration, which a model like n − τ would not.

Second, it is computationally efficient, and provides the required nonlinearity

at relatively little cost as compared to other options like computational fluid

dynamics. Given the successes of previous studies using this method as well as

these two benefits, it’s an appropriate framework for exploring the central ques-105

tion of this work, which focuses on the application of linear control to nonlinear

flame dynamics.

In this work, we choose to use a wedge flame, rather than the previously-used

Bunsen flame approach, for three reasons. First, previous work has explored

the system dynamics of Rijke tubes driven by Bunsen flames [21, 39, 40, 41, 42,110

15]. Second, wedge flames can display higher levels of nonlinearity in the flame

response because only the base of the flame is bounded, whereas Bunsen flames

are bounded by both the stabilization boundary condition and the “closed tip”

boundary condition at the top [43, 44, 45, 46, 47, 48]. To test the limits of

control in the context of nonlinear behavior, the wedge flame provides more115

of a challenge. Finally, flames in realistic devices like gas turbines tend to

resemble confined wedge flames, although the stabilization mechanism often

5



involves swirl, not just a bluff body [49, 12, 50, 51, 52, 53, 4]. Despite this,

this flame description moves one step closer to understanding the opportunities

for active control of thermoacoustic oscillations by incorporating more realistic120

flame geometries and models.

2. Methods

2.1. Flame-driven Rijke Tube

The Rijke tube configuration considered in this work is based on an experi-

ment designed for a previous study of thermoacoustic model identification [54],125

which is similar to other flame-driven Rijke tube experiments [41]. The Rijke

tube’s cross-sectional view is shown in Fig. 1. It has a length of L and a radius

of ro. Air flows into the outer tube at a velocity of ubulk. The flame is stabi-

lized on an inner tube with radius ri, where a reactant mixture of methane and

air with an equivalence ratio φ flows into the inner tube at velocity of u0. An130

acoustically-compact, confined wedge flame is stabilized at the flame location

bf . We assume an isentropic, homogeneous, and steady mean flow as well as a

step temperature rise across the flame in the Rijke tube. The temperatures of

both the reactants in the inner tube and the air in the outer tube are T1 and

the temperature downstream of the flame is assumed to be a constant T2.135

Given the aspect ratio of the Rijke tube, we only consider longitudinal acous-

tics in the axial coordinate x and neglect transverse modes. The acoustic char-

acteristics of the flame-driven Rijke tube are largely dependent on the flame

location bf and temperature distribution along the Rijke tube T (x). Following

the work of Dowling and Stow [55], we obtain the linearized momentum and140

energy conservation equations for the Rijke tube in Eq. (1) and Eq. (2). These

equations assume that: (i) the mean flow occurs at a small Mach number (i.e.,

the bulk flow velocity ubulk is low); (ii) fluctuations in density, pressure, velocity,

and temperature around equilibrium states are small; (iii) the acoustic damping

is neglected. The work presented in this paper is based on a Rijke tube model145
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Figure 1. Rijke tube cross-section schematic

with assumptions made above.

ρ̄
∂u′

∂t
= −∂p

′

∂x
(1)

∂p′

∂t
= −ρ̄c̄2 ∂u

′

∂x
+ (γ − 1)q′ (2)

In this model, ρ̄ and c̄ are mean density and mean speed of sound. The variables

u′, p′, and q′ represent the fluctuating velocity, pressure, and heat release rate

per unit volume from the flame, respectively. The independent variables are

time t and axial direction x. The constant γ is the ratio of specific heats. Based150

on the acoustic compactness of the flame, the fluctuating heat release rate per

unit volume is described by a product between the heat release rate per unit

cross-sectional area of the Rijke tube Q′ and a Dirac delta function, as shown

in Eq. (3).

q′(x, t) = Q′(t)δ(x− b) (3)
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The inlet is assumed to be an acoustically closed boundary, where the acous-155

tic velocity fluctuation is zero. The exit of the Rijke tube is open to the at-

mosphere and regarded as an acoustically open boundary, where the pressure

fluctuation is zero. The two boundary conditions are close to those of the actual

combustor and they are summarized in Eq. (4). However, there are limitations

of the application of a Rijke tube to study thermoacoustic oscillations in actual160

gas turbine combustors. The application of the Rijke tube in this study serves

the goal of understanding the application of linear control to nonlinear thermoa-

coustic oscillations. Compared to real gas turbine combustors, the Rijke tube

has following limitations: (i) the radius of a Rijke tube is constant while there

is a sudden area expansion near the dump plane in a gas turbine combustor;165

(ii) flow velocity and pressure is very low in a Rijke tube compared to those in

an actual combustor; (iii) only longitudinal acoustic mode is considered in a Ri-

jke tube while transverse acoustic mode exists in some gas turbine combustors;

(iv) the flame is assumed to be a compact heat release source in a Rijke tube,

whereas this may not be the case in all combustor configurations.170

u′(x = 0, t) = 0, p′(x = L, t) = 0 (4)

2.2. Acoustic Model

Due to the the step increase of the mean temperature across the flame, there

is a discontinuity of mean speed of sound c̄(x) and mean density ρ̄(x) at the

flame location. Similar to the wave-based method by Dowling [56], we consider

the two regions upstream and downstream of the flame separately, as shown175

in Eq. (5) and Eq. (6). In each region, the mean variables c̄(x) and ρ̄(x) are

constant and the flame location is the boundary between regions. The location

just upstream of the flame boundary is b− and the location just downstream

of the flame boundary is b+. At the boundary, two conditions are enforced, as

shown in Eq. (7). First, pressure must be continuous, such that the pressure180

fluctuation is equal on either side of the flame location. Second, the difference of

velocity oscillation across the flame is caused by the heat release rate oscillation
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per unit area Q′(t).

ρ̄1
∂u′

∂t
= −∂p

′

∂x
,
∂p′

∂t
= −ρ̄1c̄

2
1

∂u′

∂x
(5)

ρ̄2
∂u′

∂t
= −∂p

′

∂x
,
∂p′

∂t
= −ρ̄2c̄

2
2

∂u′

∂x
(6)

p′(x = b−, t) = p′(x = b+, t)

u′(x = b+, t)− u′(x = b−, t) =
γ − 1

ρ̄c̄2
Q′(t)

(7)

The original acoustic model is infinite-dimensional. In a practical combustor,

high-frequency modes are damped and the dominant acoustic modes are on the185

order of hundreds of Hertz. The combustor can sustain multiple modes, how-

ever, and the acoustic pressure or velocity inside the system can be written as a

superposition of the multiple modes. For these reasons, we apply an expansion

to represent the acoustic variables u′ and p′ as products of time-dependent coef-

ficients and spatial orthogonal basis functions. We then use Galerkin projection190

to substitute the expanded acoustic variables into the original partial differen-

tial equations, multiply the equations with a basis function, and integrate over

the spatial domain. This method converts the original partial differential equa-

tions to a set of ordinary differential equations describing the dynamics of the

time-dependent coefficients; details of this process are described in the supple-195

mental material. In the expansion, we select shifted Legendre polynomials as

the basis functions. The original Legendre polynomials are defined in region

[−1, 1]. To make the basis functions orthonormal within the region [0, 1], which

is the spatial domain for the normalized governing equations, we shift the orig-

inal Legendre polynomials to region [0, 1] with appropriate scale factors. The200

detailed process of obtaining the shifted Legendre polynomials are described in

the supplemental material.

The set of ordinary differential equations after Galerkin projection serves as

the state space form of the acoustic model, whose state variables are the time-

dependent coefficients in the expansions of velocity u′ and pressure p′. The205
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magnitudes of the two acoustic variables usually differ by at least two to three

orders of magnitude, which would make the state matrix of the state space

model numerically ill-conditioned. To ensure a well-conditioned state matrix,

the two acoustics variables and the heat release rate oscillations are normalized

by the following reference values: u0, patm, and Q0.210

Both the mean mixture flow velocity, u0, and heat release rate per unit area,

Q0, are linked to the shape of the wedge flame. In this paper, the steady wedge

flame is stabilized on a center-body with negligible width compared to the inner

tube radius ri, as shown in Fig. 2. For an equivalence ratio φ, the laminar

flame speed SL is calculated using the GRI-3.0 mechanism, as in Ref. [57]. The215

steady wedge flame shape (blue line) is determined by the relation between the

flame speed SL and incoming mixture flow velocity u0, as in Eq. (8), where

the flame aspect ratio β is the ratio between the flame length Lf and flame

width/radius Rf . In addition to the flame speed, the mixture density ρm and

heat of combustion per unit mass of the mixture hR,m also depend on the220

equivalence ratio. Knowing the above variables of the mixture and the outer

tube radius ro, we can determine the mean heat release rate of the flame per

unit cross-sectional area of the outer tube Q0, as indicated in Eq. (8). The

detailed formula to determine the mean mixture flow speed and heat release

rate per unit area is in Eq. (8), where subscript “m” represents the mixture.225

u0 = SL
√

1 + β2

Q0 =
ρm(φ)SL(φ)hR,m(φ)Af,0

πr2
o

Af,0 = πr2
i

√
1 + β2

(8)

Knowing the mean variables for velocity, heat release rate per unit area

and flame area, the governing partial differential equations for the normalized

acoustic variables are in Eq. (9) and Eq. (10). When considering control

applications, the actuator is selected to be a speaker mounted at the Rijke tube

inlet, providing the acoustic velocity signal un,c as the control input to attenuate230
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Figure 2. Wedge flame stabilized on a center-body described by a level-set method

the pressure oscillations. This leads to the updated boundary conditions in Eq.

(11).

∂u′n
∂t

= −patm
ρ̄u0

∂p′n
∂x

(9)

∂p′n
∂t

= − ρ̄c̄
2u0

patm

∂u′n
∂x

+ (γ − 1)
Q0

patm
δ(x− b)Q′n (10)

u′n(x = 0, t) = un,c(t), p
′
n(x = L, t) = 0 (11)

The order of the state space model depends on the number of expansion

terms used to approximate the acoustic variables. Based on the system charac-

teristics, we apply model order reduction to focus on the dynamics of a finite235

number of the coefficients, which correspond to a finite number of modes. Sim-

ilar to the balanced truncation method applied by the authors in earlier work

[58], we truncate the system to an order of 8 to capture the first four acoustic

modes. The two inputs of the model are the normalized oscillating heat release

rate per unit area Q′n and velocity from the actuator at the Rijke tube inlet240

u′n,c, in the cases when a controller is applied. This velocity is zero when the

controller is not activated. The two outputs of the model are the normalized
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oscillating velocity just upstream of the flame u′n,b and the pressure at the Rijke

tube inlet p′n,0. The state space form of the acoustic model is in Eq. (12).

ẋ = Anx +Bn

Q′n
un,c

 ,
u′n,b
p′n,0

 = Cnx +Dn

Q′n
un,c

 (12)

2.3. Flame Dynamics245

The flame dynamics are described by a level-set G-equation model examined

in earlier work by one of the authors [57]. The model assumes that the G-field

is a smooth scalar field and the flame is tracked by the iso-contour G=0; this

surface separates the reactants (G<0) from the products (G>0), as shown in

Fig. 2. The instantaneous flame position, which is denoted by the scalar field250

G, is governed by the G-equation in Eq. (13).

∂G

∂t
+ #»u · #»∇G = SL|

#»∇G| (13)

where #»u is the local flow velocity vector, and SL is the laminar flame speed.

In addition to the steady flame location described by the level-set G0 = 0,

Figure 2 also illustrates the instantaneous wedge flame G(x, r, t) (red curve)

with oscillating incoming flow velocity #»u (x, r, t). The fluctuating flame position255

causes the fluctuating flame area Af , which is calculated using the integral

equation in Eq. (14). Assuming constant mixture density ρ, heat of combustion

per unit mass of the mixture hR, and flame speed SL, the heat release rate

per unit cross-sectional area of the Rijke tube is proportional to the flame area

in this paper, Q = ρSLhRAf/(πr
2
o). The non-dimensional fluctuating flame260

area A′n is the fluctuating part of the flame area oscillation normalized by the

mean flame area, A′n = (Af −Af,0)/Af,0, and it is equal to the non-dimensional

fluctuating heat release rate per unit area Q′n.

Af =

∫
Ω

2πrδ(G)| #»∇G|drdx (14)

12



2.4. Velocity Oscillation Advection

The flame is perturbed due to the acoustic velocity oscillation upstream of265

the flame. The input velocity oscillation at the base of the flame, u′n,b, comes

from the state-space acoustics model and is advected downstream in the level-

set, as described in Eq. (15).

∂u′n
∂t

+ uadv
∂u′n
∂x

= 0, u′n,b = u′n(x = b, t) (15)

where uadv is the advection speed of the velocity perturbation and K is the

advection speed relative to the bulk velocity, K = u0/uadv = 1.25 in this paper.270

The velocity disturbance that advects along the flame is modeling a vortical dis-

turbance, as would be excited by the incoming acoustic velocity perturbation

[52]. For simplicity, we assume that the vortical velocity disturbance has the

same amplitude as the acoustic velocity disturbance, to be consistent with the

FDFs of Preetham et al. [47] and as nonlinearity in the flame behavior is present275

at this condition. A previous study by Kashinath et al. [39] explored the im-

pact of disturbance convection speed and amplitude further. Following work by

Preetham et al. [47], we only consider axial velocity perturbations throughout

the domain (referred to in Ref. [47] as Velocity Model A). This makes it pos-

sible to compare the results of this work to existing flame describing functions280

in the literature. At every point in the level-set domain, the flame location is

determined by solving the level-set equation.

2.5. Numerical Scheme

The thermoacoustic model is generated by connecting the above three indi-

vidual models: acoustics, flame dynamics, and velocity perturbation advection,285

as shown in Fig. 3.

The flame dynamics are simulated using the level-set solver LSGEN3D [59].

To match the non-dimensional coordinate settings in LSGEN3D, we apply the

following normalized variables: xn = x/Lf , rn = r/Rf , yn = y/Rf , zn = z/Rf ,

un = u/u0, tn = tu0/Lf . To save computational cost, we simulate the dynamics290
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𝑄𝑛
′
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′

𝑝𝑛,0
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𝑄𝑛
′

𝑢𝑛,𝑐

𝜕𝐺

𝜕𝑡
+ 𝑢0 1 + 𝑢𝑛

′
𝜕𝐺

𝜕𝑥
= 𝑆𝐿

𝜕𝐺

𝜕𝑥

2

+
𝜕𝐺

𝜕𝑟

2

𝜕𝑢𝑛
′

𝜕𝑡
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′
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Acoustics Flame
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advection

Velocity advection

Acoustics Flame

Figure 3. Thermoacoustic model - connecting acoustics, velocity advection, and flame models

of a two-dimensional flame in the x and r coordinates, which is a slice of an

axisymmetric wedge flame along the ythird-coordinate, and the flame area is

integrated assuming all dynamics are axisymmetric. Since LSGEN3D solver is

designed for three-dimensional domains, we assign a small non-zero thickness

in the third-coordinate. This simplification is reasonable since we only consider295

the fluctuating velocities in axial direction. In the numerical computation, the

original G-equation in Eq. (13) is updated for axial velocity perturbation only,

as in Eq. (16), where u′n is the axial velocity oscillation component at each

location in the field.

∂G

∂tn
+ (1 + u′n)

∂G

∂xn
=

1√
1 + β2

√(
∂G

∂xn

)2

+ β2

(
∂G

∂rn

)2

(16)

The domain is uniformly discretized in the x, y, and zall the three directions.300

After the grid convergence test, the spatial and temporal resolution of the level-

set update scheme are ∆xn = 5× 10−3 and ∆tn = 5× 10−4, respectively. The

numbers of grid points distributed in the three coordinates are 305, 11, and

209, which means that the size of the domain is 1.52×0.05×1.04. This domain

captures half a branch of the wedge flame to save computational cost based on305

the axisymmetric assumption. The non-dimensional radius and length of the

steady flame are both set to be 1.0. The width of the center-body is assumed to

be zero in the simulation. To ensure flame attachment, the value of G at mesh

points adjacent to the flame attachment point are held constant throughout the

computation.310
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Based on the original level-set solver LSGEN3D, we add the acoustic models

and velocity perturbation advection equation as two additional modules. The

acoustics are represented by a two-input-two-output eighth-order state space

model, and solved using a fixed-step fourth-order Runge-Kutta scheme. The

time step size is half of the time step of the level-set solver G to ensure numerical315

stability considering the largest mode frequency in the system based on the

stability region of the numerical scheme.

The output of the state-space model includes the velocity perturbation just

upstream of the flame, at x = bf (see Eq. 15). For the velocity advection

equation, we choose the same second-order upwind scheme that is used for the320

level-set advection, which is a back and forth error compensation and correction

(BFECC) scheme [60]. The normalized advection speed is un,adv = 0.8 when

K = 1.25. The time step is kept the same as that for the level-set G update,

while discretizing Eq. 15 on a mesh with ∆xn = 0.08 to minimize numerical

dissipation.325

2.6. LQG Control Design

The LQG control design is based on a linear thermoacoustic model, which is

developed from the connection between the linear acoustics state space model

and a linearized FDF. The original FDF is taken from Preetham et al. [23] and

shown in Fig. 4; this FDF was calculated using the same wedge-flame level-330

set formulation described in Sec. 2.3. Figure 4 shows the FDF for three input

velocity oscillation amplitudes ε (where ε is the amplitude ua normalized by the

mean flow velocity amplitude, ε = ua/u0) as well as the curve-fit applied for this

study. The relative normalized velocity amplitude ε/εf is obtained by dividing

ε by the normalized critical velocity fluctuation that causes flame flashback,335

εf = 1− 1/
√

1 + β2.

The curve fitting is based on a model identification method to identify the

coefficients in the form of a second-order low-pass filter multiplied by a time

delay term. The frequency response of the FDF amplitude suggests the existence

of a zero with an increase of slope by 20 dB/decade of the frequency around340
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31.4 rad/sec (5 Hz), and the existence of two poles with a decrease of the slope

by 20 dB/decade near 62.8 rad/sec (10 Hz) and 125.7 rad/sec (20 Hz). The

phase of the FDF varies linearly with the frequency, indicating a constant delay

transfer function. So the model that approximates the FDF for three velocity

amplitudes contains the form in Eq. (17). The curve fit extrapolates the original345

data points in frequency ranges beyond 439.8 rad/sec (70 Hz). We validate

the frequency response of curve-fitted FDF by harmonic acoustic forcing with

higher frequencies using our simulation and the fit is accurate up to a frequency

of 6283.2 rad/sec (1 kHz), which covers all the dominant acoustic modes in

the system. The fit and validation are further discussed in the supplemental350

material. The parameters in the fitted FDF are summarized in Table. 1.

FTF (s) =
p1p2(s+ z1)e−τs

z1(s+ p1)(s+ p2)
(17)

Table 1. Parameters for fitted FTF at three velocity amplitudes

ε/εf 0.2 0.6 0.99

z1, (rad/sec) 37.70 34.56 37.70

p1, (rad/sec) 125.66 94.25 75.40

p2, (rad/sec) 138.23 94.25 81.68

τ , (sec) 0.039 0.039 0.039

To formulate the linear thermoacoustic model for LQG control design, we

select the FDF results at one velocity fluctuation amplitude. By connecting

the fitted FDF to the linear finite-dimensional acoustic model, the linear ther-

moacoustic model contains the time delay term from the FDF, which makes355

the thermoacoustic model infinite dimensional. The literature shows that the

instability frequency is near the acoustic mode frequency [15, 61]. Applying a

multi-point Padé approximation [62] near the first four acoustic mode frequen-

cies with a moment matching order of two, we reduce the order of the linear
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Figure 5. Block diagram of linear thermoacoustic model, (a) before LQG controller design,

(b) controller included in the nonlinear thermoacoustic model

thermoacoustic model to eight. In the linear finite-dimensional thermoacoustic360

model Hta(s), the input is the acoustic velocity at Rijke tube inlet u′n,c and

output is the pressure measured at the Rijke tube inlet p′n,0, as illustrated in

Fig. 5(a). Based on this single-input-single-output linear system, we design the

LQG controller to suppress the output pressure oscillations. In Sec. 3.3, we ex-

plore the performance of the LQG controller for the ε/εf = 0.2 vs. ε/εf = 0.99365

transfer functions.

The specific purpose of the LQG control in this work is to suppress the

pressure oscillation amplitude based on the measurement of the pressure at the

Rijke tube inlet. As a result, we define the quadratic cost function J to be

a sum of squares of weighted pressure output p′n,0 and weighted control input370

u′n,c, as shown in Eq. (18). In the cost function, the weighting matrices Q1 and

R1 determine the trade-off between input effort and output pressure oscillation.
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Based on the generic definition form of the quadratic cost function in the idea

of LQR design, we achieve the form of the weighting matrix Qxu. This matrix

specifies the trade-off between input and state variables, as in Eq. (19). The375

scalar Q1 in the upper left diagonal represents the weight for the state variables

and C is the output matrix in the linearized thermoacoustic model. The scalar

R1 in the right bottom diagonal represents the weight for the control input

effort. To ensure the fast decay of the LQR regulator, the weights Q1 and R1

are selected to be 1× 104 and 1, respectively.380

J =
1

tsim

∫ tsim

0

(
p′n,0

T
Q1p

′
n,0 + u′n,c

T
R1u

′
n,c

)
dt

=
1

tsim

∫ tsim

0

[
xT , u′n,c

T
]
Qxu

 x

u′n,c

 dt (18)

Qxu =

CTQ1C 0

0 R1

 (19)

The design of the Kalman filter needs to specify two weighting matrices Q2

and R2 representing two noise sources: process noise w and measurement noise

v . The process noise vector w has a dimension of 8, the order of the linearized

thermoacoustic model. The measurement noise v has a length of 1, the same

size as the output. The covariance matrix Qwv is formed in Eq. (20). Similar385

to the authors’ earlier work [58], the intensity of Gaussian white noise sources

w is assumed to be the same as that of the measurement noise v, 7×10−5. This

measurement noise intensity is the uncertainty level of the normalized pressure

measurement. To make the state estimation error decay at a desired rate, we

select the weights Q2 and R2 to be 1×105 and 1, respectively. The much larger390

weight on process noise makes the state estimation error decay more aggressively,

which is the goal of an observer. With these weighting matrix settings in the

designs of LQR and Kalman filter, the time constants corresponding to the

decay rate of both the output suppression and state estimation error reduction
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are around 10 ms.395

Qwv =

wQ2w
T 0

0 vR2v
T

 (20)

Based on the determined weights Q1, R1, Q2, and R2, we derive an LQG

controller that has the same order as the original open-loop plant model T (s).

The controller K(s) outputs the actuation u′n,c with the input from pressure

signal p′n,0. We couple the LQG controller directly in the level-set solver to

control the nonlinear instability in the same way we coupled the acoustic model400

H(s) to the level-set solver. The numerical scheme for the LQG controller is

also the same as that for the acoustic model. The structure of the nonlinear

thermoacoustic model with LQG controller applied is in Fig. 5(b).

3. Results

3.1. Flame Dynamics405

One of the key motivations for using the wedge flame level-set formulation for

this study is to capture the nonlinearity of unstable premixed flame dynamics.

In particular, processes like cusping and flame-wall interaction lead to large,

sudden flame area destruction and act as a saturation mechanism in the flame

response [63]. Table 2 shows the parameters for the baseline case that highlights410

the nonlinearity of the flame dynamics and resulting thermoacoustic oscillations.

The time-domain simulation of the closed-loop thermoacoustic system, which

is composed by connecting the linear acoustic model to the nonlinear flame

dynamics described by the level-set solver, captures the nonlinearities in the

system. The simulation is initiated with zero oscillations in pressure, velocity,415

and heat release within the entire level-set domain. The flame is stabilized at

the center-body with a mean aspect ratio β. Initially, the normalized flame area

A′n as well as the the normalized flame heat release rate oscillation Q′n become

nonzero due to the numerical truncation error in calculating the flame area.

As one of the two inputs to the acoustic model, the heat release oscillation420
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Table 2. Parameter specification of wedge flame baseline case

Parameter Value

Rijke tube length, L 0.875 m

Inner tube radius, ri 0.010 m

Outer tube radius, ro 0.046 m

Flame location, bf 0.262 m

Equivalence ratio, φ 0.8

Atmospheric pressure, patm 1.013× 105 Pa

Incoming air flow velocity, ubulk 0.654 m/sec

Incoming mixture flow velocity, u0 0.586 m/sec

Temperature upstream of the flame, T1 300 K

Temperature rise across the flame, ∆T 100 K

Mean heat release rate per unit area, Q0 8.657× 104 W/m2

Flame aspect ratio, β 2

Flame speed, SL 0.262 m/sec

Convection parameter, K 1.25

Ratio of specific heats, γ 1.4

Q′n leads to a nonzero velocity output upstream of the flame u′n,b, which is

convected downstream and perturbs the flame. If the system operates at an

unstable condition, this coupling excites an exponential growth of the pressure

oscillation in the thermoacoustic system. After the exponential growth, the

normalized pressure at the Rijke tube inlet p′n,0 and flame area A′n both arrive425

at a limit cycle due to the saturation of the flame area. The time series of the two

variables in the baseline case are shown in Fig. 6. The instability amplitude of

the limit cycle pressure oscillation is around 2.2×10−3patm (or 223 Pa). As the

flame area fluctuations become large, the mean flame area appears to increase,

such that the mean of the A′n signal is approximately 0.2. This is a known430
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Figure 6. Time series of the normalized flame area and the normalized pressure at Rijke tube

inlet in a limit cycle onset

issue with the level-set formulation and arises from the fact that energy is not

conserved and discussion of this issue can be found in Preetham [64].

Computing the fast Fourier transform (FFT) of the signal during the limit

cycle oscillations, we obtain the spectra of the two signals shown in Fig. 7. The

pressure spectrum has a dominant oscillation at a frequency around 728.8 rad/sec (116 Hz),435

which is close to the first acoustic mode in the Rijke tube, 716.3 rad/sec (114 Hz).

Due to the nonlinearity in the flame dynamics, the flame area spectrum contains

multiple frequencies that are harmonics of the fundamental mode.

The shape evolution of the center-body attached wedge flame over one half

period of the limit cycle oscillation is illustrated in Fig. 8. Two mechanisms of440

flame area fluctuation saturation are visible in these images (and indicated by

arrows): flame cusping and flame/wall interaction. Flame cusping appears pe-

riodically as a result of the propagation of the curved flame normal to itself [65],

as shown by the arrow in the plot at phase 0◦. Between the phase angles of
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Figure 7. Spectra of the normalized flame area and the normalized pressure at Rijke tube

inlet at limit cycle duration

90◦ and 135◦, the flame tip impinges on the wall, which leads to a rapid drop445

in flame area. These effects are why the flame area oscillation is cyclic but not

harmonic in Fig. 6.

3.2. Stability Mapping

Based on the time-domain simulation, we investigate the system stability

over two parameters: flame location and temperature rise across the flame.450

There are a number of different oscillatory states the system can take [15],

including periodic oscillation with one frequency, periodic oscillation with mul-

tiple frequencies, quasi-periodic oscillation, and chaotic oscillation. We ini-

tially mapped the stability of the system over a wide range of parameters:

b/L = 0.1 − 0.9 and ∆T = 100 − 300 K, then selected smaller ranges with455

interesting dynamical behaviors over which we performed a finer stability map-

ping. The final mapping includes flame locations between bf/L = 0.1 and

bf/L = 0.4 with an interval of 0.025 bf/L at a temperature rise ∆T = 100 K

across the flame. The temperature rise ∆T varies between ∆T = 100 K and
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Figure 8. Wedge flame evolution within a half cycle in the baseline case: bf/L = 0.3, ∆T =

100K

∆T = 300 K with a 20 K interval of at a flame location bf/L = 0.3. With the460

same parameter space, we also analyze the sensitivity of the LQG controller’s

performance to different thermoacoustic oscillation characteristics in Sec. 3.3.

3.2.1. Sensitivity to flame location

Figure 9 shows the normalized pressure oscillation in time domain for four

of the 13 operating conditions between bf/L = 0.1 − 0.4; the complete set of465

results is shown in the supplementary material. As the flame location varies in

the Rijke tube, the instability characteristics in the system vary as well. For all

the cases here, the system initially oscillates at the frequency of the first mode

and, in some cases, other frequencies appear at later times. This is consistent

with the fact that the first modes’ eigenvalues have the largest positive real parts470

among all the cases. The detailed distribution of the linearized thermoacoustic

system’s eigenvalues is shown in Fig. 10. The linearized system consists of linear

acoustic model and linearized FDF extracted at the input velocity amplitude

ε/εf = 0.99.

The instability amplitude increases until the flame area oscillation saturates.475

In the early oscillations, multiple unstable modes exist for cases with flame
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Figure 9. Time series of the normalized pressure oscillation at four different flame locations:

(a) bf/L = 0.1, (b) bf/L = 0.2, (c) bf/L = 0.3, (d) bf/L = 0.4, ∆T = 100 K

located at bf/L = 0.1 and bf/L = 0.2 when multiple modes have growth rates

at similar orders of magnitude. If the saturated oscillation in velocity just

upstream of the flame does not exceed the critical amplitude that causes flame

flashback εf , the saturation amplitude is constant, as in cases bf/L = 0.15 and480

bf/L = 0.325 in the supplementary material. When the oscillation amplitude

of the velocity at flame base exceeds the critical amplitude εf , flame flashback

should happen, in theory. However, in the level-set solver, flame attachment at

the center-body is enforced and it prevents flame flashback from happening in

simulation. In this situation, the flame area oscillation amplitude will remain485

constant yet continues to act as the input to the undamped acoustic system.

When one of the multiple harmonics in the flame area oscillation input is close

to an acoustic mode frequency in the marginally stable acoustic model, the

oscillation amplitude of that mode will increase linearly with respect to time,

as observed in case bf/L = 0.4. This is also observed in more cases when490

temperature rise across the flame varies, as shown in Fig. 12.
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Figure 10. Eigenvalue distribution for the linearized thermoacoustic system at four flame

locations with the flame transfer function at the velocity excitation amplitude of ε/εf = 0.99:

(a) bf/L = 0.1, (b) bf/L = 0.2, (c) bf/L = 0.3, (d) bf/L = 0.4, ∆T = 100 K

The four plots shown in Fig. 9 illustrate examples of different instability

progressions through time. In Fig. 9(a) with bf/L = 0.1, the system transitions

from the first mode of oscillation to the third mode between t = 1.45 sec and

t = 1.50 sec. At a flame location of bf/L = 0.2 in Fig. 9(b), the system behaves495

similarly to that in Fig. 9(a), except now the shift is to the second mode. For the

baseline case in Fig. 9(c), the system only oscillates at the first mode. Finally,

for a flame location of bf/L = 0.4, the system shifts from the first mode to the

second mode entirely at an earlier time than the other cases. Which mode the

system transitions to depends on the growth rate of the new dominant mode500

at the transition. Additionally, the location of the flame relative to the shape

of each mode is indicative of which modes will be excited. For example, in the

bf/L = 0.2 case, the flame is located at the third mode’s pressure node and

hence, this mode can not be excited. For the baseline case bf/L = 0.3, the

node of the second mode is close to the flame location and this mode does not505

appear. The mode shapes for the first four acoustic modes are included in the

supplementary material for all the cases studied, including 13 flame locations

and 11 temperature rises cases.
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Figure 11. Phase difference between oscillations of mode 1 pressure at flame location and

flame area in two durations for different flame locations, ∆T = 100 K

The location of the flame relative to the spatial mode shape, especially the

pressure node, explains why some modes are not excited. While alignment of510

the flame and a pressure anti-node is conducive for thermoacoustic coupling, the

pressure and heat release rate oscillations must also be aligned in time. In the

modeled system dynamics, no acoustic energy losses exist and the net acoustic

energy input is purely the driving effect, quantified by the Rayleigh index. This

term is the integral of the product between pressure and heat release oscillations515

over space and time. Since the flame is acoustically compact at flame location bf ,

the Rayleigh index is simplified to a time domain integral. The key parameter

that affects the Rayleigh index is the phase difference between the oscillations

of pressure at the flame location and the flame heat release rate. The phase

difference is summarized in Fig. 11, for the cases with different flame locations.520

Figure 11 shows the phase difference, determined using the FFT of the two

signals, in the first 0.5 seconds. Among all the different flame location cases,

the phase difference of the first mode is smaller than 90◦ in the first 0.5 seconds,

which means a positive driving of the mode. As the flame is located further

down the tube, the phase difference becomes closer to 90◦ and the driving effect525
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becomes weaker; this agrees with the initial exponential increase of the pressure

oscillation amplitude observed in the time series results for the four cases in Fig.

9 and all the cases in the supplementary material. After the first 0.5 seconds,

the phase difference of the first mode is close to 90◦ for all the cases regardless of

flame location; this lack of thermoacoustic driving causes the saturated pressure530

oscillation behavior in the time series data between 0.5 and 1.0 seconds.

3.2.2. Sensitivity to temperature rise across the flame

Variations in the instability characteristics also occur when the temperature

rise across the flame changes. The temperature rise varies from 100 K to 300 K

with an interval of 20 K, while the flame location is kept the same as that in the535

baseline case bf/L = 0.3. The temperature rise is varied by changing the air

flow velocity in the outer tube without changing any parameters of the flame.

In all cases, the low-Mach assumption is still valid. Similar with the analysis

of sensitivity to the flame location in Sec. 3.2.1, we include the pressure time

series, frequency spectra, and acoustic mode shapes for all the temperature rise540

cases in the supplementary material for reference.

Figure 12 shows the normalized pressure oscillations in the time domain for

four of the 11 cases. The ∆T = 200 K and ∆T = 220 K temperature rise

cases correspond to a linear growth state oscillating at the first mode around

628.3 rad/sec (100 Hz) early in the simulation. At this condition, the flame area545

fluctuation has saturated before 0.5 sec. as a result of kinematic restoration and

flame/wall interaction. Therefore, the bidirectional coupling between flame heat

release dynamics and acoustic dynamics effectively becomes uni-directional. As

a result, the flame (which now has a constant, saturated amplitude) drives the

acoustics at a resonant frequency, with a constant (i.e., saturated) amplitude550

excitation. It is a property of linear resonant dynamic systems that driving them

with a constant-amplitude excitation at resonance results in a linear response

growth with time, as opposed to exponential growth with time.

The other two cases oscillate at a limit cycle amplitude for multiple modes.

Based on the spectra for the pressure signal in the supplementary material, the555
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Figure 12. Time series of the normalized pressure oscillation at four different temperature

rises: (a) ∆T = 200 K, (b) ∆T = 220 K, (c) ∆T = 240 K, (d) ∆T = 260 K, bf/L = 0.3

dominant modes for case ∆T = 240 K are the first, third, and the fourth modes.

The dominant modes for case ∆T = 260 K are all the first four modes. The

eigenvalue distribution for the linearized thermoacoustic system composed of

linear acoustics and FDF at ε/εf = 0.99 is displayed in Fig. 13. The eigenvalue

shows the first mode has the largest growth rate for all the cases, which is560

consistent with the initially excited first mode oscillations in all the cases.

Similar to the analysis for variations in flame location, we apply both spatial

and temporal phase difference analysis for the sensitivity to temperature rise.

For all the cases, the flame is located near the pressure node for the second mode.

As a result, the second mode is much weaker in amplitude compared to the other565

three modes in these cases. We further examine the phase difference between

the pressure at the flame location and the heat release rate to explain why the

mode is excited. The time-averaged phase differences for two time durations are

summarized in Fig. 14 for the first mode. The phase difference moves away from

90◦ initially and towards 90◦ later when the temperature rise across the flame570
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Figure 13. Eigenvalue distribution for the linearized thermoacoustic system at four different

temperature rises across the flame with the flame transfer function at the velocity excitation

amplitude of ε/εf = 0.99: (a) ∆T = 200 K, (b) ∆T = 220 K, (c) ∆T = 240 K, (d) ∆T = 260

K, bf/L = 0.3

increases from 100 K to 220 K. The phase difference stays around 90◦ when

the temperature rise is between 240 K and 300 K, which explains the relatively

small amplitude of the pressure oscillations in the early simulation for those

cases with higher temperature rises. From 0.5− 1.0 sec, the phase difference is

near 90◦ when the temperature rise is smaller than 140 K and greater than 240575

K, and smaller than 90◦ when temperature rise is between 140 and 240 K. This

agrees with the pressure oscillation in time domain in Fig. 12 for four cases

with different temperature rises.

Compared to the flame location variation studies, the stability behavior

changes more dramatically with temperature rise variations. The larger de-580

pendence of the system stability on temperature rise is related to the larger

variations of phase difference between the pressure and heat release rate oscil-

lations. The phase difference depends on two physical processes: (1) acoustic

propagation in the regions upstream and downstream of the flame consider-

ing wave reflections; (2) phase delay from velocity to heat release in the flame585

transfer function. The change of flame location bf affects both the length bf
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and (L − bf ) and the first mode frequency fa,1 of the acoustic propagation.

The change of temperature rise ∆T across the flame affects both the speed of

sound in the region downstream of the flame c2 and the first mode frequency

fa,1. These changes lead to phase changes corresponding to the acoustic wave590

propagation times in both regions upstream and downstream of the flame, as

described in Eq. (21). Additionally, the first mode frequency change causes

the phase difference change between velocity and heat release, as seen in the

frequency response of the FDF phase in Fig. 4. The dependence of the phase

difference between velocity at the flame base and heat release on frequency is595

approximately linear with the FDF time delay τFDF representing the slope, as

described in Eq. (22).

ψ1 =
2bf
c1
· fa,1(bf ,∆T ), ψ2 =

2(L− bf )

c2(∆T )
· fa,1(bf ,∆T ) (21)

ψFDF = τFDF · fa,1(bf ,∆T ), τFDF ≈ 0.039sec (22)

The examples that show the variation of the phase difference caused by the

changes in flame location and temperature rise are summarized in Table 3 and

Table 4, respectively.600

The variations in the three phase values ψ1, ψ2, and ψFDF are at similar

order of magnitude to the variation of the phase difference between pressure at

flame location and heat release, shown in Fig. 11. Similar conclusions exist for

the cases with temperature rise changes. The detailed phase difference summary

is in the supplementary material for later times during the simulation.605

3.3. Controller Performance

The control designed with the method described in Sec. 2.6 is applied to

the thermoacoustic model in all the cases discussed in the previous sections.

For cases with different flame locations or temperature rises, a different LQG

controller is designed with the same weights Q1 = 1 × 104, R1 = 1, Q2 =610

1 × 105, and R2 = 1. The following three non-dimensional metrics are used to
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Table 3. Examples of showing the phase variations caused by changes in flame location,

∆T = 100K

Variable Case A Case B Variation B-A

bf/L 0.3 0.325 0.025

fa,1, (rad/sec) 714.4 713.1 −1.3

c1, (m/sec) 347.2 347.2 0

c2, (m/sec) 400.9 400.9 0

ψ1, (◦) 70.7 76.5 5.8

ψ2, (◦) 117.4 112.1 −5.3

ψFDF , (◦) 1596.3 1593.5 2.8

|∠pb − ∠q|, (◦) 77.4 79.0 1.6

evaluate the LQG control performance: (1) root mean square (RMS) of all the

state variables Jx,1, which quantifies the variability of the system before control

activation; (2) RMS of all the state variables after the control activation Jx,2,

which quantifies the variability of the system after control activation; and (3)615

RMS of the control input Ju,2. The definitions of the three LQG performance

metrics are shown in Eqs. (23) and (24). The variables t1 and t2 represent the

duration of time before and after LQG control activation.

Jx,1 =

√
1

t1

∫ t1

0

(
p′n,0

TQ1p′n,0

)
dt, Jx,2 =

√
1

t2

∫ t1+t2

t1

(
p′n,0

TQ1p′n,0

)
dt (23)

Ju,2 =

√
1

t2

∫ t1+t2

t1

(
u′n,c

TR1u′n,c
)
dt (24)

The baseline control activation time for this study is defined as 2t0, which

is approximately the onset of the instability limit cycle in the baseline case620

(bf/L = 0.3,∆T = 300 K). The time t0 is defined following Culler et al. [66]

as the mid-point of the instability growth in the pressure signal and is called
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Table 4. Examples of showing the phase variations caused by changes in temperature rise,

bf/L = 0.3

Variable Case A Case B Variation B-A

∆T, (K) 100 120 20

fa,1, (rad/sec) 688.0 699.3 11.3

c1, (m/sec) 347.2 347.2 0

c2, (m/sec) 400.9 410.8 0.9

ψ1, (◦) 59.0 58.5 −0.5

ψ2, (◦) 113.1 112.2 −0.9

ψFDF , (◦) 1537.4 1562.7 25.3

|∠pb − ∠q|, (◦) 77.4 61.6 −15.8

“halfway moment” of the transition, as shown in Fig. 6. The moment of the

LQG control activation for all cases is the same (tLQG = 0.426 sec) as in the

baseline for comparison purposes.625

3.3.1. Sensitivity to choice of flame transfer function

In the LQG control design, different FTFs can be selected as linearizations

for the FDF to obtain a linearized thermoacoustic system. The different FTFs

correspond to different oscillation amplitudes of the incoming velocity upstream

of the flame. The higher the velocity amplitude is, the more nonlinear the630

flame dynamics are. To study the performance of the linear control on the

thermoacoustic oscillations considering nonlinear flame dynamics, we compare

the performance of two LQG controllers that are designed using FDFs with

velocity oscillation amplitude at ε/εf = 0.2 and ε/εf = 0.99.

Figure 15 shows four variables in time domain in the controlled baseline635

system, including the flame area, control input, pressure at the Rijke tube inlet,

and the velocity just upstream of the flame. Both controllers are applied at

t = 2t0. Based on the behaviors of the pressure oscillations after the control
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Figure 14. Phase difference between oscillations of mode 1 pressure at flame location and

flame area in two durations for different temperature rises, bf/L = 0.3

activation, both controllers suppress the originally large amplitude oscillation by

at least 70%. This shows that the linear control performs well in attenuating the640

nonlinear thermoacoustic oscillations. The difference only lies in the oscillation

amplitude of the closed-loop controlled system. The system controlled by the

LQG controller designed using FDFε/εf=0.99 arrives at a stable state with a

much smaller pressure amplitude. This means that the LQG controller designed

from the FDF at a higher velocity amplitude performs better, at least in the645

continuing suppression of the instability.

The Bode plots of the two LQG controllers designed using two FDFs are

compared in Fig. 16. The LQG controller from FDF at a larger amplitude

ε/εf = 0.99 does a better job in suppressing the instability even with a lower

gain at the first mode frequency 728.8 rad/sec (116 Hz). The gain of the LQG650

controller designed from the FDF at the smaller amplitude ε/εf = 0.2 has a

larger amplitude (100.7) than that (76.2) of the LQG controller from FDF at a

larger amplitude ε/εf = 0.99 at the first mode frequency. The key parameter

that affects the performance of an LQG controller in this case is the phase delay

the controller adds to the control signal with measurement of the pressure at655
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Figure 15. Time series of the normalized flame area, control input, normalized pressure at

the Rijke tube inlet, and normalized velocity right upstream of flame in the baseline case:

bf/L = 0.3, ∆ T=100 K, tLQG = 2t0=0.426 sec, two FTF applied in the LQG control design
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Figure 16. Bode plots of the LQG controllers using two FTFs at incoming velocity oscillation

amplitudes of ε/εf = 0.2 and ε/εf = 0.99

Rijke tube inlet. The output velocity of the LQG controller corresponding to

the FDF at ε/εf = 0.99 is further delayed by a phase of about 18◦ than the

velocity from the LQG corresponding to the smaller amplitude ε/εf = 0.2. As

shown by “Case A” in Table 3, the open-loop phase difference between the

pressure at flame location and heat release is 77.4◦, which causes driving of the660

thermoacoustic system and growth of the oscillation amplitude. These phase

differences in the control input signal velocity at Rijke tube inlet cause a phase

shift in the velocity at the flame base, making the phase difference between

pressure at the flame and heat release rate 161.1◦, which is greater than 90◦,

resulting in thermoacoustic damping and suppression of the oscillation.665
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Figure 17. Dependence of LQG controller’s performance on LQG activation moment

3.3.2. Sensitivity to controller activation moment

In this section, we study the performance of the same LQG controller acti-

vated at different times during the instability for the baseline case. This study

highlights the degree to which the moment when the LQG control is activated

matters in determining the performance of the LQG controller. For consistency,670

we use the controller designed for the higher amplitude oscillation ε/εf = 0.99

throughout the remainder of this article since this controller works better in the

earlier application on the baseline at tLQG = 2t0. The results for the baseline

case, bf/L = 0.3, ∆T = 100 K, are shown in Fig. 17. The results indicate that

earlier activation of the controller reduces the control effort needed to attenuate675

the instability. This is mostly due to the fact that the system experiencing the

instability onset process contains higher RMS of the system variability if aver-

aged over a longer duration starting from the initial moment of the simulation.

As a result, for most activation moments, the LQG control effort scales with the

system oscillation energy before the LQG control activation. The bottom right680

plot shows the flame base velocity at the moment just before the LQG activation

and it represents the instability amplitude of the system for reference.
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3.3.3. Sensitivity to flame location

For all the different flame locations from bf/L = 0.1 to bf/L = 0.4, we design

the LQG control based on the linearized thermoacoustic system combining the685

linear acoustic model and the FDF at ε/εf = 0.99. All the LQG controllers

are activated at the same moment tLQG = 2t0 = 0.426 sec, so as to compare

to the baseline case. Figure 18 shows the dependence of the LQG controller

performance on flame location. The pressure oscillation before and after the

control, denoted by the performance metrics Jx,1 and Jx,2, respectively, indicate690

that the linear LQG controller helps to reduce the pressure oscillation amplitude

by almost one order of magnitude for most cases. The open-loop system’s

pressure oscillation decreases nearly monotonically with respect to the increasing

flame location closer to Rijke tube exit, which can be explained by the open-loop

phase difference between the pressure at the flame location and the flame heat695

release in Fig. 11.

The controlled closed-loop pressure oscillation decreases at first but later in-

creases with an increasing flame location. For flame location between bf/L = 0.1

and bf/L = 0.325, the dependence of the control input effort and the controlled

output behave similarly with the system variability before the activation of LQG700

control, as seen in the top left plot in Fig. 18. When the flame location is larger

than bf/L = 0.325, the RMS values of the control input effort and the con-

trolled output increase with increasing flame location, which is different from

dependence of RMS output on flame location before LQG activation.

3.3.4. Sensitivity to temperature rise705

Similarly, we examine the performance of the LQG controller for different

temperature rises. The original system without any control varies dramatically

with temperature rise, as shown in Fig. 12. This behavior can be explained

based on the phase difference between the pressure at the flame location and

the heat release for different temperature rise cases in Fig. 14.710

At the time instant when control is applied, the pressure oscillation and the

velocity oscillation initially increase and later decrease rapidly with increased
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Figure 18. Dependence of LQG controller’s performance on flame location

temperature rise until 200 K. When the temperature rise increases above 220

K, the oscillation amplitude increases, as shown in Fig. 19. Both the root mean

squared controlled output and control input behave similarly with the root mean715

squared output before the LQG control activation for temperature rises in the

range between 100 K and 200 K. When the temperature rise exceeds 200 K,

the control input effort is more governed by the amplitude of the flame base

velocity. If the amplitude is closer to εf in the case with temperature rise of

∆T = 220 K and 300 K, the control input is smaller than the cases when the720

velocity amplitude is further away from εf . The controlled oscillation achieves

nearly an order of magnitude reduction in cases when the temperature rise is

smaller than 200 K and the velocity amplitude upstream of the flame exceeds

εf . When the velocity oscillation amplitude at flame base is smaller than εf ,

the controller performs worse in attenuating the oscillation amplitude.725

4. Conclusions

This article furthers the study of linear control in suppressing the thermoa-

coustic oscillations including nonlinear flame dynamics in a one dimensional

combustor. This study develops a framework that can co-simulate the linear
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Figure 19. Dependence of LQG controller’s performance on temperature rise in the acoustic

model

acoustics, nonlinear flame dynamics, and linear control in the time domain.730

The framework is a modified version of the level-set solver that is initially used

to simulate the nonlinear heat release response of flames to incoming flow ve-

locity perturbations. Based on the time-domain simulation for thermoacoustic

systems both with and without control applied, this article systematically ana-

lyzes the dependence of instability behavior and control performance on varied735

flame locations and temperature rises across the flame.

Specifically, the article makes the following conclusions in the modeling and

control of thermoacoustic oscillation considering nonlinear flame dynamics.

1. In the time domain simulation of the system connecting linear acoustics

and level-set solver described flame dynamics, the nonlinear flame behav-740

iors are captured in a baseline case with a limit cycle instability. Multiple

harmonics exist in the flame area oscillation and they are caused by the

formed nonlinear flame cusping and flame-wall interaction.

2. The instability characteristics, including oscillation frequency components

and amplitude, vary both with changes in flame location and temperature745

rise. The change of temperature rise by 20 K leads to a more dramatic
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change in stability behaviors compared with the change of flame location

by 0.025L. The spatial acoustic mode analysis shows that the mode whose

node overlaps with flame location will not be excited. The temporal phase

analysis explains when the mode is excited, which is driven by the phase750

difference between the oscillations of pressure at the flame location and

heat release. When the magnitude of the phase difference is smaller than

90◦, the positive driving effect excites the mode. The phase difference

change among the cases with different flame locations or temperature rises

is governed by two processes: acoustic propagation time variation and755

phase delay variation in the flame transfer function.

3. The linear control designed based on the linear thermoacoustic system that

includes a flame describing function at one incoming velocity oscillation

amplitude works to suppress the thermoacoustic oscillation with nonlinear

flame dynamics. Comparing the two different LQG controllers, the LQG760

control designed considering the FDF with higher input velocity oscillation

amplitude ε = 0.99εf achieves a lower controlled oscillation amplitude

than the LQG control designed with a lower amplitude ε = 0.2εf .

4. Analyzing the variation of the LQG control performance with respect to

the control activation moment, flame location, and temperature rise finds765

that the control performance is mostly determined by the oscillation en-

ergy in the original open-loop system before the LQG control application.

For some cases, the correlation between the control effort and the open-

loop system oscillation amplitude is not strictly positive, which can be

caused by the discrepancy between the system used for LQG design with770

a higher velocity amplitude and the system to be controlled with a lower

velocity amplitude.
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