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Abstract. Recently, George Beck conjectured and George Andrews proved a handful of

novel congruences concerning the rank statistic of Dyson and the crank statistic of Andrews
and Garvan. In this paper, we shall prove two identities concerning the weighted rank and
crank moments, from which more congruences of Andrews–Beck type may be deduced.

Keywords. Partition, Andrews–Beck type congruence, rank, crank, weighted moment.

2010MSC. 11P83, 11P81, 05A19.

1. Introduction

1.1. Background. As usual, a partition of a positive integer n is a weakly de-
creasing sequence of positive integers whose sum equals n. For example, 4 has five
partitions: 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1. If we denote by p(n) the
number of partitions of n, then p(4) = 5.

In the theory of partitions, one of the most fascinating results is due to Ramanu-
jan, who discovered that p(n) satisfies the following congruences:

p(5n+ 4) ≡ 0 (mod 5), (1.1)

p(7n+ 5) ≡ 0 (mod 7), (1.2)

p(11n+ 6) ≡ 0 (mod 11). (1.3)

See [13–15] or [7] or [1, Chapter 10].

In his famous 1944 paper [8], Dyson defined the rank of a partition as the largest
part minus the number of parts. Dyson then conjectured that the rank statistic
may provide combinatorial interpretations of (1.1) and (1.2); this assertion was
later confirmed by Atkin and Swinnerton-Dyer [6]. Dyson also conjectured the
existence of a crank statistic, which is able to combinatorially explain all the three
congruences of Ramanujan. Such a statistic was not discovered until over four
decades later by Andrews and Garvan [4] based on Garvan’s study of the vector
crank [10,11].

As in [6], we denote by N(m, k, n) the number of partitions of n with rank
congruent to m modulo k. Atkin and Swinnerton-Dyer proved (1.1) and (1.2) by
showing that for 0 ≤ i ≤ 4,

N(i, 5, 5n+ 4) =
1

5
p(5n+ 4)
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and that for 0 ≤ i ≤ 6,

N(i, 7, 7n+ 5) =
1

7
p(7n+ 5).

In a recent paper [3], Andrews recorded that George Beck has conjectured a
number of new congruences along a somewhat different road. Instead of considering
the N(m, k, n) function, Beck studied the total number of parts in the partitions
of n with rank congruent to m modulo k, which is defined by NT (m, k, n). One of
the results proved by Andrews reads as follows.

Theorem (Andrews [3, Theorem 1.1]). If i = 1 or 4, then for n ≥ 0,

NT (1, 5, 5n+ i) + 2NT (2, 5, 5n+ i)

− 2NT (3, 5, 5n+ i)−NT (4, 5, 5n+ i) ≡ 0 (mod 5). (1.4)

Andrews also remarked that (1.4) is trivial if one replaces the NT (m, k, n) func-
tion by the rank function N(m, k, n). This is simply due to the symmetry

N(m, k, n) = N(k −m, k, n).

However, the above symmetry is generally false for theNT (m, k, n) function. There-
fore, the validness of (1.4) is in some sense exciting.

In his proof of (1.4), Andrews did not apply the differentiation technique directly
to the trivariate generating function∑

n≥0

∑
λ⊢n

x♯(λ)zrank(λ)qn =
∑
n≥0

xnqn
2

(zq; q)n(xq/z; q)n
.

Instead, he transformed the above generating function as∑
n≥0

∑
λ⊢n

x♯(λ)zrank(λ)qn = 1 +
1

(xq; q)∞

∑
n≥1

(−1)n−1qn(3n+1)/2xn (xq; q)n
(q; q)n−1

×

(
1

qn(1− zqn)
+

x

z
(
1− xqn

z

)),
so he may take advantage of several results proved already by Atkin and Swinnerton-
Dyer [6]; see [3, Theorem 3.1].

However, we discover that if we consider a weighted rank moment, then it is
possible to arrive at a connection with the second Atkin–Garvan rank moment
defined in [5] so that, surprisingly, (1.4) follows as an immediate consequence. In
analogy, a weighted crank moment will lead to proofs of several conjectures of Beck
concerning the crank function.

1.2. Notation and terminology. Let P be the set of partitions. As usual, the
notation λ ⊢ n means that λ is a partition of n. Below, let λ always be a partition.
Let |λ| be the size of λ. We use ♯(λ) and ω(λ) to denote the number of parts in λ
and the number of ones in λ, respectively. Further, rank(λ) and crank(λ) denote
the rank and crank of λ.

As already defined, NT (m, k, n) equals the total number of parts in the partitions
of n with rank congruent to m modulo k. We also denote by N(m,n) the number



Weighted partition rank and crank moments. I 3

of partitions of n whose rank is m. Then the second Atkin–Garvan rank moment
N2(n) is defined by

N2(n) :=

∞∑
m=−∞

m2N(m,n) =
∑
λ⊢n

rank2(λ).

On the other hand, let Mω(m, k, n) count the total number of ones in the partitions
of n with crank congruent to m modulo k.

Finally, we adopt the standard q-Pochhammer symbol for n ∈ N ∪ {∞}:

(A; q)n :=

n−1∏
k=0

(1−Aqk).

1.3. Main results. Our first result treats the following weighted rank moment.

Theorem 1.1. We have∑
λ∈P

♯(λ) rank(λ)q|λ| = −
∑
n≥1

qn
2

(q; q)2n

n∑
m=1

qm

(1− qm)2
(1.5)

and ∑
λ⊢n

♯(λ) rank(λ) = −1

2
N2(n). (1.6)

Remark 1.1. It is worth pointing out that the following generating function identity
for N2(n) is used most frequently:∑

n≥0

N2(n)q
n = − 2

(q; q)∞

∑
n≥1

(−1)nqn(3n+1)/2(1 + qn)

(1− qn)2
.

See [2, Eq. (3.4)].

Likewise, for the weighted crank moment, our result reads as follows.

Theorem 1.2. We have∑
λ∈P

ω(λ) crank(λ)q|λ| = − 1

(q; q)∞

∑
n≥1

qn

(1− qn)2
(1.7)

and ∑
λ⊢n

ω(λ) crank(λ) = −np(n). (1.8)

Remark 1.2. Let M(m,n) denote number of partitions of n with crank m. Atkin
and Garvan [5] defined the k-th crank moment Mk(n) by

Mk(n) =

∞∑
m=−∞

mkM(m,n) =
∑
λ⊢n

crankk(λ).

It can be shown by means of a relation due to Dyson [9] that

M2(n) = 2np(n).

It turns out that ∑
λ⊢n

ω(λ) crank(λ) = −1

2
M2(n). (1.9)

This is an analog of (1.6).
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As consequences of Theorems 1.1 and 1.2, we arrive at a number of Andrews–
Beck type congruences with (1.4) included.

Corollary 1.3. If i = 1 or 4, then for n ≥ 0,

NT (1, 5, 5n+ i) + 2NT (2, 5, 5n+ i)

− 2NT (3, 5, 5n+ i)−NT (4, 5, 5n+ i) ≡ 0 (mod 5). (1.10)

Corollary 1.4. If i = 1 or 5, then for n ≥ 0,

NT (1, 7, 7n+ i) + 2NT (2, 7, 7n+ i)

+ 3NT (3, 7, 7n+ i)− 3NT (4, 7, 7n+ i)

− 2NT (5, 7, 7n+ i)−NT (6, 7, 7n+ i) ≡ 0 (mod 7). (1.11)

Corollary 1.5. If i = 0 or 4, then for n ≥ 0,

Mω(1, 5, 5n+ i) + 2Mω(2, 5, 5n+ i)

− 2Mω(3, 5, 5n+ i)−Mω(4, 5, 5n+ i) ≡ 0 (mod 5). (1.12)

Corollary 1.6. If i = 0 or 5, then for n ≥ 0,

Mω(1, 7, 7n+ i) + 2Mω(2, 7, 7n+ i)

+ 3Mω(3, 7, 7n+ i)− 3Mω(4, 7, 7n+ i)

− 2Mω(5, 7, 7n+ i)−Mω(6, 7, 7n+ i) ≡ 0 (mod 7). (1.13)

Corollary 1.7. If i = 0 or 6, then for n ≥ 0,

Mω(1, 11, 11n+ i) + 2Mω(2, 11, 11n+ i) + 3Mω(3, 11, 11n+ i)

+ 4Mω(4, 11, 11n+ i) + 5Mω(5, 11, 11n+ i)− 5Mω(6, 11, 11n+ i)

− 4Mω(7, 11, 11n+ i)− 3Mω(8, 11, 11n+ i)− 2Mω(9, 11, 11n+ i)

−Mω(10, 11, 11n+ i) ≡ 0 (mod 11). (1.14)

Finally, let spt(n) denote the total number of appearances of the smallest parts
in all partitions of n. It was shown by Andrews [2] that

spt(n) = np(n)− 1

2
N2(n).

In view of (1.6) and (1.8), we have the following intriguing relation.

Corollary 1.8. For n ≥ 0,

spt(n) =
∑
λ⊢n

♯(λ) rank(λ)−
∑
λ⊢n

ω(λ) crank(λ). (1.15)

2. The weighted rank moment

We first study the weighted rank moment. It was shown in [3] that∑
n≥0

∑
λ⊢n

x♯(λ)zrank(λ)qn =
∑
n≥0

xnqn
2

(zq; q)n(xq/z; q)n
. (2.1)
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Proof of Theorem 1.1. We first apply the operator [∂/∂x]x=1 to (2.1).∑
n≥0

∑
λ⊢n

♯(λ)zrank(λ)qn

=
∑
n≥0

[
∂

∂x

xnqn
2

(zq; q)n(xq/z; q)n

]
x=1

=
∑
n≥0

[
xnqn

2

(zq; q)n(xq/z; q)n

∂

∂x
log

(
xn

(xq/z; q)n

)]
x=1

=
∑
n≥0

qn
2

(zq; q)n(q/z; q)n

[
∂

∂x

(
n log x−

n∑
m=1

log(1− xqm/z)

)]
x=1

=
∑
n≥0

qn
2

(zq; q)n(q/z; q)n

[
n

x
+

n∑
m=1

qm

z − xqm

]
x=1

=
∑
n≥1

qn
2

(zq; q)n(q/z; q)n

(
n+

n∑
m=1

qm

z − qm

)
. (2.2)

Next, we make an easy observation: for any n ∈ N ∪ {∞},[
∂

∂z
log

(
1

(zq; q)n(q/z; q)n

)]
z=1

=

[
n∑

m=1

(
qm

1− zqm
+

qm

zqm − z2

)]
z=1

= 0. (2.3)

Applying the operator [∂/∂z]z=1 to (2.2) and making use of (2.3), we have∑
n≥0

∑
λ⊢n

♯(λ) rank(λ)qn

=
∑
n≥1

[
∂

∂z

qn
2

(zq; q)n(q/z; q)n

(
n+

n∑
m=1

qm

z − qm

)]
z=1

=
∑
n≥1

[
nqn

2

(zq; q)n(q/z; q)n

∂

∂z
log

(
1

(zq; q)n(q/z; q)n

)]
z=1

+
∑
n≥1

n∑
m=1

[
qn

2

(zq; q)n(q/z; q)n

qm

z − qm
∂

∂z
log

(
1

(zq; q)n(q/z; q)n(z − qm)

)]
z=1

= −
∑
n≥1

qn
2

(q; q)2n

n∑
m=1

qm

(1− qm)2
. (2.4)

This is the first part of Theorem 1.1.

On the other hand, if one applies the operator
[

∂
∂z

(
z ∂
∂z

)]
z=1

to∑
n≥0

∑
λ⊢n

zrank(λ)qn =
∑
n≥0

qn
2

(zq; q)n(q/z; q)n
,

one shall find that∑
n≥0

N2(n)q
n =

∑
n≥0

∑
λ⊢n

rank(λ)2qn
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=
∑
n≥0

[
∂

∂z

(
z
∂

∂z

qn
2

(zq; q)n(q/z; q)n

)]
z=1

=
∑
n≥0

[
∂

∂z

zqn
2

(zq; q)n(q/z; q)n

n∑
m=1

(
qm

1− zqm
+

qm

zqm − z2

)]
z=1

= 2
∑
n≥1

qn
2

(q; q)2n

n∑
m=1

qm

(1− qm)2
. (2.5)

This combining with (2.4) gives the second part of Theorem 1.1. □

The arithmetic properties satisfied by N2(n) have been well studied. For exam-
ple, it was indicated in [12, p. 285] that

N2(5n+ 1) ≡ N2(5n+ 4) ≡ 0 (mod 5)

and

N2(7n+ 1) ≡ N2(7n+ 5) ≡ 0 (mod 7).

On the other hand, it is trivial to see that∑
λ∈P

♯(λ) rank(λ)q|λ| ≡
∑
n≥0

(
NT (1, 5, n) + 2NT (2, 5, n)

− 2NT (3, 5, n)−NT (4, 5, n)
)
qn (mod 5)

and ∑
λ∈P

♯(λ) rank(λ)q|λ| ≡
∑
n≥0

(
NT (1, 7, n) + 2NT (2, 7, n)

+ 3NT (3, 7, n)− 3NT (4, 7, n)

− 2NT (5, 7, n)−NT (6, 7, n)
)
qn (mod 7).

Therefore, Corollaries 1.3 and 1.4 follow from the above.

3. The weighted crank moment

Recall that the crank of a partition λ is defined by

crank(λ) =

{
ℓ(λ) if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0,

where ω(λ) denotes the number of ones in λ as before, ℓ(λ) denotes the largest part
in λ and µ(λ) denotes the number of parts in λ that are larger than ω(λ).

As in [4], we have∑
n≥0

∑
λ⊢n

xω(λ)zcrank(λ)qn =
1− q

(zq; q)∞
+
∑
j≥1

xjqjz−j

(q2; q)j−1(zqj+1; q)∞

=
1− q

(zq; q)∞

∑
j≥0

(zq; q)j
(q; q)j

(xq
z

)j
=

(1− q)(xq2; q)∞
(zq; q)∞(xq/z; q)∞

. (3.1)
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Here in the last equality we make use of the q-binomial theorem [1, Theorem 2.1]:∑
n≥0

(a; q)nt
n

(q; q)n
=

(at; q)∞
(t; q)∞

.

If we take x = 1 in (3.1), we recover the bivariate generating function in [4].

Proof of Theorem 1.2. This time we apply the operator [∂/∂x]x=1 to (3.1).∑
n≥0

∑
λ⊢n

ω(λ)zcrank(λ)qn

=

[
∂

∂x

(1− q)(xq2; q)∞
(zq; q)∞(xq/z; q)∞

]
x=1

=

[
(1− q)(xq2; q)∞

(zq; q)∞(xq/z; q)∞

∂

∂x
log

(
(xq2; q)∞
(xq/z; q)∞

)]
x=1

=
(q; q)∞

(zq; q)∞(q/z; q)∞

 ∂

∂x

∑
n≥1

(
log(1− xqn+1)− log(1− xqn/z)

)
x=1

=
(q; q)∞

(zq; q)∞(q/z; q)∞

∑
n≥1

(
− qn+1

1− qn+1
+

qn/z

1− qn/z

)
. (3.2)

We then apply the operator [∂/∂z]z=1 to (3.2) and use (2.3) to deduce∑
n≥0

∑
λ⊢n

ω(λ) crank(λ)qn

=

 ∂

∂z

(q; q)∞
(zq; q)∞(q/z; q)∞

∑
n≥1

(
− qn+1

1− qn+1
+

qn/z

1− qn/z

)
z=1

=
∑
n≥1

[
(q; q)∞

(zq; q)∞(q/z; q)∞
· qn/z

1− qn/z
· 1

qn − z

]
z=1

= − 1

(q; q)∞

∑
n≥1

qn

(1− qn)2
. (3.3)

To prove the second part of Theorem 1.2, we simply observe that∑
n≥0

np(n)qn =

[
∂

∂z

1

(zq; zq)∞

]
z=1

=
1

(q; q)∞

∑
n≥1

nqn

1− qn

=
1

(q; q)∞

∑
n≥1

qn

(1− qn)2
.

In view of (3.3), we arrive at the desired result. □

Once again, we notice that∑
λ∈P

ω(λ) crank(λ)q|λ| ≡
∑
n≥0

(
Mω(1, 5, n) + 2Mω(2, 5, n)

− 2Mω(3, 5, n)−Mω(4, 5, n)
)
qn (mod 5),
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λ∈P

ω(λ) crank(λ)q|λ| ≡
∑
n≥0

(
Mω(1, 7, n) + 2Mω(2, 7, n)

+ 3Mω(3, 7, n)− 3Mω(4, 7, n)

− 2Mω(5, 7, n)−Mω(6, 7, n)
)
qn (mod 7)

and∑
λ∈P

ω(λ) crank(λ)q|λ| ≡
∑
n≥0

(
Mω(1, 11, n) + 2Mω(2, 11, n) + 3Mω(3, 11, n)

+ 4Mω(4, 11, n) + 5Mω(5, 11, n)− 5Mω(6, 11, n)

− 4Mω(7, 11, n)− 3Mω(8, 11, n)− 2Mω(9, 11, n)

−Mω(10, 11, n)
)
qn (mod 11).

Thanks to Ramanujan’s celebrated congruences (1.1), (1.2) and (1.3), we complete
the proof of Corollaries 1.5, 1.6 and 1.7 by recalling (1.8).

Acknowledgements. I would like to thank George Andrews for introducing this
problem to me and sharing his draft of [3] in early 2019. Part of this work was fin-
ished during my attendance at the Joint Mathematics Meetings 2019 in Baltimore.
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