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Partitions and the maximal excludant

Shane Chern

Abstract. For each nonempty integer partition π, we define the maximal excludant of

π as the largest nonnegative integer smaller than the largest part of π that is not itself
a part. Let σmaex(n) be the sum of maximal excludants over all partitions of n. We
show that the generating function of σmaex(n) is closely related to a mock theta function
studied by Andrews, Dyson and Hickerson, and Cohen, respectively. Further, we show
that, as n → ∞, σmaex(n) is asymptotic to the sum of largest parts over all partitions of

n. Finally, the expectation of the difference of the largest part and the maximal excludant
over all partitions of n is shown to converge to 1 as n → ∞.
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1. Introduction

In a recent paper [3], Andrews and Newman studied the minimal excludant of
an integer partition π, which is the smallest positive integer that is not a part of
π. Since a nonempty partition π is a finite sequence of positive integers, we may
also study the maximal excludant of π, by which we mean the largest nonnegative
integer smaller than the largest part of π that is not itself a part. For example,
5 has seven partitions: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1 and
1+ 1+ 1+ 1+ 1, the maximal excludants of which are, respectively, 4, 3, 1, 2, 0, 0
and 0.

Let mex(π) and maex(π) denote, respectively, the minimal and maximal exclu-
dant of π. Andrews and Newman further investigated the function

σmex(n) :=
∑
π⊢n

mex(π)

in which the summation is over all partitions of n. They proved that the generating
function of σmex(n) satisfies∑

n≥0

σmex(n)qn = (−q; q)2∞, (1.1)

where we adopt the conventional q-Pochhammer symbol for n ∈ N ∪ {∞}:

(A; q)n :=

n−1∏
k=0

(1−Aqk).

Likewise, we may define another function

σmaex(n) :=
∑
π⊢n

maex(π)
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where, again, the summation runs over all partitions of n. In this paper, we are to
study the generating function of σmaex(n). As we shall see in Theorem 1.1, unlike
the generating function of σmex(n), which is modular, the generating function of
σmaex(n) is closely related to a mock theta function studied in two side-by-side
papers of Andrews, Dyson and Hickerson [2] and Cohen [4].

Theorem 1.1. We have∑
n≥1

σmaex(n)qn =
∑
k≥1

k

(q; q)k−1

∑
m≥1

qm(k+1)(−q; q)m−1 (1.2)

=
1

(q; q)∞

(∑
n≥1

qn

1− qn
−
∑
n≥1

qn(q2; q2)n−1

)
(1.3)

=
1

(q; q)∞

(∑
n≥1

qn

1− qn
+
∑
n≥1

(−1)nqn
2

(q; q2)n

)
. (1.4)

Remark 1.1. Using a formula due to Andrews, Dyson and Hickerson [2], we may
give an explicit expression of σmaex(n). This will be discussed in Section 2.

Now recall that if L(π) denotes the largest part of a partition π and

σL(n) =
∑
π⊢n

L(π)

denotes the sum of largest parts over all partitions of n, a standard result tells us
that ∑

n≥1

σL(n)qn =
1

(q; q)∞

∑
n≥1

qn

1− qn
. (1.5)

In light of (1.3) and (1.5), we have the following corollary.

Corollary 1.2. We have∑
n≥1

(
σL(n)− σmaex(n)

)
qn =

1

(q; q)∞

∑
n≥1

qn(q2; q2)n−1. (1.6)

It was shown by Kessler and Livingston [6] that σL(n) satisfies the asymptotic
formula

σL(n) ∼ log(6n)− 2 log π + 2γ

4π
√
2n

eπ
√

2n
3 (1.7)

where γ is the Euler–Mascheroni constant.

Now we shall show asymptotic relations as follows.

Theorem 1.3. We have, as n → ∞,

σL(n)− σmaex(n) ∼ 1

4
√
3n

eπ
√

2n
3 , (1.8)

and, a fortiori,

σmaex(n) ∼ σL(n). (1.9)

Further, if En denotes the expectation of the difference of the largest part and the
maximal excludant over all partitions of n, then

lim
n→∞

En = 1. (1.10)
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Remark 1.2. Notice that for any nonempty partition π, we always have L(π) −
maex(π) ≥ 1. Hence, for all n ≥ 1, we have En ≥ 1. Further, for all n ≥ 3, it is
always able to find a partition π of n with L(π) −maex(π) > 1 (if n is odd, then
such a partition could be ((n+ 1)/2, (n− 1)/2); if n is even, then such a partition
could be (n/2, (n− 2)/2, 1)). This implies that En > 1 for n ≥ 3.

2. A formula of σmaex(n)

2.1. A mock theta function. In his paper [4], Cohen observed the following
identity ∑

n≥1

(−1)nqn
2

(q; q2)n
= −

∑
n≥1

qn(q2; q2)n−1. (2.1)

Hence, (1.3) and (1.4) are equivalent.

It is worth mentioning that Cohen’s identity (2.1) can be generalized to a trivari-
ate identity as follows.

Proposition 2.1. We have∑
n≥1

xnqn
2

(yq; q2)n
=
∑
n≥1

xyn−1qn(−xq2/y; q2)n−1. (2.2)

Taking x = −1 and y = 1 in (2.2) recovers (2.1). Further, this identity can be
treated as a companion to [1, p. 29, Example 6]:∑

n≥0

xnqn
2

(y; q2)n+1
=
∑
n≥0

yn(−xq/y; q2)n.

Proof of Proposition 2.1. Both sides of (2.2) can be treated as the generating func-
tion of partitions in which the largest part appears only once and all the remaining
distinct parts appear exactly twice. Here, the exponent of x represents the number
of distinct parts in this partition and the exponent of y represents the largest part
minus the number of distinct parts. □

Remark 2.1. Let us denote

σ∗(q) := 2
∑
n≥1

(−1)nqn
2

(q; q2)n
= −2

∑
n≥1

qn(q2; q2)n−1. (2.3)

It is also necessary to introduce its companion

σ(q) :=
∑
n≥0

qn(n+1)/2

(−q; q)n
= 1−

∑
n≥1

(−1)nqn(q; q)n−1. (2.4)

The two q-hypergeometric functions are of substantial research interest along the
following lines. First, Andrews, Dyson and Hickerson [2] showed that the coefficients
in the expansions of σ(q) and σ∗(q) are very small. In fact, these coefficients are

related with the arithmetic of the field Q(
√
6). Second, let us define a sequence

{T (n)}n∈24Z+1 by

qσ(q24) =
∑
n≥0

T (n)qn and q−1σ∗(q24) =
∑
n<0

T (n)q−n. (2.5)
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Cohen [4] proved that the function (in which K0(x) is the Bessel function)

ϕ0(τ) := y1/2
∑

n∈24Z+1

T (n)K0(2π|n|y/24)e2πinx/24 (τ = x+ iy ∈ H)

is a Maass wave form on the congruence group Γ0(2). This, in turn, explains the
modularity nature of the identity

qσ(q24) =
∑
a,b∈Z
a>6|b|

(
12

a

)
(−1)bqa

2−24b2 .

Third, by noticing the following relation due to Cohen [4]:

σ(q) = −σ∗(q−1) (2.6)

whenever q is a root of unity (here the definitions of σ(q) and σ∗(q) at roots of unity
are valid since the second summations in both (2.3) and (2.4) are finite), Zagier [8]
is able to construct a quantum modular form f : Q → C by

f(x) := q1/24σ(q) = −q1/24σ∗(q−1)

where q = e2πix.

2.2. A formula of Andrews, Dyson and Hickerson. Let us define T (n) (n ∈
6Z+1) by the excess of the number of inequivalent solutions of the Pell’s equation

u2 − 6v2 = n

with u+ 3v ≡ ±1 (mod 12) over the number of them with u+ 3v ≡ ±5 (mod 12).

By investigating the arithmetic inQ(
√
6), Andrews, Dyson and Hickerson [2] showed

that if n has the prime factorization

n = pe11 pe22 · · · perr
where each pi ≡ 1 (mod 6) or pi is the negative of a prime ≡ 5 (mod 6), then

T (n) = T (pe11 )T (pe22 ) · · ·T (perr )

where

T (pe) =



0 if p ̸≡ 1 (mod 24) and e is odd,

1 if p ≡ 13, 19 (mod 24) and e is even,

(−1)e/2 if p ≡ 7 (mod 24) and e is even,

e+ 1 if p ≡ 1 (mod 24) and T (p) = 2,

(−1)e(e+ 1) if p ≡ 1 (mod 24) and T (p) = −2.

Andrews, Dyson and Hickerson further proved that if we restrict T (n) to n ∈
24Z+1, then they coincide with the coefficients defined in (2.5). Hence, if we write

σ∗(q) = 2
∑
n≥1

(−1)nqn
2

(q; q2)n
= 2

∑
n≥1

S∗(n)qn,

then

S∗(n) =
1

2
T (1− 24n).

Further, we have ∑
n≥1

d(n)qn =
∑
n≥1

qn

1− qn
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where d(n) =
∑

d|n 1 enumerates the number of positive divisors of n.

Consequently, (1.4) gives us the following formula of σmaex(n).

Theorem 2.2. For n ≥ 1, we have

σmaex(n) =

n∑
k=1

p(n− k)

(
d(k) +

1

2
T (1− 24k)

)
(2.7)

where p(n) denotes the number of partitions of n.

3. Proof of Theorem 1.1

The equivalence of (1.3) and (1.4) has already been shown in Section 2. It suffices
to prove (1.2) and (1.3).

Given a partition with maximal excludant k, it can be split into two components:
the first component is a partition with parts not exceeding k − 1 and the second
component is a gap-free partition (i.e. a partition in which the difference between
any consecutive parts is at most 1) with smallest part k+1. Further, by considering
the conjugate, there is a bijection between gap-free partitions with smallest part
k+1 and partitions in which the largest part repeats k+1 times and all remaining
parts are distinct. Hence, if g(k, n) counts the number of partitions of n with
maximal excludant k, we have the generating function identity

G(z, q) : =
∑
n≥1

∑
k≥1

g(k, n)zkqn

=
∑
k≥1

zk

(q; q)k−1

∑
m≥1

qm(k+1)(−q; q)m−1. (3.1)

Now applying the operator [∂/∂z]z=1 directly to G(z, q) implies (1.2). Next, we
prove (1.3). Recall Euler’s first summation [1, Eq. (2.2.5)]:∑

k≥0

zk

(q; q)k
=

1

(z; q)∞
.

In light of (3.1), we have

G(z, q) =
∑
m≥1

zq2m(−q; q)m−1

∑
k≥0

(zqm)k

(q; q)k

=
∑
m≥1

zq2m(q2; q2)m−1

(q; q)m−1(zqm; q)∞
.

Notice that[
∂

∂z

z

(zqm; q)∞

]
z=1

=

[
z

(zqm; q)∞

∂

∂z
log

z

(zqm; q)∞

]
z=1

=
1

(qm; q)∞

[
∂

∂z

(
log z −

∑
n≥m

log(1− zqn)

)]
z=1

=
1

(qm; q)∞

(
1 +

∑
n≥m

qn

1− qn

)
.
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Hence, ∑
n≥1

σmaex(n)qn =

[
∂

∂z
G(z, q)

]
z=1

=
∑
m≥1

q2m(q2; q2)m−1

(q; q)m−1

[
∂

∂z

z

(zqm; q)∞

]
z=1

=
1

(q; q)∞

∑
m≥1

q2m(q2; q2)m−1

(
1 +

∑
n≥m

qn

1− qn

)
.

An easy combinatorial argument implies that, for all n ≥ 1,
n∑

m=1

qm(q; q)m−1 = 1− (q; q)n.

It follows that∑
n≥1

σmaex(n)qn =
1

(q; q)∞

(
1− (q2; q2)∞ +

∑
n≥1

qn

1− qn
(
1− (q2; q2)n

))

=
1

(q; q)∞

(
1− (q2; q2)∞ +

∑
n≥1

qn

1− qn
−
∑
n≥1

qn(1 + qn)(q2; q2)n−1

)

=
1

(q; q)∞

(
1− (q2; q2)∞ +

∑
n≥1

qn

1− qn
−
(
1− (q2; q2)∞

)
−
∑
n≥1

qn(q2; q2)n−1

)

=
1

(q; q)∞

(∑
n≥1

qn

1− qn
−
∑
n≥1

qn(q2; q2)n−1

)
.

This completes the proof of (1.3).

4. Proof of Theorem 1.3

We first show that the nonnegative sequence {σL(n) − σmaex(n)}n≥1 is weakly
increasing. To see this, we construct an injective map ϕn : Pn ↪→ Pn+1 (where Pn

denotes the set of partitions of n) for each n ≥ 1 by

π = (π1, π2, . . . , πℓ) 7→ (π1, π2, . . . , πℓ, 1).

Then L(ϕn(π)) = L(π) and

maex(ϕn(π)) =

{
maex(π) if maex(π) ̸= 1,

0 if maex(π) = 1.

It follows that

σL(n+ 1)− σmaex(n+ 1) =
∑

λ⊢n+1

(
L(λ)−maex(λ)

)
≥
∑
π⊢n

(
L(ϕn(π))−maex(ϕn(π))

)
≥
∑
π⊢n

(
L(π)−maex(π)

)
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= σL(n)− σmaex(n).

It turns out that we may apply Ingham’s Tauberian theorem to obtain the as-
ymptotic behavior of σL(n)− σmaex(n).

Theorem 4.1 (Ingham [5]). Let f(q) =
∑

n≥0 a(n)q
n be a power series with weakly

increasing nonnegative coefficients and radius of convergence equal to 1. If there
are constants A > 0 and λ, α ∈ R such that

f
(
e−t
)
∼ λtαe

A
t

as t → 0+, then

a(n) ∼ λ

2
√
π

A
α
2 + 1

4

n
α
2 + 3

4

e2
√
An

as n → ∞.

Recall from (1.6) and (2.3) that∑
n≥1

(
σL(n)− σmaex(n)

)
qn =

1

(q; q)∞

∑
n≥1

qn(q2; q2)n−1

= − σ∗(q)

2(q; q)∞
.

Now the modular inversion formula for Dedekind’s eta function (p. 121, Proposition
14 of [7]) implies that, as t → 0+,

1

(e−t; e−t)∞
∼
√

t

2π
e

π2

6t . (4.1)

On the other hand, Zagier [8] showed that if we take q = ξe−t with ξ a root of
unity, then the identity (2.6) remains true as an identity in Q[ξ][[t]]. Taking ξ = 1,
Zagier further obtained the expansion

− σ∗(e−t) = 2 + 2t+ 5t2 +
55

3
t3 +

1073

12
t4 +

32671

60
t5 +

286333

72
t6 + · · · (4.2)

as t → 0. Hence, as t → 0+,[∑
n≥1

(
σL(n)− σmaex(n)

)
qn

]
q=e−t

∼
√

t

2π
e

π2

6t .

Finally, (1.8) follows from Ingham’s Tauberian theorem. Further, (1.9) can be
deduced by comparing (1.8) with (1.7). Also, we know that the number of partitions
of n satisfies

p(n) ∼ 1

4
√
3n

eπ
√

2n
3

as n → ∞. Hence,

lim
n→∞

En = lim
n→∞

σL(n)− σmaex(n)

p(n)
= 1.
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