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Note on partitions with even parts below odd parts

Shane Chern

Abstract. We undertake an investigation of integer partitions in which all even parts are

smaller than odd parts with additional restrictions, which were first studied by Andrews.
In particular, we focus on the relation between two disjoint subsets of this partition set
separated by the residue classes of the largest even part modulo 4. We also provide an
overpartition analog of this relation.
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1. Introduction

The study of integer partitions in which all even parts are smaller than odd parts
with some additional restrictions was first considered by Andrews [1]. These par-
titions later attracted extensive research interests, with follow-ups by Andrews [2],
Bringmann and Jennings-Shaffer [3] and the author [4]. In particular, Andrews
defined the following partition set in [1].

Definition 1.1. We denote by EO∗ the set of partitions with no even parts such
that each different part appears an even number of times (in which we tacitly
assume that 0 is the largest even part) or partitions with all even parts smaller
than odd parts such that only the largest even part appears an odd number of
times.

For example, 6 has four partitions in EO∗, namely, 1+1+1+1+1+1, 2+2+2,
3 + 3 and 6. Andrews showed that EO∗ satisfies the generating function identity∑

π∈EO∗

q|π| =
(q4; q4)∞
(q2; q4)2∞

where |π| denotes the sum of all parts in π. Throughout, we adopt the standard
q-Pochhammer symbol for n ∈ N ∪ {∞},

(A; q)n :=

n−1∏
k=0

(1−Aqk).

One suggestion in [1, Problem 4] is to “undertake a more extensive investigation
of the properties of EO∗.” Our first objective in this note is about two disjoint
subsets of EO∗ distinguished by the residue classes of the largest even part modulo
4.
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Theorem 1.1. Let eo∗0(n) and eo∗2(n) denote the number of partitions of n in EO∗

with largest even part congruent to 0 and 2 modulo 4, respectively. Then

eo∗0(n)

{
= eo∗2(n) if n is not divisible by 4;

> eo∗2(n) if n is divisible by 4.

There are many natural extensions of integer partitions, among which the most
important one is the overpartition [5]. An overpartition is an integer partition in
which the first occurrence of each distinct part may be overlined. We have the
following overpartition analog of EO∗.

Definition 1.2. We denote by EO∗
the set of overpartitions with no even parts

such that each different part appears an even number of times (in which we tacitly
assume that 0 is the largest even part) or overpartitions with all even parts smaller
than odd parts such that only the largest even part appears an odd number of
times.

For example, 6 has eight partitions in EO∗
, namely, 1 + 1 + 1 + 1 + 1 + 1,

1 + 1+ 1+ 1+ 1+ 1, 2 + 2+ 2, 2 + 2+ 2, 3 + 3, 3 + 3, 6 and 6. Our next objective
is to give an overpartition analog of Theorem 1.1.

Theorem 1.2. Let eo∗0(n) and eo∗2(n) denote the number of overpartitions of n in

EO∗
with largest even part congruent to 0 and 2 modulo 4, respectively. Then

eo∗0(n)

{
= eo∗2(n) if n is not divisible by 4;

> eo∗2(n) if n is divisible by 4.

2. Proof of Theorem 1.1

We first establish a generating function identity for eo∗0(n)− eo∗2(n).

Theorem 2.1. We have∑
n≥0

(
eo∗0(n)− eo∗2(n)

)
qn =

(−q4; q4)∞
(q4; q8)∞

. (2.1)

Our proof of Theorem 2.1 relies on the q-binomial theorem [6, Equation (II.3)].

Lemma 2.2 (q-Binomial theorem). We have∑
n≥0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

. (2.2)

Proof of Theorem 2.1. Let k be a nonnegative integer. We first notice that the
generating function for partitions in EO∗ with largest even part equal to 2k is
given by

q2k

(q4; q4)k
· 1

(q4k+2; q4)∞
,

where the first multiplicand comes from all even parts and the second multiplicand
comes from all odd parts. It follows that∑

n≥0

(
eo∗0(n)− eo∗2(n)

)
qn =

∑
k≥0

(−1)k
q2k

(q4; q4)k(q4k+2; q4)∞



Note on partitions with even parts below odd parts 3

=
1

(q2; q4)∞

∑
k≥0

(q2; q4)k(−q2)k

(q4; q4)k
.

Finally, applying the q-binomial theorem (2.2) with a → q2, z → −q2 and q → q4

yields ∑
n≥0

(
eo∗0(n)− eo∗2(n)

)
qn =

1

(q2; q4)∞

(−q4; q4)∞
(−q2; q4)∞

=
(−q4; q4)∞
(q4; q8)∞

.

We therefore arrive at Theorem 2.1. □

Proof of Theorem 1.1. We simply notice that the right-hand side of (2.1) is a series
of q4 with positive coefficients. Therefore, eo∗0(n) − eo∗2(n) is positive when n is a
multiple of 4 and zero otherwise. This proves Theorem 1.1. □

3. Proof of Theorem 1.2

For EO∗
, we will establish a bivariate generating function identity. Let o(π) count

the number of overlined parts in π for any π ∈ EO∗
. We also assign a weight w(π)

to each π by

w(π) =

{
1 if the largest even part of π is divisible by 4;

−1 if the largest even part of π is not divisible by 4.

Theorem 3.1. We have∑
π∈EO∗

w(π)zo(π)q|π| =
(−q4; q4)∞(−zq4; q8)2∞

(q4; q8)∞
. (3.1)

For its proof, we require the Bailey–Daum sum, also known as the q-Kummer
sum [6, Equation (II.9)].

Lemma 3.2 (Bailey–Daum sum). We have∑
n≥0

(a; q)n(b; q)n
(q; q)n(aq/b; q)n

(
−q

b

)n

=
(−q; q)∞(aq; q2)∞(aq2/b2; q2)∞

(−q/b; q)∞(aq/b; q)∞
. (3.2)

Proof of Theorem 3.1. First, it is a simple observation that the generating function

for overpartitions in EO∗
with no even parts is

(−zq2; q4)∞
(q2; q4)∞

.

Let k be a positive integer. We then notice that the generating function for over-

partitions in EO∗
with largest even part equal to 2k is given by

(1 + z)q2k(−zq4; q4)k−1

(q4; q4)k
· (−zq4k+2; q4)∞

(q4k+2; q4)∞
,

where, again, the first multiplicand comes from all even parts and the second mul-
tiplicand comes from all odd parts. Hence,∑

π∈EO∗

w(π)zo(π)q|π|
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=
(−zq2; q4)∞
(q2; q4)∞

+
∑
k≥1

(−1)k
(1 + z)q2k(−zq4; q4)k−1(−zq4k+2; q4)∞

(q4; q4)k(q4k+2; q4)∞

=
(−zq2; q4)∞
(q2; q4)∞

∑
k≥0

(−z; q4)k(q
2; q4)k(−q2)k

(q4; q4)k(−zq2; q4)k
.

It follows by the Bailey–Daum sum (3.2) with a → −z, b → q2 and q → q4 that∑
π∈EO∗

w(π)zo(π)q|π| =
(−zq2; q4)∞
(q2; q4)∞

(−q4; q4)∞(−zq4; q8)2∞
(−q2; q4)∞(−zq2; q4)∞

=
(−q4; q4)∞(−zq4; q8)2∞

(q4; q8)∞
.

Thus, Theorem 3.1 holds. □

Proof of Theorem 1.2. Taking z = 1 in (3.1), we have∑
n≥0

(
eo∗0(n)− eo∗2(n)

)
qn =

∑
π∈EO∗

w(π)q|π| =
(−q4; q4)∞(−q4; q8)2∞

(q4; q8)∞
.

This is an overpartition analog of (2.1). We as well notice that the right-hand
side of the above identity is a series of q4 with positive coefficients. Theorem 1.2
therefore follows. □

Remark 3.1. We further take z = 0 in (3.1). It is noticed that the left-hand side
becomes ∑

π∈EO∗

o(π)=0

w(π)q|π|,

which is simply the generating function of eo∗0(n) − eo∗2(n). On the other hand,
the term (−zq4; q8)2∞ in the numerator of the right-hand side vanishes. Therefore,
Theorem 3.1 reduces to Theorem 2.1 when z = 0.

4. Final remark

It would be interesting to see combinatorial proofs of Theorems 1.1 and 1.2. Es-
pecially, for any nonegative integer n, we have eo∗0(4n + 2) = eo∗2(4n + 2) and
eo∗0(4n + 2) = eo∗2(4n + 2). This indicates the existence of bijections between
partitions enumerated by eo∗0(4n+2) and eo∗2(4n+2), as well as overpartitions enu-
merated by eo∗0(4n+2) and eo∗2(4n+2). It is appealing to find explicit constructions
of such bijections.
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