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Further results on biases in integer partitions

Shane Chern

Abstract. Let pa,b,m(n) be the number of integer partitions of n with more parts con-

gruent to a modulo m than parts congruent to b modulo m. We prove that pa,b,m(n) ≥
pb,a,m(n) whenever 1 ≤ a < b ≤ m. We also propose some conjectures concerning series

with nonnegative coefficients in their expansions.
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1. Introduction

In analogy to Chebyshev’s bias [3] concerning the excess of the number of primes
of the form 4k + 3 over the number of primes of the form 4k + 1, B. Kim, E. Kim
and Lovejoy [5] introduced a phenomenon called parity bias for integer partitions.

Theorem 1.1 (B. Kim, E. Kim and Lovejoy). Let po(n) (resp. pe(n)) denote the
number of integer partitions of n with more odd parts than even parts (resp. with
more even parts than odd parts). Then

po(n) ≥ pe(n).

This phenomenon is called “parity bias” for integer partitions.

Recently, B. Kim and E. Kim [4] went on to investigate this phenomenon in a
more general setting. Let us first adopt their notation.

Definition 1.1. We denote by pa,b,m(n) the number of partitions of n with more
parts congruent to a modulo m than parts congruent to b modulo m.

Making use of the above notation, we have po(n) = p1,2,2(n) and pe(n) = p2,1,2(n)
and therefore arrive at the inequality p1,2,2(n) ≥ p2,1,2(n) from Theorem 1.1. Sim-
ilar phenomena shown in [4] also include inequalities as follows.

Theorem 1.2 (B. Kim and E. Kim). Let m ≥ 2 be an integer. Then

p1,m,m(n) ≥ pm,1,m(n),

p1,m−1,m(n) ≥ pm−1,1,m(n).

Our object here is to extend the above results for general pa,b,m(n).

Theorem 1.3. Let m ≥ 2 be an integer. For any two integers a and b with
1 ≤ a < b ≤ m, we have

pa,b,m(n) ≥ pb,a,m(n). (1.1)

We separate this theorem into two cases. First, we prove the case (a, b) ̸= (1, 2)
using q-series manipulations. Then we provide an injective proof for (a, b) = (1, 2).
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2. Case (a, b) ̸= (1, 2)

Let us first recall the notation of q-Pochhammer symbols: for n ∈ N ∪ {∞},

(A; q)n :=

n−1∏
k=0

(1−Aqk),

(A1, A2, . . . , Am; q)n := (A1; q)n(A2; q)n · · · (Am; q)n.

Next, given an integer partition λ, we denote by |λ| the sum of parts in λ and by
♯a,m(λ) the number of parts in λ that are congruent to a modulo m. Let P be the
set of integer partitions.

Our starting point is the following trivial trivariate generating function:∑
λ∈P

x♯a,m(λ)y♯b,m(λ)q|λ| =
(qa, qb; qm)∞

(q; q)∞

1

(xqa, yqb; qm)∞
, (2.1)

provided that 1 ≤ a, b ≤ m and a ̸= b.

We are then led to the following lemma.

Lemma 2.1. Let 1 ≤ a, b ≤ m and a ̸= b. We have∑
n≥0

pa,b,m(n)qn =
(qa, qb; qm)∞

(q; q)∞

∑
i,j≥0
i>j

qai+bj

(qm; qm)i(qm; qm)j
. (2.2)

Proof. Recall Euler’s first identity [2, p. 19, (2.2.5)]:

1

(z; q)∞
=
∑
n≥0

zn

(q; q)n
. (2.3)

Setting y = x−1 in (2.1) yields∑
λ∈P

x♯a,m(λ)−♯b,m(λ)q|λ| =
(qa, qb; qm)∞

(q; q)∞

1

(xqa, x−1qb; qm)∞

=
(qa, qb; qm)∞

(q; q)∞

∑
i≥0

xiqai

(qm; qm)i

∑
j≥0

x−jqbj

(qm; qm)j

(by using (2.3) twice)

=
(qa, qb; qm)∞

(q; q)∞

∑
i,j≥0

xi−jqai+bj

(qm; qm)i(qm; qm)j
.

Noticing that pa,b,m(n) counts the number of partitions λ of n such that ♯a,m(λ) >
♯b,m(λ), we must single out terms in the above with positive exponents in x and
therefore terms with i− j > 0. The desired result immediately follows. □

Now, we are in a position to prove Theorem 1.3 for (a, b) ̸= (1, 2).

Proof of Theorem 1.3 for (a, b) ̸= (1, 2). Recall that 1 ≤ a < b ≤ m. The following
is a simple consequence of Lemma 2.1:∑

n≥0

(
pa,b,m(n)− pb,a,m(n)

)
qn
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=
(qa, qb; qm)∞

(q; q)∞

∑
i,j≥0
i>j

(
qai+bj

(qm; qm)i(qm; qm)j
− qbi+aj

(qm; qm)i(qm; qm)j

)

=
(qa, qb; qm)∞

(q; q)∞

∑
i,j≥0
i>j

qai+bj(1− qa(j−i)+b(i−j))

(qm; qm)i(qm; qm)j

=
(qa, qb; qm)∞

(q; q)∞

∑
j≥0

∑
k≥1

qa(j+k)+bj(1− q(b−a)k)

(qm; qm)j(qm; qm)j+k
.

We then consider two subcases.

Subcase I. a ̸= 1. Noticing that (b − a)k is always a positive integer, we may
factor 1− q(b−a)k as (1− q)(1 + q + q2 + · · · q(b−a)k−1). Thus,∑

n≥0

(
pa,b,m(n)− pb,a,m(n)

)
qn

=
(1− q)(qa, qb; qm)∞

(q; q)∞

∑
j≥0

∑
k≥1

qa(j+k)+bj(1 + q + q2 + · · · q(b−a)k−1)

(qm; qm)j(qm; qm)j+k
.

Apparently, the Taylor expansion of the double series in the above has nonnegative
coefficients. For the infinite product in the above, we have, as 2 ≤ a < b ≤ m,

(1− q)(qa, qb; qm)∞
(q; q)∞

=
(qa, qb; qm)∞

(q2; q)∞
,

which also has nonnegative coefficients in its series expansion. We therefore con-
clude that pa,b,m(n) ≥ pb,a,m(n) for a ̸= 1.

Subcase II. a = 1 and b ̸= 2. We have∑
n≥0

(
p1,b,m(n)− pb,1,m(n)

)
qn

=
(q, qb; qm)∞

(q; q)∞

∑
j≥0

∑
k≥1

q(j+k)+bj(1− q(b−1)k)

(qm; qm)j(qm; qm)j+k
.

Notice that b > a = 1. This time we should factor 1 − q(b−1)k as (1 − qb−1)(1 +
qb−1 + · · · q(b−1)(k−1)). Thus,∑

n≥0

(
p1,b,m(n)− pb,1,m(n)

)
qn

=
(1− qb−1)(q, qb; qm)∞

(q; q)∞

∑
j≥0

∑
k≥1

q(j+k)+bj(1 + qb−1 + · · · q(b−1)(k−1))

(qm; qm)j(qm; qm)j+k
.

Similarly, the double series in the above can be expanded as a nonnegative series in
q. Also, as b ̸= 2, we have 1 < b−1 < b ≤ m. This implies that the infinite product
part in the above is also a nonnegative series in q. Therefore, p1,b,m(n) ≥ pb,1,m(n)
for b ̸= 2. □
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3. Case (a, b) = (1, 2)

When (a, b) = (1, 2), it looks like a q-theoretic proof is painfully difficult. Therefore,
we consider this case in a combinatorial manner. First, for d ∈ Z, we define

Pd(n) = P
(m)
d (n) :=

{
λ ∈ P : |λ| = n and ♯1,m(λ)− ♯2,m(λ) = d

}
.

Then

p1,2,m(n) =
∑
d≥1

cardPd(n), (3.1)

p2,1,m(n) =
∑
d≥1

cardP−d(n). (3.2)

Our object is to show the following inequalities, from which our desired result
p1,2,m(n) ≥ p2,1,m(n) follows as a direct consequence if we make use of the above
two relations.

Theorem 3.1. Let m ≥ 3 be an integer. For k ≥ 0,

cardP−(km+1)(n) ≤ cardPkm+2(n), (3.3)

cardP−(km+2)(n) ≤ cardPkm+1(n), (3.4)

cardP−(km+r)(n) ≤ cardPkm+r(n), (3.5)

where 3 ≤ r ≤ m in the third inequality.

Proof. We simply construct injections P−d(n) ↪→ Pd∗(n) for d = km+ r > 0 with
1 ≤ r ≤ m and

d∗ =


km+ 2 if r = 1,

km+ 1 if r = 2,

km+ r if 3 ≤ r ≤ m.

Given any partition λ, we start with the following process.

Process (I). We replace any part in λ that is congruent to 1 modulo m, say
um+1, by um+2 and replace any part in λ that is congruent to 2 modulo m, say
vm+ 2, by vm+ 1. The resulting partition is called λ∗.

Now, if λ ∈ P−d(n), then ♯1,m(λ)− ♯2,m(λ) = −d. Also, trivially,

|λ∗| = |λ| − d = n− d.

Thus, to arrive at a partition of size n, we need to append some additional parts
that sum to d. We have three subcases.

Subcase I. 3 ≤ r ≤ m. Recall that d = km+ r. We append a part of size d to
λ∗ and call the new partition λ∗∗. Since d ̸≡ 1, 2 (mod m), we have

♯1,m(λ∗∗)− ♯2,m(λ∗∗) = ♯1,m(λ∗)− ♯2,m(λ∗)

= ♯2,m(λ)− ♯1,m(λ) (by Process (I))

= −(−d)

= d∗.

Thus, λ∗∗ ∈ Pd∗(n).
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Subcase II. r = 1. Recall that d = km + 1. We append a part of size 1 and
a part of size km to λ∗ and call the new partition λ∗∗. Notice that km ≡ 0 ̸≡ 1, 2
(mod m) for m ≥ 3. Thus,

♯1,m(λ∗∗)− ♯2,m(λ∗∗) =
(
1 + ♯1,m(λ∗)

)
− ♯2,m(λ∗)

= 1 + ♯2,m(λ)− ♯1,m(λ) (by Process (I))

= 1− (−d)

= km+ 2

= d∗,

which implies that λ∗∗ ∈ Pd∗(n).

Subcase III. r = 2. Recall that d = km+ 2. We append a part of size 2 and a
part of size km to λ∗ and call the new partition λ∗∗. We also have km ≡ 0 ̸≡ 1, 2
(mod m) for m ≥ 3. Thus,

♯1,m(λ∗∗)− ♯2,m(λ∗∗) = ♯1,m(λ∗)−
(
1 + ♯2,m(λ∗)

)
= −1 + ♯2,m(λ)− ♯1,m(λ) (by Process (I))

= −1− (−d)

= km+ 1

= d∗,

and therefore, λ∗∗ ∈ Pd∗(n).

Lastly, it is straightforward to verify that the map λ 7→ λ∗∗ is injective. □

Proof of Theorem 1.3 for (a, b) = (1, 2). For m = 2, see Theorem 1.1 due to B.
Kim, E. Kim and Lovejoy. For m ≥ 3, we have

p2,1,m(n) =
∑
d≥1

cardP−d(n) (by (3.2))

=
∑
k≥0

cardP−(km+1)(n) +
∑
k≥0

cardP−(km+2)(n)

+
∑

3≤r≤m

∑
k≥0

cardP−(km+r)(n)

≤
∑
k≥0

cardPkm+2(n) +
∑
k≥0

cardPkm+1(n)

+
∑

3≤r≤m

∑
k≥0

cardPkm+r(n) (by Theorem 3.1)

=
∑
d≥1

cardPd(n)

= p1,2,m(n). (by (3.1))

This is exactly what we need. □
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4. Closing remarks

Following Section 2, the case (a, b) = (1, 2) of Theorem 1.3 is equivalent to the
nonnegativity of

(q, q2; qm)∞
(q; q)∞

∑
j≥0

∑
k≥1

q3j+k(1− qk)

(qm; qm)j(qm; qm)j+k
, (4.1)

that is, its series expansion has nonnegative coefficients. Although we do not find
a q-theoretic proof of this fact, our numerical calculations indicate the following
conjecture.

Conjecture 4.1. For m ≥ 2, the double series∑
j≥0

∑
k≥1

q3j+k(1− qk)

(qm; qm)j(qm; qm)j+k
(4.2)

has nonnegative coefficients in its expansion.

Notice that∑
j≥0

∑
k≥1

q3j+k(1− qk)

(qm; qm)j(qm; qm)j+k
=
∑
j≥0

q3j

(qm; qm)j(qm; qm)j

∑
k≥0

qk(1− qk)

(q(j+1)m; qm)k
.

Regarding the inner series, we also have a more surprising conjecture.

Conjecture 4.2. For m, s ≥ 1, ∑
k≥0

qk(1− qk)

(qs; qm)k
(4.3)

has nonnegative coefficients in its expansion.

Here the case s = m is to some extent easier.

Proof of Conjecture 4.2 for s = m. We have∑
k≥0

qk(1− qk)

(qm; qm)k
=
∑
k≥0

qk

(qm; qm)k
−
∑
k≥0

q2k

(qm; qm)k

=
1

(q; qm)∞
− 1

(q2; qm)∞
(by (2.3))

=
∑
n≥0

ρ1,m(n)qn −
∑
n≥0

ρ2,m(n)qn,

where for i = 1 or 2, we denote by ρi,m(n) the number of partitions of n with parts
of the form km+ i with k ≥ 0.

Now we recall a result due to Andrews [1, Theorem 3]:

Let S = {ai}i≥1 and T = {bi}i≥1 be two strictly increasing sequences of positive
integers such that b1 = 1 and ai ≥ bi for all i. Then for any n ≥ 0,

ρT (n) ≥ ρS(n),

where ρS(n) (resp. ρT (n)) denotes the number of partitions of n into parts taken
from S (resp. T ).

By the above theorem, we immediately have ρ1,m(n) ≥ ρ2,m(n) for all n. Thus,
(4.3) is a nonnegative series in q when s = m. □
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