# Further results on biases in integer partitions 

Shane Chern


#### Abstract

Let $p_{a, b, m}(n)$ be the number of integer partitions of $n$ with more parts congruent to $a$ modulo $m$ than parts congruent to $b$ modulo $m$. We prove that $p_{a, b, m}(n) \geq$ $p_{b, a, m}(n)$ whenever $1 \leq a<b \leq m$. We also propose some conjectures concerning series with nonnegative coefficients in their expansions.


Keywords. Integer partition, bias, generating function, nonnegativity.
2010MSC. 05A17, 11P81.

## 1. Introduction

In analogy to Chebyshev's bias [3] concerning the excess of the number of primes of the form $4 k+3$ over the number of primes of the form $4 k+1$, B. Kim, E. Kim and Lovejoy [5] introduced a phenomenon called parity bias for integer partitions.
Theorem 1.1 (B. Kim, E. Kim and Lovejoy). Let $p_{o}(n)$ (resp. $p_{e}(n)$ ) denote the number of integer partitions of $n$ with more odd parts than even parts (resp. with more even parts than odd parts). Then

$$
p_{o}(n) \geq p_{e}(n)
$$

This phenomenon is called "parity bias" for integer partitions.
Recently, B. Kim and E. Kim [4] went on to investigate this phenomenon in a more general setting. Let us first adopt their notation.
Definition 1.1. We denote by $p_{a, b, m}(n)$ the number of partitions of $n$ with more parts congruent to $a$ modulo $m$ than parts congruent to $b$ modulo $m$.

Making use of the above notation, we have $p_{o}(n)=p_{1,2,2}(n)$ and $p_{e}(n)=p_{2,1,2}(n)$ and therefore arrive at the inequality $p_{1,2,2}(n) \geq p_{2,1,2}(n)$ from Theorem 1.1. Similar phenomena shown in [4] also include inequalities as follows.

Theorem 1.2 (B. Kim and E. Kim). Let $m \geq 2$ be an integer. Then

$$
\begin{aligned}
p_{1, m, m}(n) & \geq p_{m, 1, m}(n) \\
p_{1, m-1, m}(n) & \geq p_{m-1,1, m}(n)
\end{aligned}
$$

Our object here is to extend the above results for general $p_{a, b, m}(n)$.
Theorem 1.3. Let $m \geq 2$ be an integer. For any two integers $a$ and $b$ with $1 \leq a<b \leq m$, we have

$$
\begin{equation*}
p_{a, b, m}(n) \geq p_{b, a, m}(n) \tag{1.1}
\end{equation*}
$$

We separate this theorem into two cases. First, we prove the case $(a, b) \neq(1,2)$ using $q$-series manipulations. Then we provide an injective proof for $(a, b)=(1,2)$.

## 2. Case $(a, b) \neq(1,2)$

Let us first recall the notation of $q$-Pochhammer symbols: for $n \in \mathbb{N} \cup\{\infty\}$,

$$
\begin{aligned}
(A ; q)_{n} & :=\prod_{k=0}^{n-1}\left(1-A q^{k}\right) \\
\left(A_{1}, A_{2}, \ldots, A_{m} ; q\right)_{n} & :=\left(A_{1} ; q\right)_{n}\left(A_{2} ; q\right)_{n} \cdots\left(A_{m} ; q\right)_{n}
\end{aligned}
$$

Next, given an integer partition $\lambda$, we denote by $|\lambda|$ the sum of parts in $\lambda$ and by $\sharp_{a, m}(\lambda)$ the number of parts in $\lambda$ that are congruent to $a$ modulo $m$. Let $\mathscr{P}$ be the set of integer partitions.

Our starting point is the following trivial trivariate generating function:

$$
\begin{equation*}
\sum_{\lambda \in \mathscr{P}} x^{\sharp a, m}(\lambda) y^{\sharp b, m}(\lambda) q^{|\lambda|}=\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \frac{1}{\left(x q^{a}, y q^{b} ; q^{m}\right)_{\infty}}, \tag{2.1}
\end{equation*}
$$

provided that $1 \leq a, b \leq m$ and $a \neq b$.
We are then led to the following lemma.
Lemma 2.1. Let $1 \leq a, b \leq m$ and $a \neq b$. We have

$$
\begin{equation*}
\sum_{n \geq 0} p_{a, b, m}(n) q^{n}=\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{\substack{i, j \geq 0 \\ i>j}} \frac{q^{a i+b j}}{\left(q^{m} ; q^{m}\right)_{i}\left(q^{m} ; q^{m}\right)_{j}} \tag{2.2}
\end{equation*}
$$

Proof. Recall Euler's first identity [2, p. 19, (2.2.5)]:

$$
\begin{equation*}
\frac{1}{(z ; q)_{\infty}}=\sum_{n \geq 0} \frac{z^{n}}{(q ; q)_{n}} \tag{2.3}
\end{equation*}
$$

Setting $y=x^{-1}$ in (2.1) yields

$$
\begin{aligned}
& \sum_{\lambda \in \mathscr{P}} x^{\sharp a, m}(\lambda)-\sharp_{b, m}(\lambda) \\
& q^{|\lambda|}=\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \frac{1}{\left(x q^{a}, x^{-1} q^{b} ; q^{m}\right)_{\infty}} \\
&=\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{i \geq 0} \frac{x^{i} q^{a i}}{\left(q^{m} ; q^{m}\right)_{i}} \sum_{j \geq 0} \frac{x^{-j} q^{b j}}{\left(q^{m} ; q^{m}\right)_{j}}
\end{aligned}
$$

(by using (2.3) twice)

$$
=\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{i, j \geq 0} \frac{x^{i-j} q^{a i+b j}}{\left(q^{m} ; q^{m}\right)_{i}\left(q^{m} ; q^{m}\right)_{j}}
$$

Noticing that $p_{a, b, m}(n)$ counts the number of partitions $\lambda$ of $n$ such that $\sharp a, m(\lambda)>$ $\sharp_{b, m}(\lambda)$, we must single out terms in the above with positive exponents in $x$ and therefore terms with $i-j>0$. The desired result immediately follows.

Now, we are in a position to prove Theorem 1.3 for $(a, b) \neq(1,2)$.
Proof of Theorem 1.3 for $(a, b) \neq(1,2)$. Recall that $1 \leq a<b \leq m$. The following is a simple consequence of Lemma 2.1:

$$
\sum_{n \geq 0}\left(p_{a, b, m}(n)-p_{b, a, m}(n)\right) q^{n}
$$

$$
\begin{aligned}
& =\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{\substack{i, j \geq 0 \\
i>j}}\left(\frac{q^{a i+b j}}{\left(q^{m} ; q^{m}\right)_{i}\left(q^{m} ; q^{m}\right)_{j}}-\frac{q^{b i+a j}}{\left(q^{m} ; q^{m}\right)_{i}\left(q^{m} ; q^{m}\right)_{j}}\right) \\
& =\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{\substack{i, j \geq 0 \\
i>j}} \frac{q^{a i+b j}\left(1-q^{a(j-i)+b(i-j)}\right)}{\left(q^{m} ; q^{m}\right)_{i}\left(q^{m} ; q^{m}\right)_{j}} \\
& =\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{j \geq 0} \sum_{k \geq 1} \frac{q^{a(j+k)+b j}\left(1-q^{(b-a) k}\right)}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j+k}} .
\end{aligned}
$$

We then consider two subcases.
Subcase I. $a \neq 1$. Noticing that $(b-a) k$ is always a positive integer, we may factor $1-q^{(b-a) k}$ as $(1-q)\left(1+q+q^{2}+\cdots q^{(b-a) k-1}\right)$. Thus,

$$
\begin{aligned}
& \sum_{n \geq 0}\left(p_{a, b, m}(n)-p_{b, a, m}(n)\right) q^{n} \\
& \quad=\frac{(1-q)\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{j \geq 0} \sum_{k \geq 1} \frac{q^{a(j+k)+b j}\left(1+q+q^{2}+\cdots q^{(b-a) k-1}\right)}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j+k}} .
\end{aligned}
$$

Apparently, the Taylor expansion of the double series in the above has nonnegative coefficients. For the infinite product in the above, we have, as $2 \leq a<b \leq m$,

$$
\frac{(1-q)\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}}=\frac{\left(q^{a}, q^{b} ; q^{m}\right)_{\infty}}{\left(q^{2} ; q\right)_{\infty}}
$$

which also has nonnegative coefficients in its series expansion. We therefore conclude that $p_{a, b, m}(n) \geq p_{b, a, m}(n)$ for $a \neq 1$.

Subcase II. $a=1$ and $b \neq 2$. We have

$$
\begin{aligned}
& \sum_{n \geq 0}\left(p_{1, b, m}(n)-p_{b, 1, m}(n)\right) q^{n} \\
& \quad=\frac{\left(q, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{j \geq 0} \sum_{k \geq 1} \frac{q^{(j+k)+b j}\left(1-q^{(b-1) k}\right)}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j+k}} .
\end{aligned}
$$

Notice that $b>a=1$. This time we should factor $1-q^{(b-1) k}$ as $\left(1-q^{b-1}\right)(1+$ $\left.q^{b-1}+\cdots q^{(b-1)(k-1)}\right)$. Thus,

$$
\begin{aligned}
& \sum_{n \geq 0}\left(p_{1, b, m}(n)-p_{b, 1, m}(n)\right) q^{n} \\
& \quad=\frac{\left(1-q^{b-1}\right)\left(q, q^{b} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{j \geq 0} \sum_{k \geq 1} \frac{q^{(j+k)+b j}\left(1+q^{b-1}+\cdots q^{(b-1)(k-1)}\right)}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j+k}} .
\end{aligned}
$$

Similarly, the double series in the above can be expanded as a nonnegative series in $q$. Also, as $b \neq 2$, we have $1<b-1<b \leq m$. This implies that the infinite product part in the above is also a nonnegative series in $q$. Therefore, $p_{1, b, m}(n) \geq p_{b, 1, m}(n)$ for $b \neq 2$.

## 3. Case $(a, b)=(1,2)$

When $(a, b)=(1,2)$, it looks like a $q$-theoretic proof is painfully difficult. Therefore, we consider this case in a combinatorial manner. First, for $d \in \mathbb{Z}$, we define

$$
\mathscr{P}_{d}(n)=\mathscr{P}_{d}^{(m)}(n):=\left\{\lambda \in \mathscr{P}:|\lambda|=n \text { and } \sharp_{1, m}(\lambda)-\sharp_{2, m}(\lambda)=d\right\} .
$$

Then

$$
\begin{align*}
p_{1,2, m}(n) & =\sum_{d \geq 1} \operatorname{card} \mathscr{P}_{d}(n),  \tag{3.1}\\
p_{2,1, m}(n) & =\sum_{d \geq 1} \operatorname{card} \mathscr{P}_{-d}(n) . \tag{3.2}
\end{align*}
$$

Our object is to show the following inequalities, from which our desired result $p_{1,2, m}(n) \geq p_{2,1, m}(n)$ follows as a direct consequence if we make use of the above two relations.

Theorem 3.1. Let $m \geq 3$ be an integer. For $k \geq 0$,

$$
\begin{align*}
& \operatorname{card} \mathscr{P}_{-(k m+1)}(n) \leq \operatorname{card} \mathscr{P}_{k m+2}(n),  \tag{3.3}\\
& \operatorname{card} \mathscr{P}_{-(k m+2)}(n) \leq \operatorname{card} \mathscr{P}_{k m+1}(n),  \tag{3.4}\\
& \operatorname{card} \mathscr{P}_{-(k m+r)}(n) \leq \operatorname{card} \mathscr{P}_{k m+r}(n), \tag{3.5}
\end{align*}
$$

where $3 \leq r \leq m$ in the third inequality.
Proof. We simply construct injections $\mathscr{P}_{-d}(n) \hookrightarrow \mathscr{P}_{d^{*}}(n)$ for $d=k m+r>0$ with $1 \leq r \leq m$ and

$$
d^{*}= \begin{cases}k m+2 & \text { if } r=1 \\ k m+1 & \text { if } r=2, \\ k m+r & \text { if } 3 \leq r \leq m\end{cases}
$$

Given any partition $\lambda$, we start with the following process.
Process (I). We replace any part in $\lambda$ that is congruent to 1 modulo $m$, say $u m+1$, by $u m+2$ and replace any part in $\lambda$ that is congruent to 2 modulo $m$, say $v m+2$, by $v m+1$. The resulting partition is called $\lambda^{*}$.

Now, if $\lambda \in \mathscr{P}_{-d}(n)$, then $\sharp_{1, m}(\lambda)-\sharp_{2, m}(\lambda)=-d$. Also, trivially,

$$
\left|\lambda^{*}\right|=|\lambda|-d=n-d .
$$

Thus, to arrive at a partition of size $n$, we need to append some additional parts that sum to $d$. We have three subcases.

Subcase I. $3 \leq r \leq m$. Recall that $d=k m+r$. We append a part of size $d$ to $\lambda^{*}$ and call the new partition $\lambda^{* *}$. Since $d \not \equiv 1,2(\bmod m)$, we have

$$
\begin{aligned}
\sharp_{1, m}\left(\lambda^{* *}\right)-\sharp_{2, m}\left(\lambda^{* *}\right) & =\sharp_{1, m}\left(\lambda^{*}\right)-\sharp_{2, m}\left(\lambda^{*}\right) \\
& =\sharp_{2, m}(\lambda)-\sharp_{1, m}(\lambda) \quad \text { (by Process }(\mathrm{I}) \text { ) } \\
& =-(-d) \\
& =d^{*} .
\end{aligned}
$$

Thus, $\lambda^{* *} \in \mathscr{P}_{d^{*}}(n)$.

Subcase II. $r=1$. Recall that $d=k m+1$. We append a part of size 1 and a part of size $k m$ to $\lambda^{*}$ and call the new partition $\lambda^{* *}$. Notice that $k m \equiv 0 \not \equiv 1,2$ $(\bmod m)$ for $m \geq 3$. Thus,

$$
\begin{aligned}
\sharp_{1, m}\left(\lambda^{* *}\right)-\sharp_{2, m}\left(\lambda^{* *}\right) & =\left(1+\sharp_{1, m}\left(\lambda^{*}\right)\right)-\sharp_{2, m}\left(\lambda^{*}\right) \\
& =1+\sharp_{2, m}(\lambda)-\sharp_{1, m}(\lambda) \quad \text { (by Process }(\mathrm{I}) \text { ) } \\
& =1-(-d) \\
& =k m+2 \\
& =d^{*}
\end{aligned}
$$

which implies that $\lambda^{* *} \in \mathscr{P}_{d^{*}}(n)$.
Subcase III. $r=2$. Recall that $d=k m+2$. We append a part of size 2 and a part of size $k m$ to $\lambda^{*}$ and call the new partition $\lambda^{* *}$. We also have $k m \equiv 0 \not \equiv 1,2$ $(\bmod m)$ for $m \geq 3$. Thus,

$$
\begin{aligned}
\sharp_{1, m}\left(\lambda^{* *}\right)-\sharp_{2, m}\left(\lambda^{* *}\right) & =\sharp_{1, m}\left(\lambda^{*}\right)-\left(1+\sharp_{2, m}\left(\lambda^{*}\right)\right) \\
& =-1+\sharp_{2, m}(\lambda)-\sharp_{1, m}(\lambda) \quad \text { (by Process (I)) } \\
& =-1-(-d) \\
& =k m+1 \\
& =d^{*},
\end{aligned}
$$

and therefore, $\lambda^{* *} \in \mathscr{P}_{d^{*}}(n)$.
Lastly, it is straightforward to verify that the map $\lambda \mapsto \lambda^{* *}$ is injective.

Proof of Theorem 1.3 for $(a, b)=(1,2)$. For $m=2$, see Theorem 1.1 due to B. Kim, E. Kim and Lovejoy. For $m \geq 3$, we have

$$
\left.\begin{array}{rl}
p_{2,1, m}(n)= & \sum_{d \geq 1} \operatorname{card} \mathscr{P}_{-d}(n) \\
= & \sum_{k \geq 0} \operatorname{card} \mathscr{P}_{-(k m+1)}(n)+\sum_{k \geq 0} \operatorname{card} \mathscr{P}_{-(k m+2)}(n) \\
& +\sum_{3 \leq r \leq m} \sum_{k \geq 0} \operatorname{card} \mathscr{P}_{-(k m+r)}(n) \\
\leq & \sum_{k \geq 0} \operatorname{card} \mathscr{P}_{k m+2}(n)+\sum_{k \geq 0} \operatorname{card} \mathscr{P}_{k m+1}(n) \\
& +\sum_{3 \leq r \leq m} \sum_{k \geq 0} \operatorname{card} \mathscr{P}_{k m+r}(n) \\
= & \sum_{d \geq 1} \operatorname{card} \mathscr{P}_{d}(n) \\
= & p_{1,2, m}(n) . \tag{3.1}
\end{array} \quad \text { (by Theorem 3.1) }\right)
$$

This is exactly what we need.

## 4. Closing remarks

Following Section 2, the case $(a, b)=(1,2)$ of Theorem 1.3 is equivalent to the nonnegativity of

$$
\begin{equation*}
\frac{\left(q, q^{2} ; q^{m}\right)_{\infty}}{(q ; q)_{\infty}} \sum_{j \geq 0} \sum_{k \geq 1} \frac{q^{3 j+k}\left(1-q^{k}\right)}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j+k}} \tag{4.1}
\end{equation*}
$$

that is, its series expansion has nonnegative coefficients. Although we do not find a $q$-theoretic proof of this fact, our numerical calculations indicate the following conjecture.

Conjecture 4.1. For $m \geq 2$, the double series

$$
\begin{equation*}
\sum_{j \geq 0} \sum_{k \geq 1} \frac{q^{3 j+k}\left(1-q^{k}\right)}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j+k}} \tag{4.2}
\end{equation*}
$$

has nonnegative coefficients in its expansion.
Notice that

$$
\sum_{j \geq 0} \sum_{k \geq 1} \frac{q^{3 j+k}\left(1-q^{k}\right)}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j+k}}=\sum_{j \geq 0} \frac{q^{3 j}}{\left(q^{m} ; q^{m}\right)_{j}\left(q^{m} ; q^{m}\right)_{j}} \sum_{k \geq 0} \frac{q^{k}\left(1-q^{k}\right)}{\left(q^{(j+1) m} ; q^{m}\right)_{k}}
$$

Regarding the inner series, we also have a more surprising conjecture.
Conjecture 4.2. For $m, s \geq 1$,

$$
\begin{equation*}
\sum_{k \geq 0} \frac{q^{k}\left(1-q^{k}\right)}{\left(q^{s} ; q^{m}\right)_{k}} \tag{4.3}
\end{equation*}
$$

has nonnegative coefficients in its expansion.
Here the case $s=m$ is to some extent easier.
Proof of Conjecture 4.2 for $s=m$. We have

$$
\begin{align*}
\sum_{k \geq 0} \frac{q^{k}\left(1-q^{k}\right)}{\left(q^{m} ; q^{m}\right)_{k}} & =\sum_{k \geq 0} \frac{q^{k}}{\left(q^{m} ; q^{m}\right)_{k}}-\sum_{k \geq 0} \frac{q^{2 k}}{\left(q^{m} ; q^{m}\right)_{k}} \\
& =\frac{1}{\left(q ; q^{m}\right)_{\infty}}-\frac{1}{\left(q^{2} ; q^{m}\right)_{\infty}}  \tag{2.3}\\
& =\sum_{n \geq 0} \rho_{1, m}(n) q^{n}-\sum_{n \geq 0} \rho_{2, m}(n) q^{n}
\end{align*}
$$

where for $i=1$ or 2 , we denote by $\rho_{i, m}(n)$ the number of partitions of $n$ with parts of the form $k m+i$ with $k \geq 0$.

Now we recall a result due to Andrews [1, Theorem 3]:
Let $S=\left\{a_{i}\right\}_{i \geq 1}$ and $T=\left\{b_{i}\right\}_{i \geq 1}$ be two strictly increasing sequences of positive integers such that $b_{1}=1$ and $a_{i} \geq b_{i}$ for all $i$. Then for any $n \geq 0$,

$$
\rho_{T}(n) \geq \rho_{S}(n)
$$

where $\rho_{S}(n)$ (resp. $\left.\rho_{T}(n)\right)$ denotes the number of partitions of $n$ into parts taken from $S$ (resp. T).

By the above theorem, we immediately have $\rho_{1, m}(n) \geq \rho_{2, m}(n)$ for all $n$. Thus, (4.3) is a nonnegative series in $q$ when $s=m$.

## References

1. G. E. Andrews, On a partition problem of H. L. Alder, Pacific J. Math. 36 (1971), 279-284.
2. G. E. Andrews, The theory of partitions, Reprint of the 1976 original. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. xvi+255 pp.
3. P. L. Chebyshev, Lettre de M. le Professeur Tchébychev à M. Fuss sur un nouveaux théorème relatif aux nombres premiers contenus dans les formes $4 n+1$ et $4 n+3$, Bull. Classe Phys. Acad. Imp. Sci. St. Petersburg 11 (1853), 208.
4. B. Kim and E. Kim, Biases in integer partitions, Bull. Aust. Math. Soc., in press.
5. B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin. 89 (2020), 103159, 19 pp.

Department of Mathematics, Penn State University, University Park, PA 16802, USA
E-mail address: shanechern@psu.edu

