

Towards finding trends in extreme values of precipitation: A preliminary Analysis

Eric Gilleland Research Applications Laboratory 24 – 25 October 2016

Co-authors: Geoff Bonnin, Jerry Shen, Michael St-Laurent

This research is preliminary and subject to FHWA final acceptance.

National Center for Atmospheric Research

¹By FHWA Social Media - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=47387937

Data

Global Historical Climatology Network (GHCN)

- <u>https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn</u>
- Daily data from 1893 to 2014
- Two sub-regions of interest: New England area (NE) and semi-arid southwest (SW)

Issues

- Despite long temporal record, many stations moved during course of time leading to many stations with much shorter data records.
- Occasional multi-day accumulations (instead of one day) resulting from human recordings not being taken over several days.

Threshold Selection

Threshold Selection

Variance/ Bias Tradeoff

Threshold Selection

Extremal Index estimates using threshold that yields equal number of excesses as years

PP – GEV (Northeast Region)

90 th	location	scale	shape	500-year return level	NCAR
Min	-0.36	-1.18	-0.82	-596.60	
1 st Quartile	0.02	-0.12	-0.09	-1.86	
Median	0.09	-0.06	0.02	-0.08	
Mean	0.10	-0.07	0.03	-1.95 363 have	e shape
3 rd Quartile	0.17	0.01	0.15	1.04 with diffe	erent
Max	1.51	0.93	1.22	24.91 signs. in missing	= 1000
No. Missing	258	258	258	258	
95 th	location	scale	shape	500-year return level	
95 th Min	location -0.36	scale -1.41	shape -0.84	500-year return level 599.73 350 have	e shape
95 th Min 1 st Quartile	location -0.36 0.02	scale -1.41 -0.12	shape -0.84 -0.08	500-year return level 599.73 350 have -1.59 with differsions. To	e shape erent otal non-
95 th Min 1 st Quartile Median	location -0.36 0.02 0.09	scale -1.41 -0.12 -0.05	shape -0.84 -0.08 0.03	500-year return level 599.73 350 have -1.59 with differ signs. To 0.03 missing	e shape erent otal non- = 1000
95 th Min 1 st Quartile Median Mean	location -0.36 0.02 -0.09 0.011 -0.11	scale -1.41 -0.12 -0.05 -0.06	shape -0.84 -0.08 0.03 0.03	500-year return level 599.73 350 have -1.59 with differsions. Tell 0.03 missing stress -1.66 -1.66	e shape erent otal non- = 1000
95 th Min 1 st Quartile Median Mean 3 rd Quartile	location-0.360.020.090.110.17	scale-1.41-0.12-0.05-0.060.01	shape-0.84-0.080.030.030.14	500-year return level 599.73 350 have -1.59 with differsions. Termination 0.03 missing -1.66 1.06	e shape erent otal non- = 1000
95 th Min 1 st Quartile Median Mean 3 rd Quartile Max	location-0.360.020.090.110.171.67	scale-1.41-0.12-0.05-0.060.011.32	shape-0.84-0.080.030.030.141.20	500-year return level 599.73 350 have with difference -1.59 with difference 0.03 missing -1.66 1.06 85.55 85.55	e shape erent otal non- = 1000

GEV fit to individual locations

NCAR

GEV with one parameter set for entire region

GEV(μ(s), σ(s), ξ(s))	Northeast (NE)	μ	σ	ξ		
ບ(s) = ບ		1.99	0.74	0.07		
$\sigma(\mathbf{s}) = \sigma$ $\xi(\mathbf{s}) = \xi$	AIC = 144624.9, BIC = 144651.6					
ς(3) - ς	Southwest (SW)	μ	σ	ξ		
		1.03	0.52	0.15		

GEV with different location and scale parameters for two sub-regions identified from individual fits

GEV(μ(**s**), σ(**s**), ξ(**s**)) μ(**s**) = μ + **1**_{s in A(μ)} δ_{μ} , A(μ) defined for the two regions

log $\sigma(\mathbf{s}) = \phi(\mathbf{s}) = \phi + \mathbf{1}_{s \text{ in } A(\phi)} \delta_{\phi}$, $A(\phi)$ defined for the two regions $\xi(\mathbf{s}) = \xi$

Northeast Region

 $A(\mu) = A(\sigma)$ and defined by being above or below the line

0.5710124 * longitude + 85.16103

Southwest Region

 $A(\mu) = A(\sigma)$ and defined by being east of 106° W longitude

GEV with different location parameter at each location, and one scale parameter for each of the two sub-regions identified from individual fits

 $GEV(\; \boldsymbol{\mu}(\boldsymbol{s}),\, \boldsymbol{\sigma}(\boldsymbol{s}),\, \boldsymbol{\xi}(\boldsymbol{s})\;)$

 $\mu(\mathbf{s}) = \mu + \mathbf{1}_{\mathbf{s} \text{ in } A(\mu)} \delta_{\mu}$, $A(\mu)$ defined as each individual station

log $\sigma(\mathbf{s}) = \phi(\mathbf{s}) = \phi + \mathbf{1}_{s \text{ in } A(\phi)} \delta_{\phi}$, $A(\phi)$ defined for the two regions

GEV with different location and scale parameters for two sub-regions identified from individual fits, and a temporal trend in the overall location parameter.

GEV(μ (**s**, **year**), σ (**s**), ξ (**s**)), year = 1, 2, ... μ (**s**, **year**) = $\mu_0 + \mu_1 \times \text{year} + \mathbf{1}_{s \text{ in } A(\mu)} \delta_{\mu}$, $A(\mu)$ defined for the two regions log σ (**s**) = ϕ (**s**) = $\phi + \mathbf{1}_{s \text{ in } A(\phi)} \delta_{\phi}$, $A(\phi)$ defined for the two regions ξ (**s**) = ξ

	μ	μ ₁	$\delta_{\mu(1)}$	δ _{μ(2)}	φ	$\delta_{\varphi(1)}$	$\delta_{\varphi(2)}$	ξ
NE	1.93	0.001	-0.30	0.23	-0.32	-0.21	0.12	0.05
SW	0.60	0.0005	0.65	0.33	-0.23	-0.27	-0.53	0.15

AIC favors Model 2 over Model 3 BIC favors Model 3 over Model 2

But, trend terms are negligible in both models (not likely to be significant).

GEV with different location and scale parameters for two sub-regions identified from individual fits, and a temporal trend in the overall location parameter.

GEV(μ (**s**, **year**), σ (**s**), ξ (**s**)), year = 1, 2, ...

 $\mu(\mathbf{s}, \mathbf{year}) = \mu_0 + \mathbf{1}_{\mathbf{s} \text{ in } A(\mu)} [\delta_{\mu,0} + \delta_{\mu,1} \times \text{ year }], A(\mu) \text{ defined for the two regions}$ $\log \sigma(\mathbf{s}) = \phi(\mathbf{s}) = \phi + \mathbf{1}_{\mathbf{s} \text{ in } A(\phi)} \delta_{\phi} , A(\phi) \text{ defined for the two regions}$ $\xi(\mathbf{s}) = \xi$

Model 5+ (Future work?)

Invoke a spatial process on the location (and scale?) parameters across entire region. Allow for a temporal trend in one or more parameter(s).

GEV(μ (**s**, **year**), σ (**s**, **year**), ξ (**s**, **epoch**)), year = 1, 2, ...

```
( \mu(\mathbf{s}, \mathbf{year}), \log \sigma(\mathbf{s}) ) ~
```

Gaussian Process((mean_{location}(year), mean_{scale}(year)), Covariance)

 $\xi(s, epoch) = \xi$

Not feasible to allow shape parameter to vary every year, but may be good to allow it to vary every ten years (or more).

Model 6+ (Future work?)

Following approach of Reich and Shaby (2012, doi: 10.1214/12-AOAS591) and Stephenson et al. (2015, doi:10.1175/JAMC-D-14-0041.1)

Let $\mathbf{A} = (A_1, ..., A_K)$ be K independent random variables distributed according to a positive stable distribution with index equal to the spatial-dependence parameter α .

Define

$$\theta(s_{i}) = \left[\sum_{k=1}^{K} A_{k} W_{k}(s_{i})^{1/\alpha}\right]^{\alpha}$$
kernel basis
functions with $w_{k} \ge 0$
Precipitation | $\mathbf{A} \sim \text{GEV}(\mu^{*}(\mathbf{s}_{i}), \sigma^{*}(\mathbf{s}_{i}), \xi^{*}(\mathbf{s}_{i})) \leftarrow \xi^{*}(\mathbf{s}_{i}) = \alpha\xi(\mathbf{s}_{i})$

$$\mu^{*}(\mathbf{s}_{i}) = \mu(\mathbf{s}_{i}) + \sigma(\mathbf{s}_{i})[\theta(\mathbf{s}_{i})^{\xi(\mathbf{s})} - 1]$$

$$\sigma^{*}(\mathbf{s}_{i}) = \alpha\sigma(\mathbf{s}_{i}) \theta(\mathbf{s}_{i})^{\xi(\mathbf{s})}$$
Inference via
Bayesian
estimation
But, have $\xi^{*}(\mathbf{s}_{i}) = \alpha\xi(\mathbf{s}_{i}) = \alpha\xi$ (is this model still valid?)
Incorporate trend via \mathbf{A} , perhaps by way of changing return level estimates

Summary

- Threshold selection is challenging, but worthwhile endeavor in order to use PP model to obtain better estimates (less uncertainty) at greater expense of time.
- Model 4
 - reasonably parsimonious model
 - allows for pooling of data across locations
 - Shows promise in that AIC / BIC results are good
 - qq-plots reasonably linear
- Model 2 may be improved by imposing a spatial process on the parameter estimates (penalized likelihood problem / Bayesian)
- Model 3 incorporates temporal trend, but not significant for these regions
 - Consistent with other results, but ...
 - Need to check Data Quality issues
 - Need more careful determination of sub-regions
- Estimated shape parameter consistent across models
- Not much variability in location/scale parameters within sub-regions
- Model 4 suggests small positive trend in NE, but not much trend in SW

Future Work?

- Choose sub-regions more carefully
- Test for homogeneity of shape parameter in regions.
- Allow shape to vary some?
- More models (e.g., allow other parameters to vary in time).
- Incorporate covariates?
- Analyze resulting return levels
- Account for non-stationarity in return levels

Thank you for your attention.

Questions?