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Data 
•  Global Historical Climatology Network (GHCN) 

§  https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-
based-datasets/global-historical-climatology-network-ghcn  

§  Daily data from 1893 to 2014 
§  Two sub-regions of interest: New England area (NE) and semi-arid 

southwest (SW) 

•  Issues 
§  Despite long temporal record, many stations moved during course of time 

leading to many stations with much shorter data records. 
§  Occasional multi-day accumulations (instead of one day) resulting from 

human recordings not being taken over several days. 
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threshrange.plot(x = y, r = c(0.3, 1.5), type = "PP", nint = 50, 
    na.action = na.omit)
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Threshold Selection 
Extremal Index estimates using threshold that yields 
equal number of excesses as years 



PP – GEV (Northeast Region) 

95th  location scale shape 500-year return level 
Min -0.36 -1.41 -0.84 599.73 
1st Quartile 0.02 -0.12 -0.08 -1.59 
Median 0.09 -0.05 0.03 0.03 
Mean 0.11 -0.06 0.03 -1.66 
3rd Quartile 0.17 0.01 0.14 1.06 
Max 1.67 1.32 1.20 85.55 
No. Missing 258 258 258 258 

90th  location scale shape 500-year return level 
Min -0.36 -1.18 -0.82 -596.60 
1st Quartile 0.02 -0.12 -0.09 -1.86 
Median 0.09 -0.06 0.02 -0.08 
Mean 0.10 -0.07 0.03 -1.95 
3rd Quartile 0.17 0.01 0.15 1.04 
Max 1.51 0.93 1.22 24.91 
No. Missing 258 258 258 258 

363 have shape 
with different 
signs.  Total non-
missing = 1000 

350 have shape 
with different 
signs.  Total non-
missing = 1000 



GEV fit to individual locations 
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Model 0 
GEV with one parameter set for entire region 
 
GEV( µ(s), σ(s), ξ(s) ) Northeast (NE) 

Southwest (SW) 

µ σ ξ 
1.99 0.74 0.07 

µ σ ξ 
1.03 0.52 0.15 

AIC = 144624.9, BIC = 144651.6 

AIC = 192141.1, BIC = 192169.5 

µ(s) = µ 
σ(s) = σ 
ξ(s) = ξ 



Model 1 

GEV with different location and scale parameters for two sub-regions 
identified from individual fits 
 
GEV( µ(s), σ(s), ξ(s) ) 
 

ξ(s) = ξ 

log σ(s) = ϕ(s) = ϕ + 1s in A(ϕ) δϕ , A(ϕ) defined for the two regions 

µ(s) = µ + 1s in A(µ) δµ , A(µ) defined for the two regions 



Model 1 
Northeast Region 
 
A(µ) = A(σ) and defined by being above or below the line 
 
0.5710124 * longitude + 85.16103 

GEV Location Parameter

−1.0 −0.5 0.0 0.5

GEV Scale Parameter

0.4 0.6 0.8 1.0 1.2



Model 1 
Southwest Region 
 
A(µ) = A(σ) and defined by being east of 106o W longitude 

GEV Location Parameter

0 1 2 3 4

GEV Scale Parameter

0.0 0.2 0.4 0.6 0.8 1.0 1.2



Model 1 

µ δµ (1) δµ (2) ϕ δϕ (1) δϕ (2) ξ 
1.99 -0.27 0.26 0.006 -0.54 -0.21 0.056 

1 = northwest / west, 2 = southeast / east 

µ δµ (1) δµ (2) ϕ δϕ (1) δϕ (2) ξ 
1.08 0.20 -0.12 -0.251 -0.25 -0.50 0.145 

Northeast 

Southwest 

AIC = 137772, BIC = 137841.6 

AIC = 186365.3, BIC = 186438.8 

Northeast QQ-plot Southwest QQ-plot 

Both AIC and BIC substantially lower than Model 0 



Model 2 

GEV with different location parameter at each location, and one scale 
parameter for each of the two sub-regions identified from individual fits 
 
GEV( µ(s), σ(s), ξ(s) ) 

Northeast Southwest 

ξ(s) = ξ 

log σ(s) = ϕ(s) = ϕ + 1s in A(ϕ) δϕ , A(ϕ) defined for the two regions 

µ(s) = µ + 1s in A(µ) δµ , A(µ) defined as each individual station 



Model 2 

Northeast 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum 
-1.23 -0.29 -0.28 -0.02 0.006 0.28 

µ ϕ δϕ(1) δϕ(2) ξ 
2.03 -0.03 -0.56 -0.26 0.084 

δµ(k) 

AIC = 133926.4, BIC = 146492.6 

AIC( Model 2 ) – AIC( Model 1 ) = -3845.583 

BIC( Model 2 ) – BIC( Model 1 ) = 8650.942  

Implies Model 2 better 

Implies Model 1 better 



Model 2 
Southwest 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum 
-0.77 -0.21 -0.02 0.003 0.20 1.43 

µ ϕ δϕ(1) δϕ(2) ξ 
1.10 -0.32 -0.26 -0.58 0.15 

δµ(k) 

AIC = 165036.8, BIC = 188000.7 

AIC( Model 2 ) – AIC( Model 1 ) = -21328.49 

BIC( Model 2 ) – BIC( Model 1 ) = 1561.91 

Implies Model 2 better 

Implies Model 1 better 



Model 3 
GEV with different location and scale parameters for two sub-regions 
identified from individual fits, and a temporal trend in the overall location 
parameter. 
 
GEV( µ(s, year), σ(s), ξ(s) ), year = 1, 2, … 

Northeast Southwest 

ξ(s) = ξ 

log σ(s) = ϕ(s) = ϕ + 1s in A(ϕ) δϕ , A(ϕ) defined for the two regions 

µ(s, year) = µ0 + µ1 × year + 1s in A(µ) δµ , A(µ) defined for the two regions 



Model 3 

µ0 µ1 δµ(1) 
 

δµ(2) 
 

ϕ δϕ(1) 
 

δϕ(2) 
 

ξ 

NE 1.93 0.001 -0.30 0.23 -0.32 -0.21 0.12 0.05 
SW 0.60 0.0005 0.65 0.33 -0.23 -0.27 -0.53 0.15 

AIC favors Model 2 over Model 3 
BIC favors Model 3 over Model 2 

But, trend terms are negligible in both models 
(not likely to be significant). 



Model 4 
GEV with different location and scale parameters for two sub-regions 
identified from individual fits, and a temporal trend in the overall location 
parameter. 
 
GEV( µ(s, year), σ(s), ξ(s) ), year = 1, 2, … 

Northeast Southwest 

µ(s, year) = µ0 + 1s in A(µ)  [ δµ,0 + δµ,1 × year ], A(µ) defined for the two regions 

ξ(s) = ξ 

log σ(s) = ϕ(s) = ϕ + 1s in A(ϕ) δϕ , A(ϕ) defined for the two regions 



Model 4 
Northeast 

Southwest 

µ0 δµ,0 (1) 
 

δµ,0 (2) 
 

δµ,0 (1) 
 

δµ,0 (1) 
 

ϕ δϕ(1) 
 

δϕ(2) 
 
 

ξ 

1.97 -0.33 0.16 0.001 0.002 -0.003 -0.53 -0.20 0.05 

µ0 δµ,0 (1) 
 

δµ,0 (2) 
 

δµ,0 (1) 
 

δµ,0 (1) 
 

ϕ δϕ(1) 
 

δϕ(2) 
 
 

ξ 

1.01 0.23 -0.08 0.001 ≈ 0 -0.34 -0.16 -0.42 0.15 

AIC = 137574.4, BIC = 137663.9  

AIC = 186269, BIC = 186363.5 

Implies Model 2 better 

Implies Model 4 better 

Both AIC and BIC 
suggest Model 4 is 
better than Model 1 



Model 5+ (Future work?) 
Invoke a spatial process on the location (and scale?) parameters across 
entire region.  Allow for a temporal trend in one or more parameter(s). 
 
GEV( µ(s, year), σ(s, year), ξ(s, epoch) ), year = 1, 2, … 

ξ(s, epoch) = ξ 

( µ(s, year), log σ(s) ) ~  
 
Gaussian Process( (meanlocation(year), meanscale(year)), Covariance ) 

Not feasible to allow shape parameter to vary every year, but may 
be good to allow it to vary every ten years (or more).  



Model 6+ (Future work?) 
Following approach of Reich and Shaby (2012, doi: 10.1214/12-AOAS591) 
and Stephenson et al. (2015, doi:10.1175/JAMC-D-14-0041.1) 

Let A = (A1, …, AK) be K independent random variables distributed 
according to a positive stable distribution with index equal to the 
spatial-dependence parameter α. 

θ si( ) = Ak kw si( )1/α
k=1

K

∑⎡
⎣⎢

⎤
⎦⎥

αDefine kernel basis 
functions with wk ≥ 0 

Precipitation | A ~ GEV(µ*(si), σ*(si), ξ*(si)) 

µ*(si) = µ(si) + σ(si)[θ(si)ξ(s) – 1] σ*(si) = ασ(si) θ(si)ξ(s)  

ξ*(si) = αξ(si) 

But, have ξ*(si) = αξ(si) = αξ           (is this model still valid?) 

Incorporate trend via A, perhaps by way of changing return level estimates 

Inference via 
Bayesian 
estimation 



Summary 
•  Threshold selection is challenging, but worthwhile endeavor in order to use PP 

model to obtain better estimates (less uncertainty) at greater expense of time. 
•  Model 4  

§  reasonably parsimonious model  
§  allows for pooling of data across locations  
§  Shows promise in that AIC / BIC results are good 
§  qq-plots reasonably linear 

•  Model 2 may be improved by imposing a spatial process on the parameter 
estimates (penalized likelihood problem / Bayesian) 

•  Model 3 incorporates temporal trend, but not significant for these regions 
§  Consistent with other results, but … 

•  Need to check Data Quality issues 
•  Need more careful determination of sub-regions 

•  Estimated shape parameter consistent across models 
•  Not much variability in location/scale parameters within sub-regions 
•  Model 4 suggests small positive trend in NE, but not much trend in SW 

 



Future Work? 
•  Choose sub-regions more carefully 
•  Test for homogeneity of shape parameter in regions. 
•  Allow shape to vary some? 
•  More models (e.g., allow other parameters to vary in time). 
•  Incorporate covariates? 
•  Analyze resulting return levels 
•  Account for non-stationarity in return levels 



Thank you for your attention. 
 

Questions? 


